Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.737
Filter
1.
Curr Protoc ; 4(8): e1103, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39105689

ABSTRACT

Identification of protein-protein interfaces is necessary for understanding and regulating biological events. Genetic code expansion enables site-specific photo-cross-linking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the cross-linked region still remains challenging. Our new protocol enables its identification by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε-allyloxycarbonyl-α-hydroxyl-L-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located on within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. This combination of site-specific crosslinking and cleavage promises to be useful for revealing binding interfaces and protein complex geometries. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Search for crosslinkable sites Basic Protocol 2: Site-specific photo-cross-linking/cleavage.


Subject(s)
Cross-Linking Reagents , Cross-Linking Reagents/chemistry , Humans , Proteins/chemistry , Proteins/metabolism , Protein Interaction Mapping/methods , Animals , Protein Binding , Photochemical Processes
2.
Nat Commun ; 15(1): 6820, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122702

ABSTRACT

Biomaterial wound dressings, such as hydrogels, interact with host cells to regulate tissue repair. This study investigates how crosslinking of gelatin-based hydrogels influences immune and stromal cell behavior and wound healing in female mice. We observe that softer, lightly crosslinked hydrogels promote greater cellular infiltration and result in smaller scars compared to stiffer, heavily crosslinked hydrogels. Using single-cell RNA sequencing, we further show that heavily crosslinked hydrogels increase inflammation and lead to the formation of a distinct macrophage subpopulation exhibiting signs of oxidative activity and cell fusion. Conversely, lightly crosslinked hydrogels are more readily taken up by macrophages and integrated within the tissue. The physical properties differentially affect macrophage and fibroblast interactions, with heavily crosslinked hydrogels promoting pro-fibrotic fibroblast activity that drives macrophage fusion through RANKL signaling. These findings suggest that tuning the physical properties of hydrogels can guide cellular responses and improve healing, offering insights for designing better biomaterials for wound treatment.


Subject(s)
Fibroblasts , Hydrogels , Macrophages , Wound Healing , Animals , Hydrogels/chemistry , Wound Healing/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Macrophages/metabolism , Macrophages/drug effects , Mice , Female , Cell Communication/drug effects , Biocompatible Materials/chemistry , RANK Ligand/metabolism , Mice, Inbred C57BL , Cross-Linking Reagents/chemistry , Gelatin/chemistry , Inflammation/metabolism , Inflammation/pathology
3.
J Food Sci ; 89(7): 4389-4402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957134

ABSTRACT

Previously, we showed that water extract (soymilk, except pH was increased to 8 from 6.5) of whole soybean could be used directly as a raw material for producing edible soy films by deposition of the film-forming solution (soy extract with enhancers). However, the strength of such soy films needed improvement because they were weak. The purpose of this study was to investigate how transglutaminase (TG) cross-linking reactions and film enhancers, including pectin (low- and high-methoxyl pectin), whey protein isolate (WPI), and soy protein isolate (SPI), improve the physical properties of soy films. Soy films prepared with TG had tensile strength (TS) of 3.01 MPa and puncture strength (PS) of 0.78 MPa, which were higher by as much as 51% and 30% than that of soy films without TG treatment, respectively. Pectin showed significant effects on the mechanical properties of TG-added soy films in terms of TS, PS, and % elongation. On the other hand, only TS and PS were increased by the addition of WPI or SPI. Heat curing had a significant effect on soy film's physical properties. TG treatment significantly reduced film solubility when soaked in water and various levels of acid (vinegar) and base (baking soda) solutions. Under the experimental conditions of 35 unit TG and 28 min of reaction, the degrees of cross-linking were evidenced by the disappearance of individual protein subunits, except the basic subunit of glycinin, and the reduction of 21% of lysine residues of the proteins. HIGHLIGHTS: Edible soy films were made with transglutaminase and about 21% lysine cross-linked. The mechanical strength of soy films was increased by incorporating film enhancers. Transglutaminase enhanced the mechanical properties of soy films.


Subject(s)
Pectins , Soybean Proteins , Tensile Strength , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Pectins/chemistry , Soybean Proteins/chemistry , Solubility , Whey Proteins/chemistry , Food Packaging/methods , Cross-Linking Reagents/chemistry , Glycine max/chemistry , Edible Films , Hydrogen-Ion Concentration , Soy Milk/chemistry
4.
Transl Vis Sci Technol ; 13(7): 14, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39023444

ABSTRACT

Purpose: Photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) stabilizes the corneal stroma and eliminates microorganisms. Numerous PACK-CXL protocols, using different energy sources and chromophores, have been applied in preclinical studies, including live animal studies, with various experimental designs and endpoints. So far, a systematic mapping of the applied protocols and consistency across studies seems lacking but is essential to guide future research. Methods: The scoping review protocol was in line with the JBI Manual for Evidence Synthesis. Electronic databases were searched (Embase, MEDLINE, Scopus, Web of Science) to identify eligible records, followed by a two-step selection process (title and abstract screening, full text screening) for record inclusion. We extracted information on (1) different PACK-CXL protocol characteristics; (2) infectious pathogens tested; (3) study designs and experimental settings; and (4) endpoints used to determine antimicrobial and tissue stabilizing effects. The information was charted in frequency maps. Results: The searches yielded 3654 unique records, 233 of which met the inclusion criteria. With 103 heterogeneous endpoints, the researchers investigated a wide range of PACK-CXL protocols. The tested microorganisms reflected pathogens commonly associated with infectious keratitis. Bacterial solutions and infectious keratitis rabbit models were the most widely used models to study the antimicrobial effects of PACK-CXL. Conclusions: If preclinical PACK-CXL studies are to guide future translational research, further cross-disciplinary efforts are needed to establish, promote, and facilitate acceptance of common endpoints relevant to PACK-CXL. Translational Relevance: Systematic mapping of PACK-CXL protocols in preclinical studies guides future translational research.


Subject(s)
Cross-Linking Reagents , Keratitis , Photosensitizing Agents , Riboflavin , Animals , Keratitis/drug therapy , Keratitis/microbiology , Cross-Linking Reagents/therapeutic use , Cross-Linking Reagents/pharmacology , Cross-Linking Reagents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Riboflavin/therapeutic use , Riboflavin/pharmacology , Humans , Photochemotherapy/methods , Corneal Stroma/metabolism , Corneal Stroma/drug effects , Ultraviolet Rays , Collagen/metabolism , Corneal Cross-Linking
5.
Anal Chim Acta ; 1317: 342911, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030011

ABSTRACT

Natural products-based screening of active ingredients and their interactions with target proteins is an important ways to discover new drugs. Assessing the binding capacity of target proteins, particularly when multiple components are involved, presents a significant challenge for sensors. As far as we know, there is currently no sensor that can accomplish high-throughput quantitative analysis of natural product-target protein binding capacity based on Raman spectroscopy. In this study, a novel sensor model has been developed for the quantitative analysis of binding capacity based on Surface-Enhanced Raman Spectroscopy (SERS) and Photocrosslinked Molecular Probe (PCMP) technology. This sensor, named SERS-PCMP, leverages the high throughput of molecular probe technology to investigate the active ingredients in natural products, along with the application of SERS labelling technology for target proteins. Thus it significantly improves the efficiency and accuracy of target protein identification. Based on the novel strategy, quantitative analysis of the binding capacity of 20 components from Shenqi Jiangtang Granules (SJG) to α-Glucosidase were completed. Ultimately, the binding capacity of these active ingredients was ranked based on the detected Raman Intensity. The compounds with higher binding capacity were Astragaloside IV (Intensity, 138.17), Ginsenoside Rh2 (Intensity, 87.46), Ginsenoside Rg3 (Intensity, 73.92) and Ginsenoside Rh1 (Intensity, 64.37), which all exceeded the binding capacity of the positive drug Acarbose (Intensity, 28.75). Furthermore, this strategy also performed a high detection sensitivity. The limit of detection for the enzyme using 0.1 mg of molecular probe magnetic nanoparticles (MP MNPs) was determined to be no less than 0.375 µg/mL. SERS-PCMP sensor integrating SERS labeling and photocrosslinked molecular probes which offers a fresh perspective for future drug discovery studies. Such as high-throughput drug screening and the exploration of small molecule-target protein interactions in vitro.


Subject(s)
Biological Products , Molecular Probes , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Biological Products/chemistry , Biological Products/analysis , Molecular Probes/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Protein Binding , Photochemical Processes , Cross-Linking Reagents/chemistry , Silver/chemistry
6.
Nat Commun ; 15(1): 6060, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025860

ABSTRACT

While photo-cross-linking (PXL) with alkyl diazirines can provide stringent distance restraints and offer insights into protein structures, unambiguous identification of cross-linked residues hinders data interpretation to the same level that has been achieved with chemical cross-linking (CXL). We address this challenge by developing an in-line system with systematic modulation of light intensity and irradiation time, which allows for a quantitative evaluation of diazirine photolysis and photo-reaction mechanism. Our results reveal a two-step pathway with mainly sequential generation of diazo and carbene intermediates. Diazo intermediate preferentially targets buried polar residues, many of which are inaccessible with known CXL probes for their limited reactivity. Moreover, we demonstrate that tuning light intensity and duration enhances selectivity towards polar residues by biasing diazo-mediated cross-linking reactions over carbene ones. This mechanistic dissection unlocks the full potential of PXL, paving the way for accurate distance mapping against protein structures and ultimately, unveiling protein dynamic behaviors.


Subject(s)
Cross-Linking Reagents , Diazomethane , Diazomethane/chemistry , Cross-Linking Reagents/chemistry , Proteins/chemistry , Photolysis , Light , Methane/chemistry , Methane/analogs & derivatives , Protein Conformation
7.
J Biomed Mater Res B Appl Biomater ; 112(8): e35457, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39032140

ABSTRACT

Calcined bone is an attractive natural material for use as a bone substitute because of its cost-effectiveness and high biocompatibility, which are comparable to that of synthetic hydroxyapatite. However, the calcination process has significantly weakened the mechanical properties. In this study, a composite of calcined bovine bone powder reinforced with silane cross-linked alginate was prepared to assess its biocompatibility, osteoconductivity, and mechanical compatibility as a bone substitute material. Culture studies with osteoblast-like cells (MC3T3-E1) showed no cytotoxicity toward the composite and exhibited general cell proliferative properties in its presence. In contrast, the composite reduced the alkaline phosphatase activity of osteoblasts but led to significant noncellular apatite deposition on the surface. In addition, quasi-static compression tests of the composite revealed mechanical properties comparable to those of human cancellous bone. The mechanical properties remained stable under wet conditions and did not deteriorate significantly even after 2 weeks of immersion in simulated body fluid at 37°C. The results show that this composite, composed of calcined bone powder and silane cross-linked alginate, is a promising bone substitute material with biocompatibility, osteoconductivity, and mechanical compatibility.


Subject(s)
Alginates , Bone Substitutes , Materials Testing , Osteoblasts , Silanes , Alginates/chemistry , Animals , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Mice , Cattle , Osteoblasts/metabolism , Osteoblasts/cytology , Silanes/chemistry , Humans , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Powders , Cross-Linking Reagents/chemistry , Cell Line
8.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064949

ABSTRACT

Transglutaminase (TGase)-catalyzed crosslinking has gained substantial traction as a novel strategy for reducing allergenic risk in food proteins, particularly within the realm of hypoallergenic food production. This study explored the impact of TGase crosslinking on conformational changes in a binary protein system composed of soy protein isolate (SPI) and sodium caseinate (SC) at varying mass ratios (10:0, 7:3, 5:5, 3:7 (w/w)). Specifically, the immunoglobulin E (IgE) binding capacity of soy proteins within this system was examined. Prolonged TGase crosslinking (ranging from 0 h to 15 h) resulted in a gradual reduction in IgE reactivity across all SPI-SC ratios, with the order of IgE-binding capability as follows: SPI > SPI5-SC5 > SPI7-SC3 > SPI3-SC7. These alterations in protein conformation following TGase crosslinking, as demonstrated by variable intrinsic fluorescence, altered surface hydrophobicity, increased ultraviolet absorption and reduced free sulfhydryl content, were identified as the underlying causes. Additionally, ionic bonds were found to play a significant role in maintaining the structure of the dual-protein system after crosslinking, with hydrophobic forces and hydrogen bonds serving as supplementary forces. Generally, the dual-protein system may exhibit enhanced efficacy in reducing the allergenicity of soy protein.


Subject(s)
Immunoglobulin E , Protein Conformation , Soybean Proteins , Transglutaminases , Transglutaminases/chemistry , Transglutaminases/metabolism , Soybean Proteins/chemistry , Soybean Proteins/immunology , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Cross-Linking Reagents/chemistry , Hydrophobic and Hydrophilic Interactions , Humans , Caseins/chemistry , Caseins/metabolism , Caseins/immunology
9.
J Proteome Res ; 23(8): 3560-3570, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38968604

ABSTRACT

In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.


Subject(s)
Cross-Linking Reagents , Phenylalanine , Workflow , Phenylalanine/chemistry , Phenylalanine/analogs & derivatives , Cross-Linking Reagents/chemistry , Humans , Amino Acids/chemistry , Amino Acids/genetics , Proteomics/methods , Mass Spectrometry/methods
10.
Biomed Mater ; 19(5)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39069835

ABSTRACT

Skin aging, characterized by reduced regeneration, chronic inflammation, and heightened skin cancer risk, poses a significant challenge. Collagen fillers have emerged as a potential solution for skin rejuvenation by stimulating collagen regeneration. However, their clinical efficacy is limited by inherent instability and vulnerability toin vivodegradation by collagenase. Chemical cross-linking presents a promising approach to enhance stability, but it carries risks such as cytotoxicity, calcification, and discoloration. Here, we introduce a highly durable 1,4-butanediol diglycidyl ether (BDDE) cross-linked collagen filler for skin rejuvenation. BDDE effectively cross-links collagen, resulting in fillers with exceptional mechanical strength and injectability. These fillers demonstrate favorable stability and durability, promoting proliferation, adhesion, and spreading of human foreskin fibroblast-1 cellsin vitro. In vivostudies confirm enhanced collagen regeneration without inducing calcification. BDDE cross-linked collagen fillers offer promising prospects for medical cosmetology and tissue regeneration.


Subject(s)
Butylene Glycols , Cell Proliferation , Collagen , Cross-Linking Reagents , Fibroblasts , Rejuvenation , Skin Aging , Skin , Humans , Collagen/chemistry , Butylene Glycols/chemistry , Cross-Linking Reagents/chemistry , Fibroblasts/metabolism , Skin Aging/drug effects , Animals , Cell Proliferation/drug effects , Skin/metabolism , Dermal Fillers/chemistry , Biocompatible Materials/chemistry , Materials Testing , Regeneration , Epoxy Compounds/chemistry , Male , Cell Adhesion , Tissue Engineering/methods , Mice
11.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063081

ABSTRACT

Adding carbonyl groups into the hydrogel matrix improves the stability and biocompatibility of the hydrogels, making them suitable for different biomedical applications. In this review article, we will discuss the use of hydrogels based on polysaccharides modified by oxidation, with particular attention paid to the introduction of carbonyl groups. These hydrogels have been developed for several applications in tissue engineering, drug delivery, and wound healing. The review article discusses the mechanism by which oxidized polysaccharides can introduce carbonyl groups, leading to the development of hydrogels through cross-linking with proteins. These hydrogels have tunable mechanical properties and improved biocompatibility. Hydrogels have dynamic properties that make them promising biomaterials for various biomedical applications. This paper comprehensively analyzes hydrogels based on cross-linked proteins with carbonyl groups derived from oxidized polysaccharides, including microparticles, nanoparticles, and films. The applications of these hydrogels in tissue engineering, drug delivery, and wound healing are also discussed.


Subject(s)
Biocompatible Materials , Drug Delivery Systems , Hydrogels , Polysaccharides , Proteins , Tissue Engineering , Wound Healing , Hydrogels/chemistry , Polysaccharides/chemistry , Humans , Biocompatible Materials/chemistry , Tissue Engineering/methods , Wound Healing/drug effects , Proteins/chemistry , Animals , Cross-Linking Reagents/chemistry , Oxidation-Reduction
12.
J Chromatogr A ; 1730: 465124, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38959657

ABSTRACT

Polymer monoliths can be polymerised within different molds, but limited options are available for the preparation of free-standing polymer monoliths for analytical sample preparation, and in particular, solid-phase extraction (SPE). Commercial melamine-formaldehyde sponges can be used as supports for the preparation of polymer monoliths, due its flexibility, giving various shapes to monoliths. Herein, the crosslinker/porogen ratio of highly porous sponge-nested divinylbenzene (DVB) polymer monoliths has been evaluated. Monoliths prepared using different crosslinker/porogen ratios were applied to the extraction of bisphenol F, bisphenol A, bisphenol AF, and bisphenol B. Monoliths containing 50 wt % DVB and 50 wt % porogens presented the highest recovery of bisphenols. Under the optimised conditions, the developed method showed a linear range between 2.5 µg L-1 and 150 µg L-1 for BPA and BPAF, and between 5 µg L-1 and 150 µg L-1 for BPB and BPF. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) ranged from 0.36 µg L-1 to 1.09 µg L-1, and from 1.20 µg L-1 to 3.65 µg L-1, respectively. The recoveries for spiked bisphenols (10 µg L-1) in tap water and water contained in a polycarbonate containers were between 82 % and 114 %.


Subject(s)
Benzhydryl Compounds , Limit of Detection , Phenols , Solid Phase Extraction , Triazines , Solid Phase Extraction/methods , Benzhydryl Compounds/analysis , Benzhydryl Compounds/isolation & purification , Phenols/analysis , Phenols/isolation & purification , Triazines/analysis , Triazines/isolation & purification , Triazines/chemistry , Polymers/chemistry , Porosity , Cross-Linking Reagents/chemistry , Vinyl Compounds/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
13.
Int J Biol Macromol ; 274(Pt 1): 133519, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960235

ABSTRACT

This study investigated the development of a genipin-crosslinked chitosan (CS)-based polyvinylpyrrolidone (PVP) hydrogel containing curcumin nanosuspensions (Cur-NSs) to promote wound healing in an excisional wound model. Cur-NSs were prepared, and a simplex centroid mixture design was employed to optimize hydrogel properties for high water absorption, degree of crosslinking, and sufficient toughness. The in vivo wound healing effect was tested in Wistar rats. The optimized hydrogel consisted of a 70:30 ratio of CS:PVP, crosslinked with a 2 % w/w genipin solution. It exhibited high swelling capability (486 %) while maintaining solidity, robustness, and durability. Incorporating 5 % w/w Cur-NSs resulted in a more compact structure, although with a reduction in swelling properties. The release kinetics of Cur from the hydrogel followed the Korsmeyer-Peppas Fickian diffusion model. In vitro biocompatibility studies demonstrated that the hydrogel was non-toxic to skin fibroblast cells. The in vivo experiment revealed a desirable wound healing rate with over 80 % recovery by day 7. Cur-NSs likely aided wound healing by reducing the inflammatory response and stimulating fibroblast proliferation. Additionally, the CS-based hydrogel provided a moist wound environment with hydration and gas transfer, further accelerating wound closure. These findings suggest that the Cur-NS-embedded hydrogel shows promise as a wound dressing material.


Subject(s)
Chitosan , Curcumin , Hydrogels , Iridoids , Povidone , Rats, Wistar , Wound Healing , Curcumin/pharmacology , Curcumin/chemistry , Wound Healing/drug effects , Chitosan/chemistry , Animals , Iridoids/chemistry , Iridoids/pharmacology , Povidone/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Rats , Fibroblasts/drug effects , Male , Nanoparticles/chemistry , Cross-Linking Reagents/chemistry
14.
ACS Appl Mater Interfaces ; 16(28): 35936-35948, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38958205

ABSTRACT

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.


Subject(s)
Chondroitin Sulfates , Animals , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Rats , Heart Valve Prosthesis , Tissue Engineering , Heart Valves/drug effects , Heart Valves/chemistry , Rats, Sprague-Dawley , Tissue Scaffolds/chemistry , Materials Testing , Humans , Cross-Linking Reagents/chemistry , Male , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Swine
15.
Analyst ; 149(15): 4029-4040, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38963259

ABSTRACT

Nonenzymatic glycation (NEG) unfolds and crosslinks proteins, resulting in aggregation. Label-free evaluation of such structural changes, without disturbing molecular integrity, would be beneficial for understanding the fundamental mechanisms of protein aggregation. The current study demonstrates the assessment of NEG-induced protein aggregation by combining autofluorescence (AF) spectroscopy and imaging. The methylglyoxal (MG) induced protein unfolding and the formation of cross-linking advanced glycation end-products (AGEs) leading to aggregation were evaluated using deep-UV-induced-autofluorescence (dUV-AF) spectroscopy in proteins with distinct structural characteristics. Since the AGEs formed on proteins are fluorescent, the study demonstrated the possibility of autofluorescence imaging of NEG-induced protein aggregates. Autofluorescence spectroscopy can potentially reveal molecular alterations such as protein unfolding and cross-linking. In contrast, AGE-based autofluorescence imaging offers a means to visually explore the structural arrangement of aggregates, regardless of whether they are amyloid or non-amyloid in nature.


Subject(s)
Glycation End Products, Advanced , Protein Aggregates , Protein Unfolding , Spectrometry, Fluorescence , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/metabolism , Spectrometry, Fluorescence/methods , Glycosylation , Pyruvaldehyde/chemistry , Humans , Animals , Proteins/chemistry , Proteins/metabolism , Cross-Linking Reagents/chemistry , Glycated Proteins
16.
Biochem Biophys Res Commun ; 727: 150320, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38963984

ABSTRACT

Aquaporin-0 (AQP0) constitutes 50 % of the lens membrane proteome and plays important roles in lens fiber cell adhesion, water permeability, and lens transparency. Previous work has shown that specific proteins, such as calmodulin (CaM), interact with AQP0 to modulate its water permeability; however, these studies often used AQP0 peptides, rather than full-length protein, to probe these interactions. Furthermore, the specific regions of interaction of several known AQP0 interacting partners, i.e. αA and αB-crystallins, and phakinin (CP49) remain unknown. The purpose of this study was to use crosslinking mass spectrometry (XL-MS) to identify interacting proteins with full-length AQP0 in crude lens cortical membrane fractions and to determine the specific protein regions of interaction. Our results demonstrate, for the first time, that the AQP0 N-terminus can engage in protein interactions. Specific regions of interaction are elucidated for several AQP0 interacting partners including phakinin, α-crystallin, connexin-46, and connexin-50. In addition, two new interacting partners, vimentin and connexin-46, were identified.


Subject(s)
Aquaporins , Connexins , Eye Proteins , Lens, Crystalline , Mass Spectrometry , Aquaporins/metabolism , Aquaporins/chemistry , Eye Proteins/metabolism , Eye Proteins/chemistry , Animals , Mass Spectrometry/methods , Lens, Crystalline/metabolism , Lens, Crystalline/chemistry , Connexins/metabolism , Connexins/chemistry , Vimentin/metabolism , Vimentin/chemistry , Protein Binding , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/metabolism , alpha-Crystallins/metabolism , alpha-Crystallins/chemistry
17.
ACS Appl Mater Interfaces ; 16(30): 39104-39116, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39036941

ABSTRACT

Surface modification using zwitterionic 2-methacryloyloxyethylphosphorylcholine (MPC) polymers is one of the most reasonable ways to prepare medical devices that can suppress undesired biological reactions such as blood coagulation. Usable MPC polymers are hydrophilic and water soluble, and their surface modification strategy involves exploiting the copolymer structures by adding physical or chemical bonding moieties. In this study, we developed copolymers composed of MPC, hydrophobic anchoring moiety, and chemical cross-linking unit to clarify the role of hydrophobic interactions in achieving biocompatible and long-term stable coatings. The four kinds of MPC copolymers with cross-linking units, such as 3-methacryloxypropyl trimethoxysilane (MPTMSi), and four different hydrophobic anchoring moieties, such as 3-(methacryloyloxy)propyltris(trimethylsiloxy)silane (MPTSSi) named as PMMMSi, n-butyl methacrylate (BMA) as PMBSi, 2-ethylhexyl methacrylate (EHMA) as PMESi, and lauryl methacrylate as PMLSi, were synthesized and coated on polydimethylsiloxane, polypropylene (PP), and polymethyl pentene. These copolymers were uniformly coated on the substrate materials PP and poly(methyl pentene) (PMP), to achieve hydrophilic and electrically neutral coatings. The results of the antibiofouling test showed that PMBSi repelled the adsorption of fluorescence-labeled bovine serum albumin the most, whereas PMLSi repelled it the least. Notably, all four copolymers suppressed platelet adhesion similarly. The variations in protein adsorption quantities among the four copolymer coatings were attributed to their distinct swelling behaviors in aqueous environments. Further investigations, including 3D scanning force microscopy and neutron reflectivity measurements, revealed that the PMLSi coating exhibited a higher water intake under aqueous conditions in comparison to the other coatings. Consequently, all copolymer coatings effectively prevented the invasion of platelets but the proteins penetrated the PMLSi network. Subsequently, the dynamic stability required to induce shear stress was evaluated using a circulation system. The results demonstrated that the PMMMSi and PMLSi coatings on PMP and PP exhibited exceptional platelet repellency and maintained high stability during circulation. This study highlights the potential of hydrophobic moieties to improve hemocompatibility and stability, offering potential applications in medical devices.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Phosphorylcholine/chemistry , Phosphorylcholine/analogs & derivatives , Polymers/chemistry , Animals , Cross-Linking Reagents/chemistry , Coated Materials, Biocompatible/chemistry , Platelet Adhesiveness/drug effects , Surface Properties , Serum Albumin, Bovine/chemistry , Humans , Methacrylates/chemistry , Phospholipids/chemistry , Cattle
18.
Biomed Mater ; 19(5)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39025110

ABSTRACT

The entangled assembly of bacterial cellulose (BC) nanofibers does not provide a three-dimensional (3D) macroporous structure for cellular infiltration thus hindering its use as a scaffold for bone tissue engineering. In addition, it is difficult to achieve uniform dispersion of bioactive agents in entangled BC nanofibers. To address this, the BC nanofibers were integrated with MXene, a two-dimensional nanomaterial known for its electrical signaling and mechanical strength, along with sodium alginate to form cryogel. The cryogel was fabricated using a cross-linking to enhance its mechanical properties, pores for cellular infilteration. MXene incorporation not only increased water absorption (852%-1446%) and retention (692%-973%) ability but also significantly improved the compressive stress (0.85 MPa-1.43 MPa) and modulus (0.22 MPa-1.17 MPa) confirming successful MXene reinforcement in cryogel. Biological evaluation revealed that the optimum concentration of MXene increased the cell proliferation and the osteogenic role of fabricated scaffolds was also confirmed through osteogenic gene expressions. The macropores in reconstructed MXene-BC-based cryogel provided ample space for cellular proliferation. The osteogenic role of the scaffold was examined through various gene expressions. The Quantitative polymerase chain reaction revealed that MXene-loaded scaffolds especially in low concentration, had an obvious osteogenic effect hence concluding that BC can not only be reconstructed into the desired form but osteogenic property can be induced. These findings can open a new way of reconstructing BC into a more optimal structure to overcome its structural limitations and retain its natural bioactivities.


Subject(s)
Alginates , Bone and Bones , Cell Proliferation , Cellulose , Compressive Strength , Cryogels , Osteogenesis , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Alginates/chemistry , Cryogels/chemistry , Cellulose/chemistry , Tissue Scaffolds/chemistry , Porosity , Nanofibers/chemistry , Materials Testing , Cross-Linking Reagents/chemistry , Biocompatible Materials/chemistry , Stress, Mechanical , Humans , Animals
19.
Biomed Mater ; 19(5)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39059433

ABSTRACT

To explore the feasibility and safety of biomaterials for posterior scleral reinforcement (PSR) in rabbits. Decellularization and genipin crosslink were applied to the fresh bovine pericardium and porcine endocranium, and then mechanical properties, suture retention strength, and stability were tested. PSR operation was performed on 24 rabbit eyes using treated biological materials. Ophthalmic examination was performed regularly before and after PSR operation (1 week, 1 month, 3 months, 6 months). To evaluate the effectiveness, A ultrasound, diopter, and optical coherence tomography were conducted. General condition, fundus photograph, and pathological examination were recorded to evaluate the safety. Compared with genipin crosslinked bovine pericardium (Gen-BP) (21.29 ± 13.29 Mpa), genipin crosslinked porcine endocranium (Gen-PE) (34.85 ± 3.67 Mpa,P< 0.01) showed a closer elastic modulus to that of genipin crosslinked human sclera. There were no complications or toxic reactions directly related to the materials. Capillary hyperplasia, inflammatory cell infiltration, and collagen fiber deposition were observed, and the content of type I collagen fibers increased after PSR. Overall, the choroidal thickness of treated eyes was significantly thickened at different time points after PSR, which were 96.84 ± 21.08 µm, 96.72 ± 22.00 µm, 90.90 ± 16.57 µm, 97.28 ± 14.74 µm, respectively. The Gen-PE group showed changes that were almost consistent with the overall data. Gen-BP and Gen-PE are safe biological materials for PSR. The Gen-PE group demonstrated more significant advantages over the Gen-BP group in terms of material properties.


Subject(s)
Biocompatible Materials , Feasibility Studies , Iridoids , Materials Testing , Sclera , Animals , Rabbits , Biocompatible Materials/chemistry , Cattle , Swine , Iridoids/chemistry , Sutures , Pericardium , Tomography, Optical Coherence , Humans , Cross-Linking Reagents/chemistry , Elastic Modulus
20.
Biomed Mater ; 19(5)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39079550

ABSTRACT

Nisin is a bacteriocin produced by Gram-positive lactic acid bacterium,Lactococcus lactisand currently recognized in the Generally Recognized as Safe (GRAS) category due to its non-toxicity. Herein, nisin has been grafted to chitosan structure to obtain natural bio-active films with enhanced antibacterial activity. Grafting was performed using ethyl ester lysine diisocyanate and dimer fatty acid-based diisocyanate (DDI); two different close to fully bio-based diisocyanates and Disuccinimidyl suberate; a homo-bifunctional molecule acting as a crosslinker between amino groups. The grafting process allowed the chemical immobilization of nisin to chitosan structure. Physicochemical characterization studies showed the successful grafting of nisin. The antibacterial activity againstStaphylococcus aureuswas evident for all nisin modified chitosan films and best pronounced when DDI was used as a crosslinker with a maximum zone of inhibition of ∼13 mm. All nisin grafted chitosan films were cytocompatible and the cell viability of L929 fibroblasts were >80% pointing out the non-toxic structure. Considering the results of the presented study, bio-based diisocyanates and homo-bifunctional crosslinkers are effective molecules in synthesis of nisin grafted chitosan structures and the new chitosan based antibacterial biopolymers obtained after nisin modification come forward as promising non-toxic and bioactive candidates to be applied in medical devices, implants, and various food coating products.


Subject(s)
Anti-Bacterial Agents , Chitosan , Nisin , Staphylococcus aureus , Nisin/chemistry , Nisin/pharmacology , Chitosan/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Animals , Staphylococcus aureus/drug effects , Cell Survival/drug effects , Fibroblasts/drug effects , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Microbial Sensitivity Tests , Cross-Linking Reagents/chemistry , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL