Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.154
Filter
1.
Environ Microbiol Rep ; 16(4): e13319, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39096033

ABSTRACT

Freshwater samples (n = 199) were obtained from 41 sites with contrasting land-uses (avian, low impact, dairy, urban, sheep and beef, and mixed sheep, beef and dairy) and the E. coli phylotype of 3980 isolates (20 per water sample enrichment) was determined. Eight phylotypes were identified with B1 (48.04%), B2 (14.87%) and A (14.79%) the most abundant. Escherichia marmotae (n = 22), and Escherichia ruysiae (n = 1), were rare (0.68%) suggesting that these environmental strains are unlikely to confound water quality assessments. Phylotypes A and B1 were overrepresented in dairy and urban sites (p < 0.0001), whilst B2 were overrepresented in low impact sites (p < 0.0001). Pathogens ((Salmonella, Campylobacter, Cryptosporidium or Giardia) and the presence of diarrhoeagenic E. coli-associated genes (stx and eae) were detected in 89.9% (179/199) samples, including 80.5% (33/41) of samples with putative non-recent faecal inputs. Quantitative PCR to detect microbial source tracking targets from human, ruminant and avian contamination were concordant with land-use type and E. coli phylotype abundance. This study demonstrated that a potential recreational health risk remains where pathogens occurred in water samples with low E. coli concentration, potential non-recent faecal sources, low impact sites and where human, ruminant and avian faecal sources were absent.


Subject(s)
Escherichia coli , Fresh Water , Public Health , Water Quality , New Zealand , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/classification , Fresh Water/microbiology , Animals , Humans , Water Microbiology , Phylogeny , Feces/microbiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Giardia/genetics , Giardia/isolation & purification , Giardia/classification
2.
Parasite ; 31: 47, 2024.
Article in English | MEDLINE | ID: mdl-39109984

ABSTRACT

Snakes are sometimes regarded as pets and are used in traditional Chinese medicine. Cryptosporidium spp. are frequently identified in snakes, representing an important pathogen and causing gastrointestinal diseases. Current data indicate that risk factors for infection and patterns of clinical symptom presentation may differ among Cryptosporidium spp. To better understand the infection status by Cryptosporidium spp., fecal samples were collected from 603 asymptomatic and 147 symptomatic snakes in 26 provinces of China. These samples came from Elaphe guttata, Elaphe obsoleta, Pituophis melanoleucus, Thamnophis sirtalis, Lampropeltis getulus, and Heterodon nasicus. The partial small subunit (SSU) rRNA gene was amplified using nested polymerase chain reaction (PCR) to investigate the infection rate of Cryptosporidium spp., and to assess evolutionary relationships and genetic characterization. A prevalence of 20% was recorded in asymptomatic snakes, with age identified as a significant risk factor. In contrast, 70% of symptomatic snakes were positive for Cryptosporidium spp., with Cryptosporidium serpentis and Cryptosporidium varanii (syn. C. saurophilum). Further analysis revealed a potential association between C. serpentis and regurgitation, and C. varanii and diarrhea, while neither species was linked to flatulence. To our knowledge, this is the first study to report Cryptosporidium spp. and associated clinical signs in symptomatic snakes in China. This study aims to enhance the understanding of Cryptosporidium infections, risk factors, and clinical manifestations in snakes, providing data crucial for the control and prevention of cryptosporidiosis.


Title: Cryptosporidium spp. chez les serpents captifs de 26 provinces de Chine : prévalence, caractérisation moléculaire et symptômes. Abstract: Les serpents sont parfois considérés comme animaux de compagnie et sont utilisés en médecine traditionnelle chinoise. Des Cryptosporidium spp. sont fréquemment identifiés chez les serpents, ont un rôle d'agent pathogène important et provoquent des maladies gastro-intestinales. Les données actuelles indiquent que les facteurs de risque d'infection et les schémas de présentation des symptômes cliniques peuvent varier en fonction des espèces de Cryptosporidium. Pour mieux comprendre l'état d'infection par Cryptosporidium spp., des échantillons fécaux ont été collectés auprès de 603 serpents asymptomatiques et 147 serpents symptomatiques dans 26 provinces de Chine. Ces échantillons provenaient d'Elaphe guttata, Elaphe obsoleta, Pituophis melanoleucus, Thamnophis sirtalis, Lampropeltis getulus et Heterodon nasicus. Le gène de l'ARNr de la petite sous-unité partielle (SSU) a été amplifié à l'aide d'une réaction en chaîne par polymérase (PCR) imbriquée pour étudier le taux d'infection par Cryptosporidium spp. et évaluer les relations évolutives et la caractérisation génétique. Une prévalence de 20 % a été trouvée chez les serpents asymptomatiques, l'âge étant identifié comme un facteur de risque important. En revanche, 70 % des serpents symptomatiques étaient positifs à Cryptosporidium spp. avec Cryptosporidium serpentis et Cryptosporidium varanii (syn. C. saurophilum). Une analyse plus approfondie a révélé une association potentielle entre C. serpentis et la régurgitation, et C. varanii et la diarrhée, alors qu'aucune des deux espèces n'était liée aux flatulences. À notre connaissance, il s'agit ici de la première étude à signaler la présence de Cryptosporidium spp. et les signes cliniques associés chez des serpents symptomatiques en Chine. Cette étude vise à améliorer la compréhension des infections à Cryptosporidium, des facteurs de risque et des manifestations cliniques chez les serpents, en fournissant des données cruciales pour le contrôle et la prévention de la cryptosporidiose.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Feces , Snakes , Animals , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , China/epidemiology , Prevalence , Feces/parasitology , Snakes/parasitology , Phylogeny , Risk Factors , Polymerase Chain Reaction/veterinary , Male , Female , DNA, Protozoan/isolation & purification , Diarrhea/parasitology , Diarrhea/veterinary , Diarrhea/epidemiology , Pets/parasitology
3.
Food Microbiol ; 123: 104592, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39038884

ABSTRACT

Vegetable and fruit contamination is recognized as a significant parasite transmission route. This review presents the current state of vegetables ad fruits contamination with food-borne parasitic protozoa worldwide. We consider the methodologies and strategies for detecting parasitic stages developed in the last decade and the contamination data. Asia had the highest number of reports (94 studies), followed by Africa (74 studies). At the country level, with 41 studies, Iran had the most reports among other countries, followed by Nigeria (28 studies). According to the studies included in the current review, 41.22% of vegetables and fruits were contaminated with different species of protozoan parasites. Among different continents, Asia accounted for the highest contamination rate of protozoan parasites (57.12%). Giardia spp. (10%) had the highest contamination rate in vegetables and fruits, followed by Entamoeba coli (8%), E. histolytica/dispar (7%), and Cryptosporidium spp. (6%). This study provides essential data for health authorities to develop food safety programs. The presence of protozoan parasites in fruits and vegetables highlights the critical need for maintaining rigorous food safety measures across the entire production and distribution process, particularly in countries that are major producers and distributors of these food items.


Subject(s)
Food Contamination , Fruit , Vegetables , Vegetables/parasitology , Fruit/parasitology , Food Contamination/analysis , Humans , Animals , Food Safety , Food Parasitology , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Parasites/isolation & purification , Parasites/classification , Parasites/genetics , Giardia/isolation & purification , Giardia/genetics , Entamoeba/isolation & purification , Entamoeba/genetics , Asia
4.
Front Immunol ; 15: 1397117, 2024.
Article in English | MEDLINE | ID: mdl-39040107

ABSTRACT

Intestinal epithelial cells possess the requisite molecular machinery to initiate cell-intrinsic defensive responses against intracellular pathogens, including intracellular parasites. Interferons(IFNs) have been identified as cornerstones of epithelial cell-intrinsic defense against such pathogens in the gastrointestinal tract. Long non-coding RNAs (lncRNAs) are RNA transcripts (>200 nt) not translated into protein and represent a critical regulatory component of mucosal defense. We report here that lncRNA Nostrill facilitates IFN-γ-stimulated intestinal epithelial cell-intrinsic defense against infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Nostrill promotes transcription of a panel of genes controlled by IFN-γ through facilitating Stat1 chromatin recruitment and thus, enhances expression of several genes associated with cell-intrinsic defense in intestinal epithelial cells in response to IFN-γ stimulation, including Igtp, iNos, and Gadd45g. Induction of Nostrill enhances IFN-γ-stimulated intestinal epithelial defense against Cryptosporidium infection, which is associated with an enhanced autophagy in intestinal epithelial cells. Our findings reveal that Nostrill enhances the transcription of a set of genes regulated by IFN-γ in intestinal epithelial cells. Moreover, induction of Nostrill facilitates the IFN-γ-mediated epithelial cell-intrinsic defense against cryptosporidial infections.


Subject(s)
Cryptosporidiosis , Interferon-gamma , Intestinal Mucosa , RNA, Long Noncoding , Interferon-gamma/metabolism , RNA, Long Noncoding/genetics , Cryptosporidiosis/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestinal Mucosa/metabolism , Animals , Humans , Transcription, Genetic , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Mice , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Cryptosporidium/genetics , Cryptosporidium/immunology , Gene Expression Regulation , Autophagy/immunology
5.
Parasite ; 31: 34, 2024.
Article in English | MEDLINE | ID: mdl-38949636

ABSTRACT

Wild rodents serve as reservoirs for Cryptosporidium and are overpopulated globally. However, genetic data regarding Cryptosporidium in these animals from China are limited. Here, we have determined the prevalence and genetic characteristics of Cryptosporidium among 370 wild rodents captured from three distinct locations in the southern region of Zhejiang Province, China. Fresh feces were collected from the rectum of each rodent, and DNA was extracted from them. The rodent species was identified by PCR amplifying the vertebrate cytochrome b gene. Cryptosporidium was detected by PCR amplification and amplicon sequencing the small subunit of ribosomal RNA gene. Positive samples of C. viatorum and C. parvum were further subtyped by analyzing the 60-kDa glycoprotein gene. A positive Cryptosporidium result was found in 7% (26/370) of samples, involving five rodent species: Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155), and R. tanezumi (86). Their respective Cryptosporidium positive rates were 8.3%, 5.3%, 11.1%, 7.1%, and 7.0%. Sequence analysis confirmed the presence of three Cryptosporidium species: C. parvum (4), C. viatorum (1), and C. muris (1), and two genotypes: Cryptosporidium rat genotype IV (16) and C. mortiferum-like (4). Additionally, two subtypes of C. parvum (IIdA15G1 and IIpA19) and one subtype of C. viatorum (XVdA3) were detected. These results demonstrate that various wild rodent species in Zhejiang were concurrently infected with rodent-adapted and zoonotic species/genotypes of Cryptosporidium, indicating that these rodents can play a role in maintaining and dispersing this parasite into the environment and other hosts, including humans.


Title: Transmission interspécifique de Cryptosporidium chez les rongeurs sauvages de la région sud de la province chinoise du Zhejiang et son impact possible sur la santé publique. Abstract: Les rongeurs sauvages servent de réservoirs à Cryptosporidium et ont des grandes populations à l'échelle mondiale. Cependant, les données génétiques concernant Cryptosporidium chez ces animaux en Chine sont limitées. Ici, nous avons déterminé la prévalence et les caractéristiques génétiques de Cryptosporidium parmi 370 rongeurs sauvages capturés dans trois endroits distincts de la région sud de la province du Zhejiang, en Chine. Des excréments frais ont été collectés dans le rectum de chaque rongeur et l'ADN en a été extrait. L'espèce de rongeur a été identifiée par amplification par PCR du gène du cytochrome b des vertébrés. Cryptosporidium a été détecté par amplification PCR et séquençage d'amplicons de la petite sous-unité du gène de l'ARN ribosomal. Les échantillons positifs de C. viatorum et C. parvum ont ensuite été sous-typés en analysant le gène de la glycoprotéine de 60 kDa. Un résultat positif pour Cryptosporidium a été trouvé dans 7 % (26/370) des échantillons, impliquant cinq espèces de rongeurs : Apodemus agrarius (36), Niviventer niviventer (75), Rattus losea (18), R. norvegicus (155) et R. tanezumi (86). Leurs taux respectifs de positivité pour Cryptosporidium étaient de 8,3 %, 5,3 %, 11,1 %, 7,1 % et 7,0 %. L'analyse des séquences a confirmé la présence de trois espèces de Cryptosporidium : C. parvum (4), C. viatorum (1) et C. muris (1), et de deux génotypes : Cryptosporidium génotype IV de rat (16) et C. mortiferum-like (4). De plus, deux sous-types de C. parvum (IIdA15G1 et IIpA19) et un sous-type de C. viatorum (XVdA3) ont été détectés. Ces résultats démontrent que diverses espèces de rongeurs sauvages du Zhejiang sont simultanément infectées par des espèces/génotypes de Cryptosporidium zoonotiques et adaptés aux rongeurs, ce qui indique que ces rongeurs peuvent jouer un rôle dans le maintien et la dispersion de ce parasite dans l'environnement et d'autres hôtes, y compris les humains.


Subject(s)
Animals, Wild , Cryptosporidiosis , Cryptosporidium , Feces , Rodent Diseases , Rodentia , Animals , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/transmission , China/epidemiology , Cryptosporidium/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/classification , Feces/parasitology , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Rodent Diseases/transmission , Animals, Wild/parasitology , Rats/parasitology , Rodentia/parasitology , Prevalence , Public Health , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Phylogeny , Humans , DNA, Protozoan/isolation & purification , Murinae/parasitology , Polymerase Chain Reaction , Zoonoses/parasitology , Zoonoses/transmission , Zoonoses/epidemiology , Genotype
6.
Euro Surveill ; 29(28)2024 Jul.
Article in English | MEDLINE | ID: mdl-38994603

ABSTRACT

BackgroundBy mid-September 2023, several event notifications related to cryptosporidiosis had been identified from different regions in Spain. Therefore, a request for urgent notification of cryptosporidiosis cases to the National Surveillance Network was launched.AimWe aimed at assessing the extent of the increase in cases, the epidemiological characteristics and the transmission modes and compared to previous years.MethodsWe analysed data on case notifications, outbreak reports and genotypes focusing on June-October 2023 and compared the results to 2016-2022.ResultsIn 2023, 4,061 cryptosporidiosis cases were notified in Spain, which is an increase compared to 2016-2022. The cumulative incidence was 8.3 cases per 100,000 inhabitants in 2023, sixfold higher than the median of 1.4 cases per 100,000 inhabitants 2016-2022. Almost 80% of the cases were notified between June and October. The largest outbreaks were related to contaminated drinking water or swimming pools. Cryptosporidium hominis was the most common species in the characterised samples (115/122), and the C. hominis IfA12G1R5 subtype, previously unusual in Spain, was detected from 76 (62.3%) of the 122 characterised samples.ConclusionsA substantial increase in cryptosporidiosis cases was observed in 2023. Strengthening surveillance of Cryptosporidium is essential for prevention of cases, to better understand trends and subtypes circulating and the impact of adverse meteorological events.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Disease Outbreaks , Cryptosporidiosis/epidemiology , Humans , Spain/epidemiology , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Male , Incidence , Adult , Female , Child, Preschool , Disease Outbreaks/statistics & numerical data , Adolescent , Middle Aged , Child , Infant , Aged , Young Adult , Genotype , Population Surveillance , Drinking Water/parasitology , Swimming Pools , Disease Notification/statistics & numerical data , Infant, Newborn , Feces/parasitology
7.
Parasitol Res ; 123(7): 266, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985357

ABSTRACT

Cryptosporidium infection is a common occurrence in rodents worldwide. In this study, 435 wild brown rats were captured from an animal feedlot in Xinjiang, China, with a fecal sample obtained directly from the rectal contents of each rat. The DNA extracted from these fecal samples was analyzed for Cryptosporidium spp. using PCR targeting the SSU rRNA gene. The prevalence of Cryptosporidium infection in brown rats was found to be 5.5% (24 out of 435). Interestingly, the infection rates varied among different animal enclosures, with rates of 0% in the chicken coop (0/51), cowshed (0/3), and varying rates in other areas including the sheepfold (6.1%, 6/98), the pigsty (7.6%, 10/132), the dovecote (7.0%, 5/71), and outdoor environments (3.8%, 3/80). The study identified three species and one genotype of Cryptosporidium, namely C. occultus (n = 10), C. parvum (n = 4), C. ditrichi (n = 1), and Cryptosporidium rat genotype IV (n = 9). Additionally, two of the C. parvum isolates were successfully subtyped as IIdA19G1 (n = 2) at the gp60 gene. These results offer valuable insights into the prevalence and genetic diversity of Cryptosporidium in brown rats within the region.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Feces , Animals , Cryptosporidium/genetics , Cryptosporidium/classification , Cryptosporidium/isolation & purification , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , China/epidemiology , Rats/parasitology , Feces/parasitology , Prevalence , Genotype , DNA, Protozoan/genetics , Phylogeny , Rodent Diseases/parasitology , Rodent Diseases/epidemiology , Polymerase Chain Reaction
8.
Parasitol Res ; 123(7): 274, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017738

ABSTRACT

The North African hedgehog (Atelerix algirus) is an introduced species from Northwest Africa and is currently distributed in the Canary Islands. This species of hedgehog has been studied as a reservoir of enteropathogens, including Cryptosporidium spp. However, there are no data at species level. Therefore, the aim of the present study was to identify the Cryptosporidium species present in a population of hedgehogs (n = 36) in the Canary Islands. Molecular screening was performed using conventional polymerase chain reaction (PCR) targeting the small subunit ribosomal RNA (18S rRNA) gene of Cryptosporidium spp. Seven of the 36 fecal samples (19.45%) were positive and confirmed by nested PCR targeting the 18S rRNA gene and Sanger sequencing. Cryptosporidium parvum and Cryptosporidium muris were identified in 11.1% (4/36) and 5.6% (2/36) of the samples, respectively, while one sample could only be identified at the genus level. The zoonotic subtypes IIdA15G1 (n = 1), IIdA16G1b (n = 1), and IIdA22G1 (n = 1) of C. parvum were identified by nested PCR followed by analysis of the 60 kDa glycoprotein (gp60) gene sequence. This study is the first genetic characterization of Cryptosporidium spp. in A. algirus, identifying zoonotic species and subtypes of the parasite.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Hedgehogs , Phylogeny , Animals , Cryptosporidiosis/parasitology , Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Cryptosporidium/classification , Cryptosporidium/isolation & purification , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry , Feces/parasitology , Genotype , Hedgehogs/parasitology , Molecular Sequence Data , Polymerase Chain Reaction , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA , Spain
9.
J Infect Dis ; 230(1): e144-e148, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052741

ABSTRACT

Genetic variation in Cryptosporidium, a common protozoan gut parasite in humans, is often based on marker genes containing trinucleotide repeats, which differentiate subtypes and track outbreaks. However, repeat regions have high replication slippage rates, making it difficult to discern biological diversity from error. Here, we synthesized Cryptosporidium DNA in clonal plasmid vectors, amplified them in different mock community ratios, and sequenced them using next-generation sequencing to determine the rate of replication slippage with dada2. Our results indicate that slippage rates increase with the length of the repeat region and can contribute to error rates of up to 20%.


Subject(s)
Cryptosporidium , DNA Replication , Cryptosporidium/genetics , Cryptosporidium/classification , Humans , DNA, Protozoan/genetics , High-Throughput Nucleotide Sequencing , DNA Barcoding, Taxonomic/methods , Cryptosporidiosis/parasitology , Genetic Variation
10.
J Environ Manage ; 366: 121897, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043088

ABSTRACT

Controlling drinking water treatment processes is essential to address water contamination and the adaptability of certain pathogenic protozoa. Sometimes, standard treatment methods and chlorine disinfection may prove insufficient in eliminating pathogenic protozoa. However, ultraviolet (UV) radiation has proved to be more effective than chlorine. This study aims to characterize the eukaryotic community of a drinking water treatment plant that applies a final UV disinfection treatment, focusing on pathogenic protozoa. Fifty water samples (raw water, before and after UV treatment) were evaluated to comply with regulation parameters and identify relevant protozoa. Despite physicochemical and microbiological parameters meeting the regulation, some potentially pathogenic protozoa, such as Blastocystis or Cryptosporidium, were still detected in very low relative abundances in treated water. It was found for the first time in Spain the pathogenic amoebae Naegleria fowleri in one river water, which was not found after the treatment. Moreover, Blastocystis subtypes ST1-ST6 were detected in this study in raw, before and after UV water samples. Blastocystis was only found in 2 two samples after UV treatment, with a very low abundance (≤0.02%). Obtained results demonstrate the effectiveness of water treatment in reducing the prevalence of pathogenic protozoa.


Subject(s)
Disinfection , Drinking Water , Ultraviolet Rays , Water Purification , Drinking Water/parasitology , Water Purification/methods , Disinfection/methods , Cryptosporidium/radiation effects , Blastocystis , Spain , Naegleria fowleri
11.
Microbiol Spectr ; 12(8): e0061624, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39012121

ABSTRACT

Stool examination using microscopy was the traditional method for the diagnosis of intestinal parasites. Recently, the use of molecular tests to identify stool protozoa has become the main tool used in most clinical laboratories in Israel. This study aimed to evaluate the prevalence of intestinal parasites in Israel and to compare this prevalence in laboratories that use molecular tests vs a laboratory that uses microscopy. Samples collected from January to October 2021 at seven laboratories were analyzed by real-time PCR (RT-PCR) or by microscopy. The multiplex panel included the following pathogens: Giardia lamblia, Entamoeba histolytica, Cryptosporidium spp., Cyclospora, Dientamoeba fragilis, and Blastocystis spp. Overall, 138,415 stool samples were tested by RT-PCR and 6,444 by microscopy. At least one protozoa species was identified in 28.4% of the PCR-tested samples compared to 4.6% of the microscopy-tested samples. D. fragilis was the most common PCR-identified species (29%). D. fragilis, G. lamblia, and Cryptosporidium spp. were mainly found in pediatric population, while Blastocystis spp. was most prevalent among adults (P < 0.001). In a sub-cohort of 21,480 samples, co-infection was found in 4,113 (19.15%) samples, with Blastocystis spp. and D. fragilis being the most common (14.9%) pair. Molecular stool testing proved more sensitive compared to microscopy. D. fragilis was the most commonly detected pathogen. The above profile was identified during the COVID pandemic when traveling was highly restricted and most likely represents the locally circulating protozoa. IMPORTANCE: This study sheds light on the prevalence of stool parasites in Israel. Additionally, this study indicates that the shift from microscope analysis to molecular tests improved protozoa diagnosis.


Subject(s)
Cryptosporidium , Feces , Giardia lamblia , Intestinal Diseases, Parasitic , Humans , Israel/epidemiology , Feces/parasitology , Child , Intestinal Diseases, Parasitic/epidemiology , Intestinal Diseases, Parasitic/diagnosis , Intestinal Diseases, Parasitic/parasitology , Child, Preschool , Adult , Adolescent , Middle Aged , Female , Male , Infant , Young Adult , Aged , Giardia lamblia/isolation & purification , Giardia lamblia/genetics , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Prevalence , Blastocystis/isolation & purification , Blastocystis/genetics , Blastocystis/classification , Protozoan Infections/epidemiology , Protozoan Infections/diagnosis , Protozoan Infections/parasitology , Dientamoeba/isolation & purification , Dientamoeba/genetics , Entamoeba histolytica/isolation & purification , Entamoeba histolytica/genetics , Real-Time Polymerase Chain Reaction/methods , Infant, Newborn , Aged, 80 and over , Microscopy/methods , Cyclospora/isolation & purification , Cyclospora/genetics
12.
Water Res ; 262: 122110, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39042970

ABSTRACT

Cryptosporidium and Giardia are important parasitic protozoa due to their zoonotic potential and impact on human health, and have often caused waterborne outbreaks of disease. Detection of (oo)cysts in water matrices is challenging and extremely costly, thus only few countries have legislated for regular monitoring of drinking water for their presence. Several attempts have been made trying to investigate the association between the presence of such (oo)cysts in waters with other biotic or abiotic factors, with inconclusive findings. In this regard, the aim of this study was the development of an holistic approach leveraging Machine Learning (ML) and eXplainable Artificial Intelligence (XAI) techniques, in order to provide empirical evidence related to the presence and prediction of Cryptosporidium oocysts and Giardia cysts in water samples. To meet this objective, we initially modelled the complex relationship between Cryptosporidium and Giardia (oo)cysts and a set of parasitological, microbiological, physicochemical and meteorological parameters via a model-agnostic meta-learner algorithm that provides flexibility regarding the selection of the ML model executing the fitting task. Based on this generic approach, a set of four well-known ML candidates were, empirically, evaluated in terms of their predictive capabilities. Then, the best-performed algorithms, were further examined through XAI techniques for gaining meaningful insights related to the explainability and interpretability of the derived solutions. The findings reveal that the Random Forest achieves the highest prediction performance when the objective is the prediction of both contamination and contamination intensity with Cryptosporidium oocysts in a given water sample, with meteorological/physicochemical and microbiological markers being informative, respectively. For the prediction of contamination with Giardia, the eXtreme Gradient Boosting with physicochemical parameters was the most efficient algorithm, while, the Support Vector Regression that takes into consideration both microbiological and meteorological markers was more efficient for evaluating the contamination intensity with cysts. The results of the study designate that the adoption of ML and XAI approaches can be considered as a valuable tool for unveiling the complicated correlation of the presence and contamination intensity with these zoonotic parasites that could constitute, in turn, a basis for the development of monitoring platforms and early warning systems for the prevention of waterborne disease outbreaks.


Subject(s)
Artificial Intelligence , Cryptosporidiosis , Cryptosporidium , Giardia , Giardiasis , Machine Learning , Cryptosporidiosis/prevention & control , Cryptosporidiosis/epidemiology , Cryptosporidium/isolation & purification , Giardia/isolation & purification , Humans , Giardiasis/prevention & control , Giardiasis/epidemiology , Oocysts , Waterborne Diseases/prevention & control
13.
mBio ; 15(8): e0172024, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38995074

ABSTRACT

Infection with the apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease. Cryptosporidiosis is of particular importance in infants and shows a strong association with malnutrition, both as a risk factor and as a consequence. Cryptosporidium invades and replicates within the small intestine epithelial cells. This is a highly dynamic tissue that is developmentally stratified along the villus axis. New cells emerge from a stem cell niche in the crypt and differentiate into mature epithelial cells while moving toward the villus tip, where they are ultimately shed. Here, we studied the impact of Cryptosporidium infection on this dynamic architecture. Tracing DNA synthesis in pulse-chase experiments in vivo, we quantified the genesis and migration of epithelial cells along the villus. We found proliferation and epithelial migration to be elevated in response to Cryptosporidium infection. Infection also resulted in significant cell loss documented by imaging and molecular assays. Consistent with these observations, single-cell RNA sequencing of infected intestines showed a gain of young and a loss of mature cells. Interestingly, enhanced epithelial cell loss was not a function of enhanced apoptosis of infected cells. To the contrary, Cryptosporidium-infected cells were less likely to be apoptotic than bystanders, and experiments in tissue culture demonstrated that infection provided enhanced resistance to chemically induced apoptosis to the host but not bystander cells. Overall, this study suggests that Cryptosporidium may modulate cell apoptosis and documents pronounced changes in tissue homeostasis due to parasite infection, which may contribute to its long-term impact on the developmental and nutritional state of children. IMPORTANCE: The intestine must balance its roles in digestion and nutrient absorption with the maintenance of an effective barrier to colonization and breach by numerous potential pathogens. An important component of this balance is its constant turnover, which is modulated by a gain of cells due to proliferation and loss due to death or extrusion. Here, we report that Cryptosporidium infection changes the dynamics of this process increasing both gain and loss of enterocytes speeding up the villus elevator. This leads to a much more immature epithelium and a reduction of the number of those cells typically found toward the villus apex best equipped to take up key nutrients including carbohydrates and lipids. These changes in the cellular architecture and physiology of the small intestine may be linked to the profound association between cryptosporidiosis and malnutrition.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Epithelial Cells , Cryptosporidiosis/parasitology , Animals , Epithelial Cells/parasitology , Cryptosporidium/genetics , Cryptosporidium/physiology , Mice , Intestinal Mucosa/parasitology , Apoptosis , Humans , Cell Proliferation , Cell Movement , Intestine, Small/parasitology
14.
BMC Public Health ; 24(1): 1578, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867266

ABSTRACT

BACKGROUND: . Splash pads for recreational purposes are widespread. Using these pads can pose a health risk if they lack installation regulation and water quality supervision. Our aim was to describe a waterborne disease outbreak caused by Clostridium perfringens and Cryptosporidium spp. in a Barcelona district and the measures taken for its control. METHODS: . On August 2018, 71 cases of acute gastroenteritis were detected, affecting people who used a splash pad or were in contact with a user. Microbiological and environmental investigations were carried out. A descriptive analysis of the sample and Poisson regression models adjusted for age and sex were performed, obtaining frequencies, median values, and adjusted prevalence ratios with their 95% confidence intervals. RESULTS: The median age of the cases was 6.7 years, 27 (38%) required medical care, and three (4.2%) were hospitalized. The greater the number of times a person entered the area, the greater the number of symptoms and their severity. Nineteen (76%) of the 25 stool samples collected from cases showed the presence of one or both pathogens. Environmental investigations showed deficiencies in the facilities and identified the presence of both species in the splash pad. Health education and hygiene measures were carried out, and 14 days after the closure of the facilities, no more cases related to the pad were recorded. CONCLUSIONS: . Specific regulations are needed on the use of splash pads for recreational purposes. Until these regulations are in place, these types of facility should comply with the regulations that apply to swimming pools and spas, including those related to the design of the tanks, water recirculation systems, and adequate disinfection systems.


Subject(s)
Clostridium Infections , Cryptosporidiosis , Cryptosporidium , Disease Outbreaks , Humans , Male , Female , Spain/epidemiology , Cryptosporidium/isolation & purification , Clostridium Infections/epidemiology , Cryptosporidiosis/epidemiology , Adult , Child , Adolescent , Child, Preschool , Middle Aged , Young Adult , Clostridium perfringens/isolation & purification , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Waterborne Diseases/epidemiology , Infant , Water Microbiology
15.
J Zoo Wildl Med ; 55(2): 355-368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875192

ABSTRACT

The Louisiana pine snake (Pituophis ruthveni) is a diurnal colubrid species native to Louisiana and eastern Texas whose free-ranging populations have been declining over at least the past 30 yr. The creation and maintenance of sustainable captive breeding programs of P. ruthveni to restore native populations has also provided ample opportunity for research into this species and for P. ruthveni to serve as a research model for other colubrid snakes. However, no investigation into prevalent causes of morbidity and mortality in captive populations of this species has been described. A research population of P. ruthveni was maintained at Louisiana State University (LSU) for over 4 yr due to unsuitability for breeding after testing positive for Cryptosporidium serpentis. Since arrival at LSU, the snakes were under close veterinary surveillance. Complete postmortem examinations were performed on 12 snakes that died or were euthanized. The aim of this study was to further understanding of common factors influencing morbidity and mortality in captive P. ruthveni infected with C. serpentis, by retrospectively reviewing postmortem exam findings from the 12 deceased members of the population at LSU. A predominant finding across individuals included bacterial infections, which were responsible for major illness or death in 37.5% of the animals. Fifty percent of snakes tested positive for Cryptosporidium sp. based on PCR performed from postmortem samples; it was directly implicated as cause of death or morbidity in 83.3% of positive cases. Although infectious disease represented the most common pathologic postmortem finding, several noninfectious disease processes were identified, including gout, goiter, and neoplasia. These findings mirror those of other retrospective investigations of reptile collections at various institutions and highlight the need for appropriate emphasis on the identification, treatment, and prevention of infectious disease as part of routine veterinary care.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/mortality , Retrospective Studies , Cryptosporidium/isolation & purification , Louisiana/epidemiology , Colubridae/parasitology , Female , Male , Animals, Zoo
16.
STAR Protoc ; 5(2): 103101, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38824642

ABSTRACT

A major bottleneck in the progress of Cryptosporidium research is the lack of accessible cryopreservation of Cryptosporidium oocysts. Here, we present a protocol for the cryopreservation of Cryptosporidium isolates using enteroids. We describe the steps for the establishment of enteroid cultures and cryopreservation of C. parvum-infected HCT-8 cultures. We then detail procedures for the recovery and propagation of frozen parasites using enteroids. For complete details on the use and execution of this protocol, please refer to Deng et al.1.


Subject(s)
Cryopreservation , Cryptosporidium , Cryopreservation/methods , Humans , Cryptosporidium/isolation & purification , Cryptosporidium/physiology , Cryptosporidium parvum/isolation & purification , Cryptosporidium parvum/physiology , Oocysts/isolation & purification , Oocysts/physiology , Oocysts/cytology , Cryptosporidiosis/parasitology
17.
Trop Biomed ; 41(1): 1-13, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852128

ABSTRACT

Understanding the normal physiology of the body is the key to study the changes that occur due to any infection. It is known that enteric infections play a considerable role in affecting normal body status. Thus, this study was designed for investigating the enteric infections in Arabian camels in Al-Muthanna Province. In this investigation, 588 fecal and blood serum samples (for diarrheic camels only) were collected from the camels in different areas of Al-Muthanna Province, Iraq from both sexes of different ages during the period from October 2020 up to the end of August 2021. The samples were examined using routine microscopic examination techniques, hematological techniques, and ELISA for parasitic and viral identification. Eimeria rajasthani, Isospora orlovi were recorded for the first time in Iraqi camels with clinical signs of diarrhea, dehydration, and emaciation. The study recorded four types of protozoa: Eimeria spp., Isospora, Cryptosporidium and Balantidium coli. The recorded types of Eimeria were E. dromedarii, E. cameli, and E. rajasthani. There was a significant effect of age on infection rates with Eimeria spp. as the highest Eimeria ratio was in ages of less than two years animals. The infection rates were also affected with months which reached the highest ratios of Eimeria in October while the lowest ratio of Eimeria was recorded in July. BVDV infection rate was found in camels that suffered from diarrhea. There is no significant effect of sex on the onset of the viral disease in camels. For hematological parameters, there were significant differences in RBCs, WBCs, Hb, and PCV values in protozoal and BVDV infections. In conclusion, different kinds of protozoal and viral infections were recorded. Some of the recorded infections were associated with acute clinical signs and have zoonotic importance.


Subject(s)
Camelus , Coccidiosis , Diarrhea , Eimeria , Feces , Animals , Camelus/parasitology , Feces/parasitology , Feces/virology , Iraq/epidemiology , Male , Female , Diarrhea/veterinary , Diarrhea/epidemiology , Diarrhea/parasitology , Diarrhea/virology , Coccidiosis/veterinary , Coccidiosis/epidemiology , Coccidiosis/parasitology , Eimeria/isolation & purification , Isospora/isolation & purification , Balantidium/isolation & purification , Cryptosporidium/isolation & purification , Isosporiasis/veterinary , Isosporiasis/epidemiology , Isosporiasis/parasitology , Cryptosporidiosis/epidemiology
18.
Sci Rep ; 14(1): 13650, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871760

ABSTRACT

Intestinal parasitic infections (IPIs) can lead to significant morbidity and mortality in cancer patients. While they are unlikely to cause severe disease and are self-limiting in healthy individuals, cancer patients are especially susceptible to opportunistic parasitic infections. The gut microbiota plays a crucial role in various aspects of health, including immune regulation and metabolic processes. Parasites occupy the same environment as bacteria in the gut. Recent research suggests intestinal parasites can disrupt the normal balance of the gut microbiota. However, there is limited understanding of this co-infection dynamic among cancer patients in Malaysia. A study was conducted to determine the prevalence and relationship between intestinal parasites and gut microbiota composition in cancer patients. Stool samples from 134 cancer patients undergoing active treatment or newly diagnosed were collected and examined for the presence of intestinal parasites and gut microbiota composition. The study also involved 17 healthy individuals for comparison and control. Sequencing with 16S RNA at the V3-V4 region was used to determine the gut microbial composition between infected and non-infected cancer patients and healthy control subjects. The overall prevalence of IPIs among cancer patients was found to be 32.8%. Microsporidia spp. Accounted for the highest percentage at 20.1%, followed by Entamoeba spp. (3.7%), Cryptosporidium spp. (3.0%), Cyclospora spp. (2.2%), and Ascaris lumbricoides (0.8%). None of the health control subjects tested positive for intestinal parasites. The sequencing data analysis revealed that the gut microbiota diversity and composition were significantly different in cancer patients than in healthy controls (p < 0.001). A significant dissimilarity was observed in the bacterial composition between parasite-infected and non-infected patients based on Bray-Curtis (p = 0.041) and Jaccard (p = 0.021) measurements. Bacteria from the genus Enterococcus were enriched in the parasite-infected groups, while Faecalibacterium prausnitzii reduced compared to non-infected and control groups. Further analysis between different IPIs and non-infected individuals demonstrated a noteworthy variation in Entamoeba-infected (unweighted UniFrac: p = 0.008), Cryptosporidium-infected (Bray-Curtis: p = 0.034) and microsporidia-infected (unweighted: p = 0.026; weighted: p = 0.019; Jaccard: p = 0.031) samples. No significant dissimilarity was observed between Cyclospora-infected groups and non-infected groups. Specifically, patients infected with Cryptosporidium and Entamoeba showed increased obligate anaerobic bacteria. Clostridiales were enriched with Entamoeba infections, whereas those from Coriobacteriales decreased. Bacteroidales and Clostridium were found in higher abundance in the gut microbiota with Cryptosporidium infection, while Bacillales decreased. Additionally, bacteria from the genus Enterococcus were enriched in microsporidia-infected patients. In contrast, bacteria from the Clostridiales order, Faecalibacterium, Parabacteroides, Collinsella, Ruminococcus, and Sporosarcina decreased compared to the non-infected groups. These findings underscore the importance of understanding and managing the interactions between intestinal parasites and gut microbiota for improved outcomes in cancer patients.


Subject(s)
Gastrointestinal Microbiome , Intestinal Diseases, Parasitic , Neoplasms , Humans , Malaysia/epidemiology , Male , Female , Middle Aged , Intestinal Diseases, Parasitic/epidemiology , Adult , Neoplasms/microbiology , Aged , Feces/microbiology , Feces/parasitology , Tertiary Care Centers , Hospitals, Teaching , Prevalence , Cryptosporidium/isolation & purification , Cryptosporidium/genetics , Entamoeba/isolation & purification , Entamoeba/genetics , Microsporidia/isolation & purification , Coinfection/microbiology , Coinfection/epidemiology , RNA, Ribosomal, 16S/genetics
19.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829369

ABSTRACT

Cryptosporidium is an enteric pathogen and a prominent cause of diarrheal disease worldwide. Control of Cryptosporidium requires CD4+ T cells, but how protective CD4+ T cell responses are generated is poorly understood. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to understand the basis for CD4+ T cell priming and effector function. These studies revealed that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node but differentiate into Th1 cells in the gut to provide local parasite control. Although type 1 conventional dendritic cells (cDC1s) were dispensable for CD4+ T cell priming, they were required for CD4+ T cell gut homing and were a source of IL-12 at the site of infection that promoted local production of IFN-γ. Thus, cDC1s have distinct roles in shaping CD4+ T cell responses to an enteric infection: first, to promote gut homing from the mesLN, and second, to drive effector responses in the intestine.


Subject(s)
CD4-Positive T-Lymphocytes , Cryptosporidiosis , Cryptosporidium , Dendritic Cells , Mice, Inbred C57BL , Animals , Dendritic Cells/immunology , Dendritic Cells/parasitology , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , Mice , Cryptosporidium/immunology , Cryptosporidium/physiology , Intestines/immunology , Intestines/parasitology , Interleukin-12/metabolism , Interleukin-12/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Th1 Cells/immunology , Lymph Nodes/immunology , Lymph Nodes/parasitology
20.
Vet Parasitol Reg Stud Reports ; 52: 101057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880570

ABSTRACT

Cryptosporidium is one of the most important enteric diarrhoeal parasites that infect humans and animals worldwide. The current study investigated the occurrence and risk factors associated with Cryptosporidium infection in ruminants aged ≤6 months in Monze, Mumbwa, and Lusaka districts of Zambia. Faecal samples were collected from 328 calves, 190 lambs, and 245 goat kids and analysed for Cryptosporidium oocysts using modified Ziehl Neelsen staining. A closed structured questionnaire was used to obtain epidemiological characteristics and potential risk factors for Cryptosporidium infection. The overall occurrence of Cryptosporidium was 7.9% (60/763), while that in calves, lambs and goat kids was 14.5% (47/328), 5.3% (10/190), and 1.2% (3/245) respectively. Watery/pasty stool and sampling during the rainy season were independently associated with increased risk of infection. In calves, the odds of infection increased during the rainy season, while daily kraal cleaning reduced the infection risk. Lambs showed increased odds of infection with pasty/watery stool and male sex, whereas the wearing of protective clothing by handlers significantly reduced the risk. There were district variations in infection occurrence with Mumbwa district having higher prevalence. The findings of this study show that livestock in Zambia continue to be frequently infected with Cryptosporidium. Protective measures and appropriate farm cleanliness should be implemented in control of this infection. Regional and host-species-specific variations emphasize the need for targeted interventions. These findings, therefore, contribute to effective strategies for Cryptosporidium control, promoting good livestock health and management.


Subject(s)
Cattle Diseases , Cryptosporidiosis , Cryptosporidium , Feces , Goat Diseases , Goats , Sheep Diseases , Animals , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Zambia/epidemiology , Sheep , Risk Factors , Goat Diseases/epidemiology , Goat Diseases/parasitology , Cryptosporidium/isolation & purification , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Feces/parasitology , Male , Cattle , Female , Prevalence , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Seasons , Livestock/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL