Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 85
1.
Viruses ; 13(8)2021 08 17.
Article En | MEDLINE | ID: mdl-34452494

Mass vaccination has played a critical role in the global eradication of smallpox. Various vaccinia virus (VACV) strains, whose origin has not been clearly documented in most cases, have been used as live vaccines in different countries. These VACV strains differed in pathogenicity towards various laboratory animals and in reactogenicity exhibited upon vaccination of humans. In this work, we studied the development of humoral and cellular immune responses in BALB/c mice inoculated intranasally (i.n.) or intradermally (i.d.) with the VACV LIVP strain at a dose of 105 PFU/mouse, which was used in Russia as the first generation smallpox vaccine. Active synthesis of VACV-specific IgM in the mice occurred on day 7 after inoculation, reached a maximum on day 14, and decreased by day 29. Synthesis of virus-specific IgG was detected only from day 14, and the level increased significantly by day 29 after infection of the mice. Immunization (i.n.) resulted in significantly higher production of VACV-specific antibodies compared to that upon i.d. inoculation of LIVP. There were no significant differences in the levels of the T cell response in mice after i.n. or i.d. VACV administration at any time point. The maximum level of VACV-specific T-cells was detected on day 14. By day 29 of the experiment, the level of VACV-specific T-lymphocytes in the spleen of mice significantly decreased for both immunization procedures. On day 30 after immunization with LIVP, mice were infected with the cowpox virus at a dose of 46 LD50. The i.n. immunized mice were resistant to this infection, while 33% of i.d. immunized mice died. Our findings indicate that the level of the humoral immune response to vaccination may play a decisive role in protection of animals from orthopoxvirus reinfection.


Adaptive Immunity , Cowpox virus/physiology , Cowpox/prevention & control , Reinfection/prevention & control , Vaccinia virus/immunology , Vaccinia/immunology , Viral Vaccines/administration & dosage , Animals , Antibodies, Viral/immunology , Cowpox/immunology , Cowpox/virology , Cowpox virus/genetics , Cowpox virus/immunology , Humans , Mice , Mice, Inbred BALB C , Reinfection/immunology , Reinfection/virology , T-Lymphocytes/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Vaccinia/virology , Vaccinia virus/genetics , Vaccinia virus/physiology , Viral Vaccines/immunology
2.
Vector Borne Zoonotic Dis ; 20(6): 471-475, 2020 06.
Article En | MEDLINE | ID: mdl-32013767

Cowpox virus (CPXV), genus Orthopoxvirus, family Poxviridae, is a zoonotic pathogen in Eurasian wild rodents. High seroprevalences have been reported previously for vole and murine species in Europe. In contrast, viral DNA was only rarely detected, and very few reservoir-derived CPXV isolates exist. In this study, CPXV DNA and CPXV-reactive antibodies were monitored in wild small mammals for 5 years in four German federal states. Screening of liver tissues of 3966 animals by CPXV real-time PCR (qPCR) revealed five voles of two species positive for CPXV DNA. Two positive bank voles (Myodes glareolus) and two positive common voles (Microtus arvalis) originated from two plots in Baden-Wuerttemberg. One positive bank vole originated from Mecklenburg-Western Pomerania. None of the small mammals from Thuringia and North Rhine-Westphalia was positive in the qPCR. CPXV antigen-based indirect immunofluorescence assays of 654 highly diluted chest cavity fluid samples detected two bank voles and two common voles from the same sites in Baden-Wuerttemberg to be highly seroreactive. Five animals were CPXV DNA positive, and four other animals were orthopoxvirus seropositive. Our study indicates both a very low prevalence and a patchy occurrence of CPXV in common and bank voles and absence in other rodent and shrew species in Germany. The multiple detection of infected voles at one site in Baden-Wuerttemberg and continued detection in a region of Mecklenburg-Western Pomerania classify these regions as potential endemic foci.


Arvicolinae/virology , Cowpox virus/isolation & purification , Cowpox/veterinary , Disease Reservoirs/veterinary , Rodent Diseases/virology , Animal Distribution , Animals , Cowpox/epidemiology , Cowpox/virology , Ecosystem , Germany/epidemiology , Humans , Liver/virology , Rodent Diseases/epidemiology
3.
Proc Natl Acad Sci U S A ; 116(42): 21113-21119, 2019 10 15.
Article En | MEDLINE | ID: mdl-31575740

Costimulation is required for optimal T cell activation, yet it is unclear whether poxviruses dedicatedly subvert costimulation during infection. Here, we report that the secreted M2 protein encoded by cowpox virus (CPXV) specifically interacts with human and murine B7.1 (CD80) and B7.2 (CD86). We also show that M2 competes with CD28 and CTLA4 for binding to cell surface B7 ligands, with stronger efficacy against CD28. Functionally, recombinant M2 and culture supernatants from wild-type (WT) but not M2-deficient (∆M2) CPXV-infected cells can potently suppress B7 ligand-mediated T cell proliferation and interleukin-2 (IL-2) production. Furthermore, we observed increased antiviral CD4 and CD8 T cell responses in C57BL/6 mice challenged by ∆M2 CPXV compared with WT virus. These differences in immune responses to ∆M2 and WT CPXV were not observed in CD28-deficient mice. Taken together, our findings define a mechanism of viral sabotage of T cell activation that highlights the role of CD28 costimulation in host defense against poxvirus infections.


B7-1 Antigen/immunology , B7-2 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cowpox virus/immunology , Lymphocyte Activation/immunology , Viral Proteins/immunology , Animals , Antigens, CD/immunology , CHO Cells , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Cowpox/immunology , Cowpox/virology , Cricetulus , Humans , Interleukin-2/immunology , Jurkat Cells , Mice , Mice, Inbred C57BL , THP-1 Cells , U937 Cells
4.
Ann Dermatol Venereol ; 146(5): 387-398, 2019 May.
Article Fr | MEDLINE | ID: mdl-31079914

Poxvirus (PXV) infections are a common cause of cutaneous signs. In France, certain forms of poxvirus are frequent and benign (molluscum contagiosum), while others are rare but potentially serious (cowpox virus [CPXV]). Whereas only smallpox and molluscum contagiosum viruses have a human reservoir and are transmitted between humans, most poxvirus infections are zoonoses having only animal reservoirs. Only a small number of poxviruses are responsible for infection in humans, but the increasing number of new pets, some of which are exotic, coupled with the rapid rise in international travel are creating a greater risk of transmission of zoonotic PXV to new vectors and of spread of these diseases to new regions throughout the world. In France, molluscum contagiosum, orf and milkers' nodule give rise to numerous consultations and are well known to dermatologists. However, dermatologists must also be able to identify other parapoxviruses of similar presentation to orf; thus, CPXV and monkeypox are considered potentially emergent viruses with a high risk of epidemic and spread due to increasing international transport and the loss of the maximum protection against smallpox. Finally, despite its declared eradication, smallpox is currently being monitored because of the potential risk of reintroduction, whether accidentally or deliberately through bioterrorism.


Poxviridae Infections , Skin Diseases, Viral , Animals , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/drug therapy , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Cowpox/diagnosis , Cowpox/drug therapy , Cowpox/transmission , Cowpox/virology , Diagnosis, Differential , Disease Reservoirs/virology , France , Humans , Molluscum Contagiosum/diagnosis , Molluscum Contagiosum/drug therapy , Molluscum Contagiosum/transmission , Pets/virology , Poxviridae Infections/diagnosis , Poxviridae Infections/drug therapy , Poxviridae Infections/transmission , Poxviridae Infections/virology , Skin Diseases, Viral/diagnosis , Skin Diseases, Viral/drug therapy , Skin Diseases, Viral/transmission , Skin Diseases, Viral/virology , Smallpox/transmission , Smallpox/virology , Zoonoses/transmission , Zoonoses/virology
5.
Emerg Infect Dis ; 25(2): 212-219, 2019 02.
Article En | MEDLINE | ID: mdl-30666929

We report a case of atypical cowpox virus infection in France in 2016. The patient sought care for thoracic lesions after injury from the sharp end of a metallic guardrail previously stored in the ground. We isolated a cowpox virus from the lesions and sequenced its whole genome. The patient reported that he had been previously vaccinated against smallpox. We describe an alternative route of cowpox virus infection and raise questions about the immunological status of smallpox-vaccinated patients for circulating orthopoxviruses.


Cowpox virus/immunology , Smallpox/epidemiology , Smallpox/virology , Animals , Cell Line , Computational Biology/methods , Cowpox/immunology , Cowpox/pathology , Cowpox/virology , Cowpox virus/classification , Cowpox virus/genetics , Cowpox virus/isolation & purification , France/epidemiology , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Smallpox/prevention & control , Smallpox Vaccine/immunology , Vaccination , Virus Replication
6.
Article De | MEDLINE | ID: mdl-29536472

Cowpox virus (CPXV) infection is a reportable and potentially zoonotic disease that occurs sporadically in a variety of animals. During the past six decades, CPXV infection has been extensively researched and described in both domestic (cat, dog, horse, cattle) and zoo animals (e. g. elephant, rhinoceros, okapi). Of note, a review of the literature produced only three reports of CPXV in individual or small groups of South American camelids. The goal of this review was to describe the current knowledge as it relates to clinical features of CPXV infection in South American camelids and to compare the clinical manifestations with those described in other animal species. In alpacas and llamas, virus transmission occurs via direct contact with infected animals or oronasal infection through microlesions in the skin and mucous membranes. In its mild form, the disease is limited to certain regions of the body (head, neck, extremities or perineal region) and characterised by pustules or crusts. CPXV infection can also cause generalised and frequently lethal disease with multifocal to diffuse skin lesions (papules, pustules, crusts, ulcers) accompanied by virus replication in other organs. Conjunctivitis, stomatitis and rhinitis are seen commonly together with nonspecific clinical signs, including anorexia, listlessness and fever. As in other poxvirus infections, factors leading to an immunosuppression may contribute to the development of the clinical ma -nifestation of CPXV infection. There appear to be no specific manifestations of CPXV infection in South American camelids. More research is needed to fully understand the pathogenesis and epidemio logy of CPXV infection, particularly in South American camelids.


Camelids, New World/virology , Cowpox virus/isolation & purification , Cowpox/veterinary , Animals , Cowpox/diagnosis , Cowpox/epidemiology , Cowpox/virology , Skin/pathology , Skin/virology , South America
8.
Viruses ; 9(12)2017 12 19.
Article En | MEDLINE | ID: mdl-29257111

Cowpox virus (CPXV) is a zoonotic virus and endemic in wild rodent populations in Eurasia. Serological surveys in Europe have reported high prevalence in different vole and mouse species. Here, we report on experimental CPXV infections of bank voles (Myodes glareolus) from different evolutionary lineages with a spectrum of CPXV strains. All bank voles, independently of lineage, sex and age, were resistant to clinical signs following CPXV inoculation, and no virus shedding was detected in nasal or buccal swabs. In-contact control animals became only rarely infected. However, depending on the CPXV strain used, inoculated animals seroconverted and viral DNA could be detected preferentially in the upper respiratory tract. The highest antibody titers and virus DNA loads in the lungs were detected after inoculation with two strains from Britain and Finland. We conclude from our experiments that the role of bank voles as an efficient and exclusive CPXV reservoir seems questionable, and that CPXV may be maintained in most regions by other hosts, including other vole species. Further investigations are needed to identify factors that allow and modulate CPXV maintenance in bank voles and other potential reservoirs, which may also influence spill-over infections to accidental hosts.


Arvicolinae , Cowpox virus/growth & development , Cowpox/pathology , Cowpox/virology , Disease Reservoirs , Disease Resistance , Disease Vectors , Animals , Antibodies, Viral/blood , Cowpox virus/isolation & purification , DNA, Viral/blood , Mouth/virology , Nasal Cavity/virology , Respiratory System/virology , Seroconversion
9.
Viruses ; 9(11)2017 11 18.
Article En | MEDLINE | ID: mdl-29156539

Four cowpox virus (CPXV) outbreaks occurred in unrelated alpaca herds in Eastern Germany during 2012-2017. All incidents were initially noticed due to severe, generalized, and finally lethal CPXV infections, which were confirmed by testing of tissue and serum samples. As CPXV-infection has been described in South American camelids (SACs) only three times, all four herds were investigated to gain a deeper understanding of CPXV epidemiology in alpacas. The different herds were investigated twice, and various samples (serum, swab samples, and crusts of suspicious pox lesions, feces) were taken to identify additionally infected animals. Serum was used to detect CPXV-specific antibodies by performing an indirect immunofluorescence assay (iIFA); swab samples, crusts, and feces were used for detection of CPXV-specific DNA in a real-time PCR. In total, 28 out of 107 animals could be identified as affected by CPXV, by iIFA and/or PCR. Herd seroprevalence ranged from 16.1% to 81.2%. To investigate the potential source of infection, wild small mammals were trapped around all alpaca herds. In two herds, CPXV-specific antibodies were found in the local rodent population. In the third herd, CPXV could be isolated from a common vole (Microtus arvalis) found drowned in a water bucket used to water the alpacas. Full genome sequencing and comparison with the genome of a CPXV from an alpaca from the same herd reveal 99.997% identity, providing further evidence that the common vole is a reservoir host and infection source of CPXV. Only in the remaining fourth herd, none of the trapped rodents were found to be CPXV-infected. Rodents, as ubiquitous reservoir hosts, in combination with increasingly popular alpacas, as susceptible species, suggest an enhanced risk of future zoonotic infections.


Camelids, New World/virology , Cowpox/epidemiology , Disease Outbreaks , Zoonoses/epidemiology , Animals , Antibodies, Viral/blood , Arvicolinae/virology , Cowpox/immunology , Cowpox/virology , Cowpox virus/genetics , Cowpox virus/immunology , Cowpox virus/physiology , Disease Reservoirs/virology , Germany/epidemiology , Phylogeny , Polymerase Chain Reaction , Seroepidemiologic Studies , Zoonoses/immunology , Zoonoses/virology
10.
PLoS One ; 12(11): e0187089, 2017.
Article En | MEDLINE | ID: mdl-29121668

Cowpox virus infections in captive cheetahs (Acinonyx jubatus) with high morbidity and mortality have already been reported in the UK and Russia in the 1970s. However, most of the reported cases have been singular events. Here, we report a total of five cowpox virus outbreaks in cheetahs in the same safari park in Denmark between 2010 and 2014. Nine cheetahs showed varying severity of clinical disease; two of them died (22%). All episodes occurred between August and October of the respective year. No other carnivores kept at the same institution nor the keepers taking care of the animals were clinically affected. The clinical picture of cowpox was confirmed by extensive laboratory investigations including histopathological and molecular analyses as well as cell culture isolation of a cowpox virus. High anti-orthopoxvirus antibody titers were detected in all 9 diseased cheetahs compared to seven contact cheetahs without clinical signs and 13 cheetahs not in direct contact. Additionally, whole genome sequencing from one sample of each cluster with subsequent phylogenetic analysis showed that the viruses from different outbreaks have individual sequences but clearly form a clade distinct from other cowpox viruses. However, the intra-clade distances are still larger than those usually observed within clades of one event. These findings indicate multiple and separate introductions of cowpox virus, probably from wild rodent populations, where the virus keeps circulating naturally and is only sporadically introduced into the cheetahs. Sero-positivity of voles (Arvicola amphibious) caught in zoo grounds strengthens this hypothesis. As a consequence, recommendations are given for medical and physical management of diseased cheetahs, for hygienic measures as well as for pre-shipment isolation before cheetah export from zoo grounds.


Acinonyx/virology , Cowpox virus/physiology , Cowpox/epidemiology , Cowpox/veterinary , Disease Outbreaks/statistics & numerical data , Seasons , Animals , Animals, Zoo/virology , Antibodies, Viral/immunology , Cowpox/immunology , Cowpox/virology , Cowpox virus/immunology , Denmark/epidemiology , Phylogeny , Real-Time Polymerase Chain Reaction
11.
Viruses ; 9(6)2017 06 10.
Article En | MEDLINE | ID: mdl-28604604

Cowpox virus (CPXV) was considered as uniform species within the genus Orthopoxvirus (OPV). Previous phylogenetic analysis indicated that CPXV is polyphyletic and isolates may cluster into different clades with two of these clades showing genetic similarities to either variola (VARV) or vaccinia viruses (VACV). Further analyses were initiated to assess both the genetic diversity and the evolutionary background of circulating CPXVs. Here we report the full-length sequences of 20 CPXV strains isolated from different animal species and humans in Germany. A phylogenetic analysis of altogether 83 full-length OPV genomes confirmed the polyphyletic character of the species CPXV and suggested at least four different clades. The German isolates from this study mainly clustered into two CPXV-like clades, and VARV- and VACV-like strains were not observed. A single strain, isolated from a cotton-top tamarin, clustered distantly from all other CPXVs and might represent a novel and unique evolutionary lineage. The classification of CPXV strains into clades roughly followed their geographic origin, with the highest clade diversity so far observed for Germany. Furthermore, we found evidence for recombination between OPV clades without significant disruption of the observed clustering. In conclusion, this analysis markedly expands the number of available CPXV full-length sequences and confirms the co-circulation of several CPXV clades in Germany, and provides the first data about a new evolutionary CPXV lineage.


Cowpox virus/classification , Genetic Variation , Animals , Cluster Analysis , Cowpox/virology , Cowpox virus/genetics , Cowpox virus/isolation & purification , Genome, Viral , Germany , High-Throughput Nucleotide Sequencing , Humans , Phenotype , Phylogeny , Recombination, Genetic , Vaccinia virus/genetics , Variola virus/genetics
12.
Pediatr Nephrol ; 32(3): 533-536, 2017 03.
Article En | MEDLINE | ID: mdl-27796621

BACKGROUND: A 17-year-old boy on long-term immunosuppression following renal transplantation for chronic kidney disease (CKD), the result of dysplastic kidneys, initially presented with a swelling in his neck while attending hospital for an unrelated problem. A clinical diagnosis of tonsillitis was made, and he was treated with broad-spectrum antibiotics. Over a few days, his condition deteriorated, and he developed multiple vesicopustular skin lesions and required an emergency tonsillectomy due to respiratory distress. CASE DIAGNOSIS/TREATMENT: Histological investigation of the skin and tonsillar tissue suggested a viral aetiology, and subsequent electron microscopy and polymerase chain reaction (PCR) tissue examination proved disseminated cowpox infection. The family cat, which was reported as having self-resolving sores on its skin, was likely the source of the infection. The child failed to respond to antiviral treatment and succumbed to multiorgan failure within a month of admission. CONCLUSIONS: We report this case of fatal disseminated cowpox infection to highlight an increasing risk of this illness in the post-transplant population and to detail some unusual features not previously described, such as tonsillar involvement, disseminated skin lesions and multiorgan failure.


Cowpox/virology , Kidney Transplantation/adverse effects , Adolescent , Anti-Bacterial Agents/therapeutic use , Cowpox/pathology , Cowpox virus/genetics , Fatal Outcome , Humans , Male , Multiple Organ Failure/etiology , Polymerase Chain Reaction , Renal Insufficiency, Chronic/surgery , Skin Diseases/etiology , Skin Diseases/virology , Tonsillitis/drug therapy , Transplant Recipients
13.
J Gen Virol ; 97(8): 1942-1954, 2016 08.
Article En | MEDLINE | ID: mdl-27166137

We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.


Aerosols , Cowpox virus/pathogenicity , Cowpox/pathology , Cowpox/virology , Disease Models, Animal , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Animals , Macaca mulatta , Respiratory Tract Infections/diagnostic imaging , Tomography, X-Ray Computed
14.
Vector Borne Zoonotic Dis ; 16(6): 431-3, 2016 06.
Article En | MEDLINE | ID: mdl-27159333

The article describes the isolation of a cowpox virus (CPXV) isolate originating from a horse. The skin of a foal, aborted in the third trimester, displayed numerous cutaneous papules. The histological examination showed A-type inclusion bodies within the lesion, typical for CPXV infections. This suspicion was confirmed by real-time PCR where various organs were analyzed. From skin samples, virus isolation was successfully performed. Afterwards, the whole genome of this new isolate "CPXV Amadeus" was sequenced by next-generation technology. Phylogenetic analysis clearly showed that "CPXV Amadeus" belongs to the "CPXV-like 1" clade. To our opinion, the study provides important additional information on rare accidental CPXV infections. From the natural hosts, the voles, species such as rats, cats, or different zoo animals are occasionally infected, but until now only two horse cases are described. In addition, there are new insights toward congenital CPXV infections.


Abortion, Veterinary , Cowpox virus/isolation & purification , Cowpox/veterinary , Fetus/virology , Horse Diseases/virology , Animals , Cowpox/pathology , Cowpox/virology , Cowpox virus/genetics , Fatal Outcome , Genome, Viral , Horse Diseases/pathology , Horses , Phylogeny
16.
Exp Dermatol ; 25(3): 178-80, 2016 Mar.
Article En | MEDLINE | ID: mdl-26740456

Few papers have had a greater impact on the health of the human species than the simple, yet elegant, observations and clinical trials of Edward Jenner with what was at the time called the Cow Pox. In fact, this was a naturally attenuated rodent (probably rat) pox that could infect horses and, through farriers and farm hands, dairy cattle. While commonly called the Cow Pox at the time, Jenner's transmission studies between humans used infectious materials from horses. His methods provided protection from the serious effects of smallpox infections. In 1977, smallpox was considered to be eradicated, although people continue to be infected by pox viruses from other mammalian species. We consider this to be our 'favorite historical paper' because it emphasizes careful clinical observation followed by relatively simple clinical testing can have a profound influence on human health, even when almost nothing is known about the underlying molecular mechanisms. Continued follow-up with strict attention to detail resulted in a crude but effective way to deal with an epidemic, methods still used today for containing infectious diseases.


Cowpox/prevention & control , Infectious Disease Medicine/history , Smallpox/prevention & control , Animals , Cattle , Communicable Disease Control , Cowpox/virology , Epidemics , Farms , History, 18th Century , History, 19th Century , History, 20th Century , Horses , Humans , Smallpox/virology
17.
Vopr Virusol ; 61(5): 200-4, 2016.
Article En | MEDLINE | ID: mdl-29323851

Buffalopox is a contagious viral disease affecting milch buffaloes (Bubalus Bubalis) and, rarely, cows. The disease has zoonotic implications, as outbreaks are frequently associated with human infections, particularly in the milkers. Buffalopox is associated with high morbidity (80%). The clinical symptoms of the disease are characterized by wartline lesions on the udder, teats, inguinal region, base of the ears, and over the parotid. In the severe form, generalized rash is observed. Although the disease does not lead to high mortality, it has an adverse effect on the productivity and working capacity of the animals resulting in large economic losses. The outbreaks of buffalopox occurred frequently in India, Pakistan, Bangladesh, Nepal, Iran, Egypt, and Indonesia, where buffaloes are reared as milch animals. The buffalopox is closely related with other Orthopoxviruses. In particular, it is close to the vaccinia virus. There is a view that the buffalopox virus might be derived from the vaccinia virus. It is possible that it became pathogenic to humans and animals through adaptive evolution of the genome by obtaining the virulence genes. PCR is performed for the C18L gene for the purpose of specific detection and differentiation of the buffalopox virus from other orthopoxviruses. The C18L gene encodes the ankyrin repeat protein, which determines the virus host range. The open reading frame of this gene is only 150-nucleotide long as against 453 nucleotide in the vaccinia virus, 756 - in the camelpox virus, and 759 - in the cowpox virus. It can be concluded that a systematic study based on the epidemiology of the virus, existence of reservoirs, biological transmission, and the molecular organization of the buffalopox virus from buffalo, cow, and humans may pave the way to a better understanding of the circulating virus and contribute to the control of the disease using the suitable diagnostic and prophylactic measures.


Cowpox virus/genetics , Cowpox/epidemiology , Disease Outbreaks , Vaccinia virus/genetics , Vaccinia/veterinary , Zoonoses/epidemiology , Animals , Ankyrin Repeat , Asia, Western/epidemiology , Buffaloes/virology , Cattle , Cowpox/transmission , Cowpox/virology , Cowpox virus/classification , Cowpox virus/isolation & purification , DNA, Viral/genetics , Middle East/epidemiology , Phylogeny , Vaccinia/epidemiology , Vaccinia/transmission , Vaccinia/virology , Vaccinia virus/classification , Vaccinia virus/isolation & purification , Viral Proteins/genetics , Zoonoses/transmission , Zoonoses/virology
18.
Ann Agric Environ Med ; 22(3): 456-8, 2015.
Article En | MEDLINE | ID: mdl-26403114

Cowpox in humans is a rare zoonotic disease; its recognition is therefore problematic due to the lack of clinical experience. The differential diagnosis includes other poxvirus infections and also infections with herpesviruses or selected bacteria. The clinical course can be complicated and the improvement may take weeks. Late diagnosis is one of the causes of unnecessary combined antibiotic therapy or surgical intervention. A case of cowpox after a cat scratch in a 15-year-old girl is presented, with a summary of the available clinical data on cowpox infections.


Cowpox virus/isolation & purification , Cowpox/diagnosis , Zoonoses/diagnosis , Adolescent , Animals , Anti-Infective Agents/therapeutic use , Cats , Cowpox/drug therapy , Cowpox/virology , Diagnosis, Differential , Female , Humans , Poland , Treatment Outcome , Zoonoses/drug therapy , Zoonoses/virology
19.
Viruses ; 7(3): 1218-37, 2015 Mar 16.
Article En | MEDLINE | ID: mdl-25785515

Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.


Cowpox/virology , Genetic Variation , Vaccinia virus/classification , Vaccinia virus/genetics , Animals , Body Weight , Brazil/epidemiology , Cattle , Cowpox/epidemiology , Cowpox/pathology , Disease Models, Animal , Genotype , Male , Mice, Inbred BALB C , Molecular Epidemiology , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology , Vaccinia virus/isolation & purification , Virulence
20.
Virology ; 481: 124-35, 2015 Jul.
Article En | MEDLINE | ID: mdl-25776759

Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases.


Cowpox virus/physiology , Disease Models, Animal , Macaca mulatta , Respiratory Tract Diseases/virology , Aerosols/analysis , Animals , Cowpox/immunology , Cowpox/mortality , Cowpox/pathology , Cowpox/virology , Cowpox virus/pathogenicity , Female , Humans , Male , Monocytes/virology , Respiratory System/immunology , Respiratory System/pathology , Respiratory System/virology , Respiratory Tract Diseases/immunology , Respiratory Tract Diseases/mortality , Respiratory Tract Diseases/pathology , Virulence
...