Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53.555
Filter
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38958156

ABSTRACT

Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid-base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems.


Subject(s)
Software , Molecular Dynamics Simulation , Genetic Variation , Algorithms , Thermodynamics , Proteins/chemistry , Crystallization , Nucleic Acids/chemistry
2.
IUCrJ ; 11(Pt 4): 476-485, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958014

ABSTRACT

A series of events underscoring the significant advancements in micro-crystallization and in vivo crystallography were held during the 26th IUCr Congress in Melbourne, positioning microcrystallography as a pivotal field within structural biology. Through collaborative discussions and the sharing of innovative methodologies, these sessions outlined frontier approaches in macromolecular crystallography. This review provides an overview of this rapidly moving field in light of the rich dialogues and forward-thinking proposals explored during the congress workshop and microsymposium. These advances in microcrystallography shed light on the potential to reshape current research paradigms and enhance our comprehension of biological mechanisms at the molecular scale.


Subject(s)
Crystallization , Crystallography, X-Ray/methods , Crystallography/methods , Macromolecular Substances/chemistry
3.
Commun Biol ; 7(1): 828, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972919

ABSTRACT

Crystallization of monosodium urate monohydrate (MSU) leads to painful gouty arthritis. Despite extensive research it is still unknown how this pathological biomineralization occurs, which hampers its prevention. Here we show how inflammatory MSU crystals form after a non-inflammatory amorphous precursor (AMSU) that nucleates heterogeneously on collagen fibrils from damaged articular cartilage of gout patients. This non-classical crystallization route imprints a nanogranular structure to biogenic acicular MSU crystals, which have smaller unit cell volume, lower microstrain, and higher crystallinity than synthetic MSU. These distinctive biosignatures are consistent with the template-promoted crystallization of biotic MSU crystals after AMSU at low supersaturation, and their slow growth over long periods of time (possibly years) in hyperuricemic gout patients. Our results help to better understand gout pathophysiology, underline the role of cartilage damage in promoting MSU crystallization, and suggest that there is a time-window to treat potential gouty patients before a critical amount of MSU has slowly formed as to trigger a gout flare.


Subject(s)
Crystallization , Gout , Uric Acid , Uric Acid/metabolism , Humans , Gout/metabolism , Gout/pathology , Biomineralization , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology
4.
Biomacromolecules ; 25(7): 4535-4544, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973364

ABSTRACT

Recrystallization is considered the main damaging mechanism during the frozen storage of biologic materials. In this study, furcellaran, a polysaccharide related to κ-carrageenan, was studied for its concentration-dependent effect on ice crystal growth and recrystallization. The structure and sulfate content of the utilized furcellaran was analyzed by 1H nuclear magnetic resonance spectroscopy, ion chromatography, and high-performance size-exclusion chromatography. Additionally, the rheological properties of furcellaran solutions were investigated. Our findings demonstrate that furcellaran inhibits ice growth as effectively as κ-carrageenan. Furthermore, the rheological properties change with increasing furcellaran concentration, resulting in a gel-like consistency at 5 g/L, which coincides with decreased recrystallization inhibition activity and larger crystals. This suggests that gel formation or a gel-like consistency has to be avoided for optimal recrystallization inhibition activity.


Subject(s)
Crystallization , Ice , Rheology , Carrageenan/chemistry
5.
Curr Microbiol ; 81(9): 265, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003318

ABSTRACT

Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility. A negligible number of crystals was found in P. bursaria cells harboring symbiotic algae. The average crystal length in alga-free and algae-reduced cells was about 6.8 µm and 14.4 µm, respectively. The crystals of alga-free cells were spherical, whereas those of algae-reduced cells were angular in shape. The crystals of alga-free cells immediately dissolved in acids and bases, but not in water or organic solvents, and were stable at - 20 °C for more than 3 weeks. This study, for the first time, reveals that the characteristics of crystals present in the cytoplasm of P. bursaria vary greatly depending on the amount of symbiotic algae.


Subject(s)
Chlorella , Paramecium , Symbiosis , Chlorella/chemistry , Chlorella/metabolism , Paramecium/metabolism , Crystallization , Cytoplasm/chemistry
6.
PLoS One ; 19(7): e0304373, 2024.
Article in English | MEDLINE | ID: mdl-38959223

ABSTRACT

Crystal type is an important physicochemical property of starch. However, it is currently unclear whether changes in crystal type affect other properties of starch. This study discovered that water deficit resulted in an increase in small starch granules and transparency in Pueraria lobata var. thomsonii, while causing a decrease in amylose content and swelling power. Additionally, the crystal type of P. Thomsonii starch changed from CB-type to CA-type under water deficit, without significantly altering the short-range ordered structure and chain length distribution of starch. This transformation in crystal type led to peak splitting in the DSC heat flow curve of starch, alterations in gelatinization behavior, and an increase in resistant starch content. These changes in crystalline structure and physicochemical properties of starch granules are considered as adaptive strategies employed by P. Thomsonii to cope with water deficit.


Subject(s)
Amylose , Pueraria , Starch , Water , Pueraria/chemistry , Starch/chemistry , Water/chemistry , Amylose/chemistry , Amylose/analysis , Crystallization , X-Ray Diffraction , Calorimetry, Differential Scanning
7.
J Am Chem Soc ; 146(28): 18817-18822, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968608

ABSTRACT

NAD(H)-dependent enzymes play a crucial role in the biosynthesis of pharmaceuticals and fine chemicals, but the limited recyclability of the NAD(H) cofactor hinders its more general application. Here, we report the generation of mechano-responsive PEI-modified Cry3Aa protein crystals and their use for NADH recycling over multiple reaction cycles. For demonstration of its practical utility, a complementary Cry3Aa protein particle containing genetically encoded and co-immobilized formate dehydrogenase for NADH regeneration and leucine dehydrogenase for catalyzing the NADH-dependent l-tert-leucine (l-tert-Leu) biosynthesis has been produced. When combined with the PEI-modified Cry3Aa crystal, the resultant reaction system could be used for the efficient biosynthesis of l-tert-Leu for up to 21 days with a 10.5-fold improvement in the NADH turnover number.


Subject(s)
Formate Dehydrogenases , NAD , NAD/metabolism , NAD/chemistry , Formate Dehydrogenases/metabolism , Formate Dehydrogenases/chemistry , Leucine Dehydrogenase/metabolism , Leucine Dehydrogenase/chemistry , Crystallization , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Models, Molecular
8.
Nat Commun ; 15(1): 5741, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009580

ABSTRACT

Targeted alpha therapy (TAT) pairs the specificity of antigen targeting with the lethality of alpha particles to eradicate cancerous cells. Actinium-225 [225Ac; t1/2 = 9.920(3) days] is an alpha-emitting radioisotope driving the next generation of TAT radiopharmaceuticals. Despite promising clinical results, a fundamental understanding of Ac coordination chemistry lags behind the rest of the Periodic Table due to its limited availability, lack of stable isotopes, and inadequate systems poised to probe the chemical behavior of this radionuclide. In this work, we demonstrate a platform that combines an 8-coordinate synthetic ligand and a mammalian protein to characterize the solution and solid-state behavior of the longest-lived Ac isotope, 227Ac [t1/2 = 21.772(3) years]. We expect these results to direct renewed efforts for 225Ac-TAT development, aid in understanding Ac coordination behavior relative to other +3 lanthanides and actinides, and more broadly inform this element's position on the Periodic Table.


Subject(s)
Actinium , Chelating Agents , Actinium/chemistry , Chelating Agents/chemistry , Crystallization , Radiopharmaceuticals/chemistry , Humans , Ligands
9.
Front Endocrinol (Lausanne) ; 15: 1416996, 2024.
Article in English | MEDLINE | ID: mdl-39010902

ABSTRACT

Objective: (MSU) crystals usually in the kidney tubules especially collecting ducts in the medulla. Previous animal models have not fully reproduced the impact of MSU on kidneys under non-hyperuricemic conditions. Methods: In the group treated with MSU, the upper pole of the rat kidney was injected intrarenally with 50 mg/kg of MSU, while the lower pole was injected with an equivalent volume of PBS solution. The body weight and kidney mass of the rats were observed and counted. H&E staining was used to observe the pathological damage of the kidney and to count the number of inflammatory cells. Masoon staining was used to observe the interstitial fibrosis in the kidneys of the rat model. Flow cytometric analysis was used for counting inflammatory cells in rats. ElISA was used to measure the concentration of serum and urine uric acid, creatinine and urea nitrogen in rats. Results: At the MSU injection site, a significantly higher infiltration of inflammatory cells and a substantial increase in the area of interstitial fibrosis compared to the control group and the site of PBS injection were observed. The serum creatinine level was significantly increased in the MSU group. However, there were no significant differences in the rats' general conditions or blood inflammatory cell counts when compared to the control group. Conclusion: The injection of urate crystals into the kidney compromised renal function, caused local pathological damage, and increased inflammatory cell infiltration and interstitial fibrosis. Intrarenal injection of MSU crystals may result in urate nephropathy. The method of intrarenal injection did not induce surgical infection or systemic inflammatory response.


Subject(s)
Disease Models, Animal , Rats, Sprague-Dawley , Uric Acid , Animals , Rats , Male , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Fibrosis , Crystallization , Creatinine/blood
10.
Food Res Int ; 188: 114493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823876

ABSTRACT

In this paper, two emulsion systems with high and low solid fat contents were prepared from 20 % water phase and 80 % oil phase by adjusting the palm oil/palm stearin/soybean oil ratio. Different ultrasonic power and time were used for the pretreatment of emulsion with different solid fat content, and the application characteristics of ultrasonic in W/O emulsions were explored and evaluated. Directly using high-intensity ultrasound to prepare fatty emulsions would weaken the hardness and storage modulus G' of the samples. Although ultrasound reduced the size of fat crystals in emulsions, the interaction between water droplets and fat crystals needs to be considered. After ultrasonic treatment, water droplets were difficult to immobilize on the crystal surface and thus acted as an active filler to stabilize the emulsion together with the fat crystal network. In high solid fat emulsion systems, an increase in ultrasound power (from 100 W to 200 W) could more affect the crystallization behavior of fats than an increase in ultrasound duration (from 30 s to 60 s), and the distribution of crystals and droplets was more uniform. In the low solid fat emulsion system, the texture of the sample after ultrasonic treatment was softer, and the surface was more delicate and smoother. However, the higher ultrasonic intensity (200 W) was not conducive to the preparation of the spread. Although the ultrasound with excessive intensity promoted the formation of small crystals, it would also lead to the aggregation of small crystals. These small crystals cannot form a uniform crystal network, which increases the fluidity of emulsions.


Subject(s)
Crystallization , Emulsions , Palm Oil , Particle Size , Water , Emulsions/chemistry , Water/chemistry , Palm Oil/chemistry , Soybean Oil/chemistry , Ultrasonic Waves , Ultrasonics
11.
Carbohydr Polym ; 339: 122243, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823912

ABSTRACT

Pilling is a form of textile mechanical damage, forming fibrous bobbles on the surface of garments, resulting in premature disposal of clothing by consumers. However, our understanding on how the structural properties of the cellulosic matrix compliment the three-dimensional shape of cotton pills remains limited. This knowledge gap has hindered the development of effective 'pillase' technologies over the past 20 years due to challenges in balancing depilling efficacy with fabric integrity preservation. Therefore, the main focus here was characterising the role of cellulose and the hemicellulose components in cotton textiles to elucidate subtle differences between the chemistry of pills and fibre regions involved in structural integrity. State-of-the-art bioimaging using carbohydrate binding modules, monoclonal antibodies, and Leica SP8 and a Nikon A1R confocal microscopes, revealed the biophysical structure of cotton pills for the first time. Identifying regions of increased crystalline cellulose in the base of anchor fibres and weaker amorphous cellulose at dislocations in their centres, enhancing our understanding of current enzyme specificity. Surprisingly, pills contained a 7-fold increase in the concentration of xyloglucan compared to the main textile. Therefore, xyloglucan offers a previously undescribed target for overcoming this benefit-to-risk paradigm, suggesting a role for xyloglucanase enzymes in future pillase systems.


Subject(s)
Cellulose , Cotton Fiber , Glucans , Xylans , Cellulose/chemistry , Cotton Fiber/analysis , Xylans/chemistry , Xylans/metabolism , Glucans/chemistry , Crystallization , Textiles , Polysaccharides/chemistry
12.
AAPS PharmSciTech ; 25(5): 127, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844724

ABSTRACT

The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.


Subject(s)
Chemistry, Pharmaceutical , Excipients , Polymers , Raloxifene Hydrochloride , Solubility , X-Ray Diffraction , Polymers/chemistry , Excipients/chemistry , Raloxifene Hydrochloride/chemistry , Multivariate Analysis , X-Ray Diffraction/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Compounding/methods , Microscopy, Electron, Scanning/methods , Hydrogen Bonding , Crystallization/methods
13.
Protein Sci ; 33(7): e5081, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924648

ABSTRACT

It has been shown previously that a set of three modifications-termed S1, Crystal Kappa, and elbow-act synergistically to improve the crystallizability of an antigen-binding fragment (Fab) framework. Here, we prepared a phage-displayed library and performed crystallization screenings to identify additional substitutions-located near the heavy-chain elbow region-which cooperate with the S1, Crystal Kappa, and elbow modifications to increase expression and improve crystallizability of the Fab framework even further. One substitution (K141Q) supports the signature Crystal Kappa-mediated Fab:Fab crystal lattice packing interaction. Another substitution (E172G) improves the compatibility of the elbow modification with the Fab framework by alleviating some of the strain incurred by the shortened and bulkier elbow linker region. A third substitution (F170W) generates a split-Fab conformation, resulting in a powerful crystal lattice packing interaction comprising the biological interaction interface between the variable heavy and light chain domains. In sum, we have used K141Q, E172G, and F170W substitutions-which complement the S1, Crystal Kappa, and elbow modifications-to generate a set of highly crystallizable Fab frameworks that can be used as chaperones to enable facile elucidation of Fab:antigen complex structures by x-ray crystallography.


Subject(s)
Immunoglobulin Fab Fragments , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Crystallography, X-Ray , Crystallization , Models, Molecular , Protein Conformation , Humans , Amino Acid Substitution
14.
Methods Enzymol ; 699: 25-57, 2024.
Article in English | MEDLINE | ID: mdl-38942506

ABSTRACT

Magnesium ions (Mg2+) are crucial in class II terpene cyclases that utilize substrates with diphosphate groups. Interestingly, these enzymes catalyze reactions without cleaving the diphosphate group, instead initiating the reaction through protonation. In our recent research, we discovered a novel class II sesquiterpene cyclase in Streptomyces showdoensis. Notably, we determined its crystal structure and identified Mg2+ within its active site. This finding has shed light on the previously elusive question of Mg2+ binding in class II terpene cyclases. In this chapter, we outline our methods for discovering this novel enzyme, including steps for its purification, crystallization, and kinetic analysis.


Subject(s)
Magnesium , Sesquiterpenes , Streptomyces , Magnesium/metabolism , Magnesium/chemistry , Sesquiterpenes/metabolism , Sesquiterpenes/chemistry , Streptomyces/enzymology , Binding Sites , Kinetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray/methods , Structure-Activity Relationship , Crystallization/methods , Carbon-Carbon Lyases
15.
Soft Matter ; 20(25): 4886-4894, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860646

ABSTRACT

Biogenic CaCO3 formation is regulated by crystallization proteins during crystal growth. Interactions of proteins with nascent mineral surfaces trigger proteins to be incorporated into the crystal lattice. As a result of incorporation, these intracrystalline proteins are protected in the lattice, an example of which is ancient eggshell proteins that have persisted in CaCO3 for thousands of years even under harsh environmental conditions. OC17 is an eggshell protein known to interact with CaCO3 during eggshell formation during which OC17 becomes incorporated into the lattice. Understanding protein incorporation into CaCO3 could offer insights into protein stability inside crystals. Here, we study the protection of OC17 in the CaCO3 lattice. Using thermogravimetric analysis we show that the effect of temperature on intracrystalline proteins of eggshells is negligible below 250 °C. Next, we show that lattice incorporation protects the OC17 structure despite a heat-treatment step that is shown to denature the protein. Because incorporated proteins need to be released from crystals, we verify metal chelation as a safe crystal dissolution method to avoid protein denaturation during reconstitution. Finally, we optimize the recombinant expression of OC17 which could allow engineering OC17 for engineered intracrystalline entrapment studies.


Subject(s)
Calcium Carbonate , Crystallization , Egg Proteins , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Egg Proteins/chemistry , Egg Proteins/metabolism , Animals , Temperature
16.
Toxins (Basel) ; 16(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38922143

ABSTRACT

α-Latrotoxin (α-LTX) was found to form two-dimensional (2D) monolayer arrays in solution at relatively low concentrations (0.1 mg/mL), with the toxin tetramer constituting a unit cell. The crystals were imaged using cryogenic electron microscopy (cryoEM), and image analysis yielded a ~12 Å projection map. At this resolution, no major conformational changes between the crystalline and solution states of α-LTX tetramers were observed. Electrophysiological studies showed that, under the conditions of crystallization, α-LTX simultaneously formed multiple channels in biological membranes that displayed coordinated gating. Two types of channels with conductance levels of 120 and 208 pS were identified. Furthermore, we observed two distinct tetramer conformations of tetramers both when observed as monodisperse single particles and within the 2D crystals, with pore diameters of 11 and 13.5 Å, suggestive of a flickering pore in the middle of the tetramer, which may correspond to the two states of toxin channels with different conductance levels. We discuss the structural changes that occur in α-LTX tetramers in solution and propose a mechanism of α-LTX insertion into the membrane. The propensity of α-LTX tetramers to form 2D crystals may explain many features of α-LTX toxicology and suggest that other pore-forming toxins may also form arrays of channels to exert maximal toxic effect.


Subject(s)
Cryoelectron Microscopy , Animals , Spider Venoms/chemistry , Spider Venoms/toxicity , Cell Membrane/chemistry , Protein Multimerization , Crystallization
17.
Exp Cell Res ; 440(1): 114131, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38876374

ABSTRACT

Firefly luciferase (Fluc) from Photinus pyralis is one of the most widely used reporter proteins in biomedical research. Despite its widespread use, Fluc's protein phase transition behaviors and phase separation characteristics have not received much attention. Current research uncovers Fluc's intrinsic property to phase separate in mammalian cells upon a simple cell culture temperature change. Specifically, Fluc spontaneously produced needle-shaped crystal-like inclusion bodies upon temperature shift to the hypothermic temperatures ranging from 25 °C to 31 °C. The crystal-like inclusion bodies were not associated with or surrounded by membranous organelles and were likely built from the cytosolic pool of Fluc. Furthermore, the crystal-like inclusion formation was suppressed when cells were cultured in the presence of D-luciferin and its synthetic analog, as well as the benzothiazole family of so-called stabilizing inhibitors. These two classes of compounds inhibited intracellular Fluc crystallization by different modes of action as they had contrasting effects on steady-state luciferase protein accumulation levels. This study suggests that, under substrate insufficient conditions, the excess Fluc phase separates into a crystal-like state that can modulate intracellular soluble enzyme availability and protein turnover rate.


Subject(s)
Crystallization , Fireflies , Luciferases, Firefly , Temperature , Luciferases, Firefly/metabolism , Animals , Humans , Benzothiazoles/pharmacology , Benzothiazoles/chemistry , Inclusion Bodies/metabolism
18.
Biomed Res ; 45(3): 103-113, 2024.
Article in English | MEDLINE | ID: mdl-38839353

ABSTRACT

Kidney stone disease is a serious disease due to the severe pain it causes, high morbidity, and high recurrence rate. Notably, calcium oxalate stones are the most common type of kidney stone. Calcium oxalate appears in two forms in kidney stones: the stable phase, monohydrate (COM), and the metastable phase, dihydrate (COD). Particularly, COM stones with concentric structures are hard and difficult to treat. However, the factor determining the growth of either COM or COD crystals in the urine, which is supersaturated for both phases, remains unclear. This study shows that calcium phosphate ingredients preferentially induce COM crystal nucleation and growth, by observing and analyzing kidney stones containing both COM and COD crystals. The forms of calcium phosphate are not limited to Randall's plaques (1-2 mm size aggregates, which contain calcium phosphate nanoparticles and proteins, and form in the renal papilla). For example, aggregates of strip-shaped calcium phosphate crystals and fields of dispersed calcium phosphate microcrystals (nano to micrometer order) also promote the growth of concentric COM structures. This suggests that patients who excrete urine with a higher quantity of calcium phosphate crystals may be more prone to forming hard and troublesome COM stones.


Subject(s)
Calcium Oxalate , Calcium Phosphates , Crystallization , Kidney Calculi , Calcium Phosphates/metabolism , Calcium Phosphates/chemistry , Calcium Oxalate/chemistry , Calcium Oxalate/metabolism , Calcium Oxalate/urine , Kidney Calculi/chemistry , Kidney Calculi/metabolism , Humans , Animals
19.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829127

ABSTRACT

In recent years, solution processes have gained considerable traction as a cost-effective and scalable method to produce high-performance thermoelectric materials. The process entails a series of critical steps: synthesis, purification, thermal treatments, and consolidation, each playing a pivotal role in determining performance, stability, and reproducibility. We have noticed a need for more comprehensive details for each of the described steps in most published works. Recognizing the significance of detailed synthetic protocols, we describe here the approach used to synthesize and characterize one of the highest-performing polycrystalline p-type SnSe. In particular, we report the synthesis of SnSe particles in water and the subsequent surface treatment with CdSe molecular complexes that yields CdSe-SnSe nanocomposites upon consolidation. Moreover, the surface treatment inhibits grain growth through Zenner pinning of secondary phase CdSe nanoparticles and enhances defect formation at different length scales. The enhanced complexity in the CdSe-SnSe nanocomposite microstructure with respect to SnSe promotes phonon scattering and thereby significantly reduces the thermal conductivity. Such surface engineering provides opportunities in solution processing for introducing and controlling defects, making it possible to optimize the transport properties and attain a high thermoelectric figure of merit.


Subject(s)
Cadmium Compounds , Selenium Compounds , Thermal Conductivity , Selenium Compounds/chemistry , Cadmium Compounds/chemistry , Tin/chemistry , Solutions/chemistry , Surface Properties , Crystallization/methods
20.
AAPS PharmSciTech ; 25(5): 133, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862767

ABSTRACT

Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.


Subject(s)
Calcium Channel Blockers , Crystallization , Neural Networks, Computer , Nifedipine , Solubility , Static Electricity , Nifedipine/chemistry , Crystallization/methods , Calcium Channel Blockers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...