Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.334
Filter
1.
Luminescence ; 39(7): e4810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965929

ABSTRACT

Four eight-coordinated luminescent samarium complexes of type [Sm(hfpd)3L2] and [Sm(hfpd)3L'] [where hfpd = 1,1,1,5,5,5-Hexafluoro-2,4-pentanedione L = tri-octyl-phosphine oxide (TOPO) and L' = 1,10-phenanthroline (phen), neocuproine (neoc) and bathocuproine (bathoc) were synthesized via a stoichiometrically controlled approach. This allows for precise control over the stoichiometry of the complexes, leading to reproducible properties. This investigation focuses on understanding the impact of secondary ligands on the luminescent properties of these complexes. Infrared (IR) spectra provided information about the molecular structures, whereas 1H and 13C nuclear magnetic resonance (NMR) spectra confirmed these structural details along with the coordination of ligands to trivalent Sm ion. The UV-vis spectra revealed the molar absorption coefficient and absorption bands associated with the hfpd ligand and photoluminescence (PL) spectroscopy demonstrated intense orange-red emission (648 nm relative to 4G5/2 → 6H9/2) from the complexes. The Commission Internationale de l'Éclairage (CIE) triangles indicated that the complexes emitted warm orange red light with color coordinates (x, y) ranging from (0.62, 0.36) to (0.40, 0.27). The investigation of the band gap as well as color parameters confirms the utility of these complexes in displays and LEDs.


Subject(s)
Luminescence , Samarium , Ligands , Samarium/chemistry , Molecular Structure , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Pentanones/chemistry , Luminescent Agents/chemistry , Luminescent Agents/chemical synthesis , Luminescent Measurements
2.
J Med Chem ; 67(13): 11138-11151, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38951717

ABSTRACT

Using a multigram-scalable synthesis, we obtained nine dinuclear complexes based on nonendogenous iron(I) centers and featuring variable aminocarbyne and P-ligands. One compound from the series (FEACYP) emerged for its strong cytotoxicity in vitro against four human cancer cell lines, surpassing the activity of cisplatin by 3-6 times in three cell lines, with an average selectivity index of 6.2 compared to noncancerous HEK293 cells. FEACYP demonstrated outstanding water solubility (15 g/L) and stability in physiological-like solutions. It confirmed its superior antiproliferative activity when tested in 3D spheroids of human pancreatic cancer cells and showed a capacity to inhibit thioredoxin reductase (TrxR) similar to auranofin. In vivo treatment of murine LLC carcinoma with FEACYP (8 mg kg-1 dose) led to excellent tumor growth suppression (88%) on day 15, with no signs of systemic toxicity and only limited body weight loss.


Subject(s)
Adamantane , Antineoplastic Agents , Solubility , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Adamantane/pharmacology , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Thioredoxin-Disulfide Reductase/metabolism , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Iron/chemistry , Iron/metabolism , Water/chemistry , Drug Screening Assays, Antitumor , Phosphines/chemistry , Phosphines/pharmacology , Drug Stability , HEK293 Cells , Organophosphorus Compounds
3.
Molecules ; 29(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999167

ABSTRACT

Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)-arene complexes incorporating substituted pyridine-quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl- (1-Cl), PF6- (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl- (3-Cl), PF6- (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV-Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 µΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Cymenes , Pyridines , Quinolines , Ruthenium , Humans , Ruthenium/chemistry , Quinolines/chemistry , Quinolines/chemical synthesis , Quinolines/pharmacology , Ligands , Cymenes/chemistry , Cymenes/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Molecular Structure , Cell Line, Tumor , Crystallography, X-Ray , Cell Survival/drug effects
4.
Inorg Chem ; 63(28): 12958-12968, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38946498

ABSTRACT

Piscidins, antimicrobial peptides isolated from fish, are potent against a variety of human pathogens; they show minimum inhibitory concentration values comparable to those of commercially used antimicrobials. Piscidins 1 and 2 are generally more effective than piscidin 3 when applied alone; the contrary is observed for their metal complexes: Zn(II) and Cu(II) coordination does not enhance the efficacy of piscidins 1 and 2, while a moderate enhancement is observed for piscidin 3. All three piscidins bind Cu(II) in a so-called albumin-like binding mode, while for Zn(II) complexes, two coordination modes are observed: piscidins 1 and 2 bind Zn(II) by imidazole nitrogens from His4, His11, and His17 side chains; piscidin 3 coordinates Zn(II) by His3, His4, and His11 imidazole nitrogens and additionally supports the interaction, formed by carbonyl oxygen from His4. Most likely, the high antimicrobial activity of piscidin complexes is due to neither the stability of their complexes nor the change in their secondary structure. Copper(II) complexes with piscidins 1 and 2 can form hydroxyl radicals, which could be responsible for the antimicrobial membrane damaging activity of these complexes. Clearly, a different mechanism (most likely an intercellular targeted one) is observed for piscidin 3 metal complexes; in most cases, the coordination of Cu(II) and Zn(II) enhances the antimicrobial potency of piscidin 3, showing that not only piscidin 3 alone but also its metal complexes have a different mode of action than piscidins 1 and 2.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Coordination Complexes , Copper , Microbial Sensitivity Tests , Zinc , Copper/chemistry , Copper/pharmacology , Zinc/chemistry , Zinc/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Fish Proteins/pharmacology , Fish Proteins/chemistry , Animals
5.
Inorg Chem ; 63(28): 12992-13004, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949627

ABSTRACT

In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both 1H and 17O NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)]- and [Fe(EDTA-BOM2)(H2O)]- as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.


Subject(s)
Edetic Acid , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Edetic Acid/chemistry , Edetic Acid/analogs & derivatives , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Ferric Compounds/chemistry , Molecular Structure , Thermodynamics , Magnetic Resonance Imaging
6.
Dalton Trans ; 53(28): 11836-11849, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38949269

ABSTRACT

A novel lysosome-targeted photosensitizer/photoredox catalyst based on cyclometalated Ir(III) complex IrL has been designed and synthesized, which exhibited excellent phosphorescence properties and the ability to generate single oxygen (1O2) and photocatalytically oxidize 1,4-dihydronicotinamide adenine dinucleotide (NADH) under light irradiation. Most importantly, the aforementioned activities are significantly enhanced due to protonation under acidic conditions, which makes them highly attractive in light-activated tumor therapy, especially for acidic lysosomes and tumor microenvironments. The photocytotoxicity of IrL and the mechanism of cell death have been investigated. Additionally, the tumor-killing ability of IrL under light irradiation was evaluated using a 4T1 tumor-bearing mouse model. This work provides a strategy for the development of lysosome-targeted photosensitizers/photoredox catalysts to overcome hypoxic tumors.


Subject(s)
Coordination Complexes , Iridium , Lysosomes , Oxidation-Reduction , Photosensitizing Agents , Lysosomes/metabolism , Iridium/chemistry , Iridium/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Animals , Catalysis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Mice , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Humans , Photochemotherapy , Cell Line, Tumor , Light , Mice, Inbred BALB C
7.
Dalton Trans ; 53(28): 11903-11913, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38953883

ABSTRACT

Monoanionic gold bis(dithiolene) complexes were recently shown to display activity against ovarian cancer cells, Gram-positive bacteria, Candida strains and the rodent malaria parasite, P. berghei. To date, only monoanionic gold(III) bis(dithiolene) complexes with a thiazoline backbone substituted with small alkyl chains have been evaluated for biomedical applications. We now analyzed the influence of the length and the hydrophobicity vs. hydrophilicity of these complexes' alkyl chain on their anticancer and antiplasmodial properties. Isomer analogues of these monoanionic gold(III) bis(dithiolene) complexes, this time with a thiazole backbone, were also investigated in order to assess the influence of the nature of the heterocyclic ligand on their overall chemical and biological properties. In this report we present the total synthesis of four novel monoanionic gold(III) bis(dithiolene) complexes with a long alkyl chain and a polyoxygenated (PEG) chain aiming to improve their solubility and biological properties. Our results showed that the complexes with a PEG chain showed promising anticancer and antiplasmodial activities beside improved solubility, a key parameter in drug discovery and development.


Subject(s)
Antimalarials , Antineoplastic Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Gold/chemistry , Gold/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Plasmodium falciparum/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Organogold Compounds/pharmacology , Organogold Compounds/chemistry , Organogold Compounds/chemical synthesis , Molecular Structure , Parasitic Sensitivity Tests , Cell Proliferation/drug effects , Animals
8.
Dalton Trans ; 53(28): 11914-11927, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958025

ABSTRACT

Currently, there are many uses of metal complexes, especially in the fields of medicinal chemistry and catalysis. Thus, fabrication of new complexes which perform as a catalyst and chemotherapeutic drug is always a beneficial addition to the literature. Herein, we report three heterocyclic thiosemicarbazone-based Pd(II) complexes [Pd(HL1)Cl] (C1), [Pd(L2)(PPh3)] (C2) and [Pd(L3)(PPh3)]Cl (C3) having coligands Cl and PPh3. Thiosemicarbazone ligands (H2L1, H2L2 and HL3) and the complexes (C1-C3) were characterized methodically using several spectroscopic techniques. Single-crystal X-ray diffraction methods reveal that the structural environment around the metal center of C2 is square planar, while for C1 and C3 it is a slighty distorted square plane. The supramolecular network of compounds was built via hydrogen bonds, C-H⋯π and π⋯π interactions. Density functional theory (DFT) study of the structure of the complexes supports experimental findings. The application of these complexes as catalysts toward Suzuki-Miyaura coupling reactions has been examined with various aryl halides and phenyl boronic acid in PEG 400 solvent. The complexes displayed good biomolecular interactions with DNA/protein, with a binding constant value of the order of 105 M-1. C3 showed greater binding efficacy toward these biomolecules than the other complexes, which might be due to the cationic nature of C3. Furthermore, antitumor activity of the complexes was studied against the human triple-negative breast cancer (TNBC) cell line MDA-MB-231. It was found that C3 was more toxic (IC50 = 10 ± 2.90 µM) toward MDA-MB-231 cells than the other complexes. A known chemotherapeutic drug, 5-fluorouracil, was included as positive control. The programmed cell death mechanism of C3 was confirmed. Additionally, complex-induced apoptosis was confirmed and occurred via a mitochondria-dependent (intrinsic) pathway.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Palladium , Thiosemicarbazones , Palladium/chemistry , Palladium/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Catalysis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Molecular Structure , Cell Proliferation/drug effects , Density Functional Theory , Models, Molecular , Apoptosis/drug effects
9.
Dalton Trans ; 53(28): 11995-12006, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38963284

ABSTRACT

The spontaneous aggregation of infectious or misfolded forms of prion protein is known to be responsible for neurotoxicity in brain cells, which ultimately leads to the progression of prion disorders. Bovine spongiform encephalopathy (BSE) in animals and Creutzfeldt-Jakob disease (CJD) in humans are glaring examples in this regard. Square-planar complexes with labile ligands and indole-based compounds are found to be efficiently inhibitory against protein aggregation. Herein, we report the synthesis of an indole-based cyclometallated palladium complex. The ligand and complex were characterized by various spectroscopic techniques such as UV-visible, NMR, IR, and HRMS. The molecular structure of the complex was confirmed by single-crystal X-ray crystallography. The interaction of the complex with PrP106-126 was studied using UV-visible spectroscopy, CD spectroscopy, MALDI-TOF MS, and molecular docking. The inhibition effects of the complex on the PrP106-126 aggregation, fibrillization and amyloid formation phenomena were analysed through the ThT assay, CD, TEM and AFM. The effect of the complex on the aggregation process of PrP106-126 was determined kinetically through the ThT assay. The complex presented high binding affinity with the peptide and influenced the peptide's conformation and aggregation in different modes of binding. Furthermore, the MTT assay on neuronal HT-22 cells showed considerable protective properties of the complex against PrP106-126-mediated cytotoxicity. These findings suggest that the compound influences peptide aggregation in different ways, and the anti-aggregation action is primarily associated with the metal's physicochemical properties and the reactivity rather than the ligand. As a result, we propose that this compound be investigated as a potential therapeutic molecule in metallopharmaceutical research to treat prion disease (PD).


Subject(s)
Coordination Complexes , Indoles , Palladium , Protein Aggregates , Palladium/chemistry , Palladium/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Protein Aggregates/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Docking Simulation , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , Prion Proteins/chemistry , Prion Proteins/metabolism , Prion Proteins/antagonists & inhibitors , Prions
10.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930809

ABSTRACT

Cobalt(III) compounds with tetradentate ligands have been widely employed to deliver cytotoxic and imaging agents into cells. A large body of work has focused on using cobalt(III)-cyclam scaffolds for this purpose. Here, we investigate the cytotoxic properties of cobalt(III) complexes containing 14-membered macrocycles related to cyclam. A breast cancer stem cell (CSC) in vitro model was used to gauge efficacy. Specifically, [Co(1,4,7,11-tetraazacyclotetradecane)Cl2]+ (1) and [Co(1-oxa-4,8,12-triazacyclotetradecane)Cl2]+ (2) were synthesised and characterised, and their breast CSC activity was determined. The cobalt(III) complexes 1 and 2 displayed micromolar potency towards bulk breast cancer cells and breast CSCs grown in monolayers. Notably, 1 and 2 displayed selective potency towards breast CSCs over bulk breast cancer cells (up to 4.5-fold), which was similar to salinomycin (an established breast CSC-selective agent). The cobalt(III) complexes 1 and 2 were also able to inhibit mammosphere formation at low micromolar doses (with respect to size and number). The mammopshere inhibitory effect of 2 was similar to that of salinomycin. Our studies show that cobalt(III) complexes with 1,4,7,11-tetraazacyclotetradecane and 1-oxa-4,8,12-triazacyclotetradecane macrocycles could be useful starting points for the development of new cobalt-based delivery systems that can transport cytotoxic and imaging agents into breast CSCs.


Subject(s)
Antineoplastic Agents , Cobalt , Neoplastic Stem Cells , Humans , Cobalt/chemistry , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Cell Line, Tumor , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Cell Survival/drug effects
11.
Molecules ; 29(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38930825

ABSTRACT

The current article reports the investigation of three new Ni(II) complexes with ONS-donor dithiocarbazate ligands: [Ni(L1)PPh3] (1), [Ni(L2)PPh3] (2), and [Ni(L2)Py] (3). Single-crystal X-ray analyses revealed mononuclear complexes with a distorted square planar geometry and the metal centers coordinated with a doubly deprotonated dithiocarbazate ligand and coligand pyridine or triphenylphosphine. The non-covalent interactions were investigated by the Hirshfeld surface and the results revealed that the strongest interactions were π⋅⋅⋅π stacking interactions and non-classical hydrogen bonds C-H···H and C-H···N. Physicochemical and spectroscopic methods indicate the same structures in the solid state and solution. The toxicity effects of the free ligands and Ni(II) complexes were tested on the human breast cancer cell line MCF-7 and non-malignant breast epithelial cell line MCF-10A. The half-maximal inhibitory concentration (IC50) values, indicating that the compounds were potent in inhibiting cell growth, were obtained for both cell lines at three distinct time points. While inhibitory effects were evident in both malignant and non-malignant cells, all three complexes demonstrated lower IC50 values for malignant breast cell lines than their non-malignant counterparts, suggesting a stronger impact on cancerous cell lines. Furthermore, molecular docking studies were performed showing the complex (2) as a promising candidate for further therapeutic exploration.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Molecular Docking Simulation , Nickel , Humans , Nickel/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Cell Line, Tumor , Crystallography, X-Ray , MCF-7 Cells , Molecular Structure , Cell Proliferation/drug effects , Drug Design
12.
Inorg Chem ; 63(24): 11450-11458, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38823006

ABSTRACT

Two Ru(II) complexes, [Ru(pydppn)(bim)(py)]2+ [2; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene; bim = 2,2'-bisimidazole; py = pyridine] and [Ru(pydppn)(Me4bim)(py)]2+ [3; Me4bim = 2,2'-bis(4,5-dimethylimidazole)], were synthesized and characterized, and their photophysical properties, DNA binding, and photocleavage were evaluated and compared to [Ru(pydppn)(bpy)(py)]2+ (1; bpy = 2,2'-bipyridine). Complexes 2 and 3 exhibit broad 1MLCT (metal-to-ligand charge transfer) transitions with maxima at ∼470 nm and shoulders at ∼525 and ∼600 nm that extend to ∼800 nm. These bands are red-shifted relative to those of 1, attributed to the π-donating ability of the bim and Me4bim ligands. A strong signal at 550 nm is observed in the transient absorption spectra of 1-3, previously assigned as arising from a pydppn-centered 3ππ* state, with lifetimes of ∼19 µs for 1 and 2 and ∼270 ns for 3. A number of methods were used to characterize the mode of binding of 1-3 to DNA, including absorption titrations, thermal denaturation, relative viscosity changes, and circular dichroism, all of which point to the intercalation of the pydpppn ligand between the nucleobases. The photocleavage of plasmid pUC19 DNA was observed upon the irradiation of 1-3 with visible and red light, attributed to the sensitized generation of 1O2 by the complexes. These findings indicate that the bim ligand, together with pydppn, serves to shift the absorption of Ru(II) complexes to the photodynamic therapy window, 600-900 nm, and also extend the excited state lifetimes for the efficient production of cytotoxic singlet oxygen.


Subject(s)
Coordination Complexes , DNA , Photochemotherapy , Photosensitizing Agents , Plasmids , Ruthenium , Singlet Oxygen , DNA/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , Ruthenium/chemistry , Ruthenium/pharmacology , Plasmids/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Molecular Structure , DNA Cleavage/drug effects , DNA Cleavage/radiation effects
13.
J Med Chem ; 67(11): 9662-9685, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38831692

ABSTRACT

The new ligand L2Ad, obtained by conjugating the bifunctional species bis(3,5-dimethylpyrazol-1-yl)-acetate and the drug amantadine, was used as a chelator for the synthesis of new Cu complexes 1-5. Their structures were investigated by synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, and by combining X-ray absorption fine structure (XAFS) spectroscopy techniques and DFT modeling. The structure of complex 3 was determined by single-crystal X-ray diffraction analysis. Tested on U87, T98, and U251 glioma cells, Cu(II) complex 3 and Cu(I) complex 5 decreased cell viability with IC50 values significantly lower than cisplatin, affecting cell growth, proliferation, and death. Their effects were prevented by treatment with the Cu chelator tetrathiomolybdate, suggesting the involvement of copper in their cytotoxic activity. Both complexes were able to increase ROS production, leading to DNA damage and death. Interestingly, nontoxic doses of 3 or 5 enhanced the chemosensitivity to Temozolomide.


Subject(s)
Adamantane , Antineoplastic Agents , Coordination Complexes , Copper , Glioblastoma , Humans , Copper/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Glioblastoma/drug therapy , Glioblastoma/pathology , Glioblastoma/metabolism , Ligands , Adamantane/pharmacology , Adamantane/chemistry , Adamantane/chemical synthesis , Adamantane/analogs & derivatives , Cell Line, Tumor , Cell Proliferation/drug effects , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Cell Survival/drug effects , Density Functional Theory , Drug Screening Assays, Antitumor , Reactive Oxygen Species/metabolism , Molecular Structure , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis , Structure-Activity Relationship , Acetates/chemistry , Acetates/pharmacology , Acetates/chemical synthesis
14.
Dalton Trans ; 53(24): 10347-10360, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38836789

ABSTRACT

A series of four Cd(II) complexes with 5-methyl-4-imidazolecarboxaldehyde (L) with different inorganic anions within or outside the coordination sphere of general formula: [CdCl2L2] (1), [CdBr2L2] (2), [CdI2L2] (3), and [CdL4](PF6)2·3H2O (4) was synthesized through one-step and two-step reactions, respectively. All complexes were obtained as colorless crystals without the need for recrystallization and exhibited solubility in aqueous solutions. Structural analysis revealed different coordination environments for each complex, with variations in bond lengths and angles. The crystal packing of the complexes was stabilized by hydrogen bonding and π-π stacking interactions. FT-IR analysis indicated coordination of the ligand to the metal ion, and UV-Vis studies confirmed the stability of the complexes in solution. Computational analysis has revealed the polar nature of the complexes and their favorable stability constants. Affinity studies with DNA using the switchSense technique demonstrated rapid association and dissociation processes for all complexes, with temperature-dependent binding constants. Thermodynamic analysis suggested spontaneous with positive entropy change and endothermic formation processes for the complexes. Overall, the study underscores the synthesis, examination, and interaction with DNA of Cd(II) complexes, demonstrating their promise within medicinal chemistry.


Subject(s)
Cadmium , Coordination Complexes , DNA , DNA/chemistry , Cadmium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Thermodynamics , Imidazoles/chemistry , Models, Molecular , Molecular Structure , Density Functional Theory
15.
Dalton Trans ; 53(25): 10571-10591, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38855858

ABSTRACT

In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coordination Complexes , Palladium , Schiff Bases , Schiff Bases/chemistry , Schiff Bases/pharmacology , Humans , Palladium/chemistry , Palladium/pharmacology , Cell Proliferation/drug effects , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Cell Line, Tumor , Halogenation , Molecular Structure , Drug Screening Assays, Antitumor , Models, Molecular
16.
Inorg Chem ; 63(25): 11667-11687, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38860314

ABSTRACT

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.


Subject(s)
Ferrous Compounds , Ruthenium , Trypanocidal Agents , Trypanosoma cruzi , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Ferrous Compounds/chemical synthesis , Trypanosoma cruzi/drug effects , Ligands , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Mice , Metallocenes/chemistry , Metallocenes/pharmacology , Metallocenes/chemical synthesis , Trypanosoma brucei brucei/drug effects , Parasitic Sensitivity Tests , Molecular Structure , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis
17.
Inorg Chem ; 63(24): 10915-10931, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38845098

ABSTRACT

Phytochelatins (PCs) are poly-Cys peptides containing a repeating γ-Glu-Cys motif synthesized in plants, algae, certain fungi, and worms by PC synthase from reduced glutathione. It has been shown that an excess of toxic metal ions induces their biosynthesis and that they are responsible for the detoxification process. Little is known about their participation in essential metal binding under nontoxic, basal conditions under which PC synthase is active. This study presents spectroscopic and thermodynamic interactions with the PC2-PC5 series, mainly focusing on the relations between Zn(II) complex stability and cellular Zn(II) availability. The investigations employed mass spectrometry, UV-vis spectroscopy, potentiometry, competition assays with zinc probes, and isothermal titration calorimetry (ITC). All peptides form ZnL complexes, while ZnL2 was found only for PC2, containing two to four sulfur donors in the coordination sphere. Binuclear species typical of Cd(II)-PC complexes are not formed in the case of Zn(II). Results demonstrate that the affinity for Zn(II) increases linearly from PC2 to PC4, ranging from micro- to low-picomolar. Further elongation does not significantly increase the stability. Stability elevation is driven mainly by entropic factors related to the chelate effect and conformational restriction rather than enthalpic factors related to the increasing number of sulfur donors. The affinity of the investigated PCs falls within the range of exchangeable Zn(II) concentrations (hundreds of pM) observed in plants, supporting for the first time a role of PCs both in buffering and in muffling cytosolic Zn(II) concentrations under normal conditions, not exposed to zinc excess, where short PCs have been identified in numerous studies. Furthermore, we found that Cd(II)-PC complexes demonstrate significantly higher metal capacities due to the formation of polynuclear species, which are lacking for Zn(II), supporting the role of PCs in Cd(II) storage (detoxification) and Zn(II) buffering and muffling. Our results on phytochelatins' coordination chemistry and thermodynamics are important for zinc biology and understanding the molecular basis of cadmium toxicity, leaving room for future studies.


Subject(s)
Phytochelatins , Thermodynamics , Zinc , Phytochelatins/metabolism , Phytochelatins/chemistry , Zinc/chemistry , Zinc/metabolism , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Coordination Complexes/chemical synthesis
18.
Inorg Chem ; 63(27): 12593-12603, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38923955

ABSTRACT

Procedures for the preparation of transition metal complexes having intact bicyclic cepham or penam systems as ligands have been developed. Starting from readily available 4-azido-2-azetidinones, a synthetic approach has been tuned using a copper-catalyzed azide-alkyne cycloaddition between 3-azido-2-azetinones and alkynes, followed by methylation and transmetalation to Au(I) and Ir(III) complexes from the mesoionic carbene Ag(I) complexes. This methodology was applied to 6-azido penam and 7-azido cepham derivatives to build 6-(1,2,3-triazolyl)penam and 7-(1,2,3-triazolyl)cepham proligands, which upon methylation and metalation with Au(I) and Ir(III) complexes yielded products derived from the coordination of the metal to the penam C6 and cepham C7 positions, preserving intact the bicyclic structure of the penicillin and cephalosporin scaffolds. The crystal structure of complex 28b, which has an Ir atom directly bonded to the intact penicillin bicycle, was determined by X-ray diffraction. This is the first structural report of a penicillin-transition-metal complex having the bicyclic system of these antibiotics intact. The selectivity of the coordination processes was interpreted using DFT calculations.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Coordination Complexes , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Cephalosporins/chemistry , Cephalosporins/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Penicillins/chemistry , Penicillins/chemical synthesis , Molecular Structure , Models, Molecular , beta-Lactams/chemistry , beta-Lactams/chemical synthesis , beta Lactam Antibiotics
19.
Inorg Chem ; 63(26): 12342-12349, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904258

ABSTRACT

As a typical RNA virus, the genetic information on HIV-1 is entirely stored in RNA. The reverse transcription activity of HIV-1 reverse transcriptase (RT) plays a crucial role in the replication and transmission of the virus. Non-nucleoside RT inhibitors (NNRTIs) block the function of RT by binding to the RNA binding site on RT, with very few targeting viral RNA. In this study, by transforming planar conjugated ligands into a spiro structure, we convert classical Ru(II) DNA intercalators into a nonintercalator. This enables selective binding to HIV-1 transactivation response (TAR) RNA on the outer side of nucleic acids through dual interactions involving hydrogen bonds and electrostatic attraction, effectively inhibiting HIV-1 RT and serving as a selective fluorescence probe for TAR RNA.


Subject(s)
HIV Reverse Transcriptase , HIV-1 , Reverse Transcriptase Inhibitors , Ruthenium , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/metabolism , Ligands , HIV-1/enzymology , HIV-1/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , RNA, Viral/metabolism , RNA, Viral/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Molecular Structure , Humans , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV Long Terminal Repeat , Binding Sites
20.
Dalton Trans ; 53(26): 10890-10900, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874585

ABSTRACT

Herein, we describe the synthesis and characterisation of four new supramolecular cobalt conjugates of antimicrobial peptides functionalised with terpyridine ligands (L). Peptides were chosen based on the well-established arginine-tryptophan (RW)3 motif, with terpyridine-derivatized lysine (Lys(tpy)) added to the sequence, or replacing tryptophan residues. Self-assembly of the antimicrobial peptides with Co(BF4)2·6H2O formed exclusively CoL2 dimers (for peptides with one tpy ligand each) and Co2L4 metallo-macrocycles (for peptides with two tpy ligands for each peptide), which could be 'locked' by oxidation of Co(+II) to Co(+III) with ammonium ceric nitrate. The Co-peptide complexes were characterised by mass spectrometry and in solution by NMR spectroscopy, including 2D diffusion ordered NMR spectroscopy (DOSY) which confirmed the proposed stoichiometries. The antimicrobial activity of the novel peptides and their metallo-supramolecular assemblies was investigated by determination of their minimal inhibitory concentration (MIC) against a panel of Gram-positive and Gram-negative bacteria. Complexation with cobalt increases the activity of the peptides in almost every case. Most of the new metal-peptide conjugates showed good activity against Gram-positive bacteria, including a multi-resistant S. aureus strain and the opportunistic pathogenic yeast C. albicans (down to 7 µmol l-1 for the most active Co2L4 derivate), a value that is increased five-fold compared to the lysine-derivatized peptide ligand alone. Interestingly, conjugates of the CoL2 type also showed decent activity against Gram-negative bacteria including the WHO-flagged problematic A. baumannii strain (down to 18 µmol l-1 for the most active derivative).


Subject(s)
Anti-Bacterial Agents , Cobalt , Gram-Positive Bacteria , Microbial Sensitivity Tests , Cobalt/chemistry , Cobalt/pharmacology , Gram-Positive Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Gram-Negative Bacteria/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/chemical synthesis , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL
...