Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 408
Filter
1.
STAR Protoc ; 5(3): 103242, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39093706

ABSTRACT

Cognitive dysfunction is a prevalent feature in multiple sclerosis, a chronic inflammatory demyelinating disease, which may be correlated with the impairment of adult hippocampal neurogenesis. Here, we present a detailed protocol for the induction of cuprizone demyelinated mice to assess the cognitive function and explore the precise mechanisms underlying cognitive deficits in demyelinated hippocampus. We describe steps for behavioral tests, 5-Ethynyl-2'-deoxyuridine (EdU) and bromodeoxyuridine (BrdU) administration, retrovirus packaging and stereotactic injection, hippocampal tissue preparation, and immunofluorescence staining. For complete details on the use and execution of this protocol, please refer to Song et al.1.


Subject(s)
Cognition , Disease Models, Animal , Hippocampus , Neurogenesis , Animals , Hippocampus/pathology , Neurogenesis/physiology , Mice , Cognition/physiology , Demyelinating Diseases/pathology , Demyelinating Diseases/chemically induced , Male , Cuprizone/toxicity , Multiple Sclerosis/pathology
2.
J Neurochem ; 168(9): 3250-3267, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39115025

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.


Subject(s)
Cuprizone , Demyelinating Diseases , Myelin Sheath , Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Animals , Male , Mice , Astrocytes/drug effects , Astrocytes/metabolism , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Insect Proteins , Locomotion/drug effects , Mice, Inbred C57BL , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Myelin Sheath/pathology , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/pharmacology
3.
Biochem Biophys Res Commun ; 733: 150592, 2024 Nov 12.
Article in English | MEDLINE | ID: mdl-39213705

ABSTRACT

Damage to oligodendrocytes (OLs) and myelin sheaths (demyelination) has been shown to be associated with numerous neurological and psychiatric disorders. Remyelination is a rare and reliable regenerative response that occurs in the central nervous system (CNS). It is generally believed that OL progenitor cells (OPCs) are the cell source to generate new OLs to remyelinate the demyelinated axons. However, several recent studies have argued that pre-existing mature OLs that survive within the demyelinated area are responsible for remyelination. Here, by conditional knock-out (KO) of a transcription factor gene that is essential for OPC differentiation, namely myelin regulatory factor (Myrf), to block the production of adult new OLs and examined its effect on remyelination after cuprizone (CPZ)-induced demyelination. We found that OPCs specific Myrf cKO mice show dramatic impairment in remyelination after 4 weeks of recovery from 5 weeks of CPZ diet and they leave over significant behavioral deficits such as anxiety-like behavior, decreased motor skills, and impaired memory compared to control mice that have recovered for the same time. Our data support the idea that OPCs are the major cell sources for myelin regeneration, suggesting that targeting the activation of OPCs and promoting their differentiation to boost new OLs production is critical for therapeutic intervention for demyelinating diseases such as multiple sclerosis (MS).


Subject(s)
Cuprizone , Demyelinating Diseases , Mice, Knockout , Oligodendroglia , Remyelination , Animals , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Demyelinating Diseases/genetics , Demyelinating Diseases/chemically induced , Oligodendroglia/metabolism , Oligodendroglia/pathology , Cuprizone/toxicity , Mice , Myelin Sheath/metabolism , Behavior, Animal , Mice, Inbred C57BL , Cell Differentiation , Transcription Factors/metabolism , Transcription Factors/genetics
4.
Nat Commun ; 15(1): 6744, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112447

ABSTRACT

Demyelination is a common pathological feature in a wide range of diseases, characterized by the loss of myelin sheath and myelin-supporting oligodendrocytes. These losses lead to impaired axonal function, increased vulnerability of axons to damage, and result in significant brain atrophy and neuro-axonal degeneration. Multiple pathomolecular processes contribute to neuroinflammation, oligodendrocyte cell death, and progressive neuronal dysfunction. In this study, we use the cuprizone mouse model of demyelination to investigate long-term non-invasive gamma entrainment using sensory stimulation as a potential therapeutic intervention for promoting myelination and reducing neuroinflammation in male mice. Here, we show that multisensory gamma stimulation mitigates demyelination, promotes oligodendrogenesis, preserves functional integrity and synaptic plasticity, attenuates oligodendrocyte ferroptosis-induced cell death, and reduces brain inflammation. Thus, the protective effects of multisensory gamma stimulation on myelin and anti-neuroinflammatory properties support its potential as a therapeutic approach for demyelinating disorders.


Subject(s)
Cuprizone , Demyelinating Diseases , Disease Models, Animal , Myelin Sheath , Oligodendroglia , Animals , Cuprizone/toxicity , Male , Demyelinating Diseases/chemically induced , Demyelinating Diseases/therapy , Demyelinating Diseases/pathology , Mice , Oligodendroglia/metabolism , Oligodendroglia/pathology , Myelin Sheath/metabolism , Mice, Inbred C57BL , Ferroptosis , Neuronal Plasticity , Brain/pathology , Brain/metabolism , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/pathology
5.
Neuroscience ; 555: 41-51, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39033991

ABSTRACT

The research aims to study the therapeutic impact of HEK293-XPack-Olig2 cell-derived exosomes on remyelination of the corpus callosum in a cuprizone-induced demyelinating disease model. A lentiviral vector expressing Olig2 was constructed using XPack technology. The highly abundant Olig2 exosomes (ExoOs) were isolated by centrifugation for subsequent experiments. Western blot, nanoparticle tracking analysis (NTA), and electron microscopy showed no significant difference in particle size and morphology between Exos and ExoOs, and a high level of Olig2 expression could be detected in ExoOs, indicating that exosome modification by XPack technology was successful. The Black Gold/Fluromyelin staining analysis showed that the ExoOs group significantly reduced the demyelination area in the corpus callosum compared to the PBS and Exos groups. Additionally, the PDGFRα/APC staining of the demyelinating region revealed an increase in APC+ oligodendrocytes and a decrease in PDGFRα+ oligodendrocyte progenitor cells (OPCs) in the ExoOs group. Furthermore, there was evident myelin regeneration in the demyelinated areas after ExoOs treatment, with better g-ratio and a higher number of intact myelin compared to the other treatment groups. The level of Sox10 expression in the brain tissue of the ExoOs group were higher compared to those of the PBS and Exos groups. The demyelination process can be significantly slowed down by the XPack-modified exosomes, the differentiation of OPCs promoted, and myelin regeneration accelerated under pathological conditions. This process is presumed to be achieved by changing the expression level of intracellular differentiation-related genes after exosomes transport Olig2 enriched into oligodendrocyte progenitors.


Subject(s)
Cuprizone , Demyelinating Diseases , Exosomes , Oligodendrocyte Transcription Factor 2 , Exosomes/metabolism , Cuprizone/toxicity , Animals , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Oligodendrocyte Transcription Factor 2/metabolism , Humans , HEK293 Cells , Myelin Sheath/metabolism , Myelin Sheath/pathology , Remyelination/physiology , Mice , Oligodendrocyte Precursor Cells/metabolism , Mice, Inbred C57BL , Corpus Callosum/metabolism , Corpus Callosum/pathology , Male , Oligodendroglia/metabolism , Disease Models, Animal
6.
Brain Res ; 1842: 149106, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38986827

ABSTRACT

Demyelination is characterized by disruption of myelin sheath and disorders in myelin formation. Currently, there are no effective therapeutic treatments available. Microglia, especially anti-inflammatory phenotype microglia are critical for remyelination. Galectin-3 (Gal-3), which is known to modulate microglia activation, is correlated with myelination. In this study, we aimed to elucidate the roles of Gal-3 during myelin formation and explore the efficiency and mechanism of rGal-3 administration in remyelination. We enrolled Gal-3 knockout (Lgals3 KO) mice and demonstrated Lgals3 KO causes demyelination during spontaneous myelinogenesis. We performed a cuprizone (CPZ) intoxication model and found Lgals3 KO aggravates demyelinated lesions and favors microglial pro-inflammatory phenotype polarization. Recombinant Gal-3 (rGal-3) administration alleviates CPZ intoxication and drives microglial towards anti-inflammatory phenotype. Additionally, RNA sequencing results reveal the correlation between Gal-3 and the PPARγ-CD36 axis. Thus, we performed SSO and GW9662 administration to inhibit the activation of the PPARγ-CD36 axis and found that rGal-3 administration modulates microglial phenotype polarization by regulating the PPARγ-CD36 axis. Together, our findings highlight the importance of Gal-3 in myelination and provide insights into rGal-3 administration for modulating microglial anti-inflammatory phenotype polarization through the PPARγ-CD36 axis.


Subject(s)
CD36 Antigens , Demyelinating Diseases , Galectin 3 , Mice, Knockout , Microglia , PPAR gamma , Animals , Mice , CD36 Antigens/metabolism , Cuprizone/toxicity , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Galectin 3/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Myelin Sheath/metabolism , Myelin Sheath/drug effects , PPAR gamma/metabolism
7.
Commun Biol ; 7(1): 813, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965401

ABSTRACT

Strategies for treating progressive multiple sclerosis (MS) remain limited. Here, we found that miR-145-5p is overabundant uniquely in chronic lesion tissues from secondary progressive MS patients. We induced both acute and chronic demyelination in miR-145 knockout mice to determine its contributions to remyelination failure. Following acute demyelination, no advantage to miR-145 loss could be detected. However, after chronic demyelination, animals with miR-145 loss demonstrated increased remyelination and functional recovery, coincident with altered presence of astrocytes and microglia within the corpus callosum relative to wild-type animals. This improved response in miR-145 knockout animals coincided with a pathological upregulation of miR-145-5p in wild-type animals with chronic cuprizone exposure, paralleling human chronic lesions. Furthermore, miR-145 overexpression specifically in oligodendrocytes (OLs) severely stunted differentiation and negatively impacted survival. RNAseq analysis showed altered transcriptome in these cells with downregulated major pathways involved in myelination. Our data suggest that pathological accumulation of miR-145-5p is a distinctive feature of chronic demyelination and is strongly implicated in the failure of remyelination, possibly due to the inhibition of OL differentiation together with alterations in other glial cells. This is mirrored in chronic MS lesions, and thus miR-145-5p serves as a potential relevant therapeutic target in progressive forms of MS.


Subject(s)
Demyelinating Diseases , Disease Models, Animal , Mice, Knockout , MicroRNAs , Remyelination , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Remyelination/genetics , Mice , Demyelinating Diseases/genetics , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Oligodendroglia/metabolism , Oligodendroglia/pathology , Recovery of Function , Male , Mice, Inbred C57BL , Cuprizone/toxicity , Female , Chronic Disease , Myelin Sheath/metabolism
8.
Neurosci Lett ; 836: 137869, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38852766

ABSTRACT

Dietary administration of a copper chelator, cuprizone (CPZ), has long been reported to induce intense and reproducible demyelination of several brain structures such as the corpus callosum. Despite the widespread use of CPZ as an animal model for demyelinating diseases such as multiple sclerosis (MS), the mechanism by which it induces demyelination and then allows robust remyelination is still unclear. An intensive mapping of the cell dynamics of oligodendrocyte (OL) lineage during the de- and remyelination course would be particularly important for a deeper understanding of this model. Here, using a panel of OL lineage cell markers as in situ hybridization (ISH) probes, including Pdgfra, Plp, Mbp, Mog, Enpp6, combined with immunofluorescence staining of CC1, SOX10, we provide a detailed dynamic profile of OL lineage cells during the entire course of the model from 1, 2, 3.5 days, 1, 2, 3, 4,5 weeks of CPZ treatment, as well as after 1, 2, 3, 4 weeks of recovery from CPZ treatment. The result showed an unexpected early death of mature OLs and response of OL progenitor cells (OPCs) in vivo upon CPZ challenge, and a prolonged upregulation of myelin-forming OLs compared to the intact control even 4 weeks after CPZ withdrawal. These data may serve as a basic reference system for future studies of the effects of any intervention on de- and remyelination using the CPZ model, and imply the need to optimize the timing windows for the introduction of pro-remyelination therapies in demyelinating diseases such as MS.


Subject(s)
Cell Lineage , Cuprizone , Demyelinating Diseases , Oligodendroglia , Cuprizone/toxicity , Animals , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Oligodendroglia/metabolism , Disease Models, Animal , In Situ Hybridization/methods , Mice, Inbred C57BL , Mice , Remyelination/drug effects , Remyelination/physiology , Male , Chelating Agents/toxicity , Chelating Agents/pharmacology , Myelin Sheath/pathology , Myelin Sheath/drug effects , Myelin Sheath/metabolism
9.
Sci Rep ; 14(1): 13988, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38886527

ABSTRACT

Demyelination is generated in several nervous system illnesses. Developing strategies for effective clinical treatments requires the discovery of promyelinating drugs. Increased GABAergic signaling through γ-aminobutyric acid type A receptor (GABAAR) activation in oligodendrocytes has been proposed as a promyelinating condition. GABAAR expressed in oligodendroglia is strongly potentiated by n-butyl-ß-carboline-3-carboxylate (ß-CCB) compared to that in neurons. Here, mice were subjected to 0.3% cuprizone (CPZ) added in the food to induce central nervous system demyelination, a well-known model for multiple sclerosis. Then ß-CCB (1 mg/Kg) was systemically administered to analyze the remyelination status in white and gray matter areas. Myelin content was evaluated using Black-Gold II (BGII) staining, immunofluorescence (IF), and magnetic resonance imaging (MRI). Evidence indicates that ß-CCB treatment of CPZ-demyelinated animals promoted remyelination in several white matter structures, such as the fimbria, corpus callosum, internal capsule, and cerebellar peduncles. Moreover, using IF, it was observed that CPZ intake induced an increase in NG2+ and a decrease in CC1+ cell populations, alterations that were importantly retrieved by ß-CCB treatment. Thus, the promyelinating character of ß-CCB was confirmed in a generalized demyelination model, strengthening the idea that it has clinical potential as a therapeutic drug.


Subject(s)
Carbolines , Cuprizone , Demyelinating Diseases , Disease Models, Animal , Remyelination , Animals , Cuprizone/toxicity , Remyelination/drug effects , Mice , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Demyelinating Diseases/metabolism , Carbolines/pharmacology , Carbolines/administration & dosage , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Male , Mice, Inbred C57BL , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/chemically induced , Multiple Sclerosis/pathology , White Matter/drug effects , White Matter/metabolism , White Matter/pathology , Magnetic Resonance Imaging
10.
Glia ; 72(10): 1801-1820, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38899723

ABSTRACT

The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 µM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.


Subject(s)
Cuprizone , Demyelinating Diseases , Mice, Inbred C57BL , Morphinans , Myelin Sheath , Sirolimus , Spiro Compounds , Animals , Morphinans/pharmacology , Male , Spiro Compounds/pharmacology , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Demyelinating Diseases/drug therapy , Mice , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myelin Sheath/metabolism , Sirolimus/pharmacology , Cuprizone/toxicity , Cells, Cultured , Disease Models, Animal , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Cell Differentiation/drug effects
11.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38749703

ABSTRACT

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.


Subject(s)
Demyelinating Diseases , Oligodendroglia , Signal Transduction , Animals , Demyelinating Diseases/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Mice , Oligodendroglia/metabolism , Oligodendroglia/drug effects , Female , Male , Signal Transduction/drug effects , Signal Transduction/physiology , Mice, Inbred C57BL , Acetylcholine/metabolism , Cuprizone/toxicity , Lysophosphatidylcholines/toxicity , Cell Differentiation/drug effects , Cell Differentiation/physiology , Choline O-Acetyltransferase/metabolism , Remyelination/physiology , Remyelination/drug effects , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Mice, Transgenic
12.
Glia ; 72(8): 1392-1401, 2024 08.
Article in English | MEDLINE | ID: mdl-38572807

ABSTRACT

Multiple sclerosis is an autoimmune disease of the central nervous system (CNS) characterized by demyelination, axonal damage and, for the majority of people, a decline in neurological function in the long-term. Remyelination could assist in the protection of axons and their functional recovery, but such therapies are not, as yet, available. The TAM (Tyro3, Axl, and MERTK) receptor ligand GAS6 potentiates myelination in vitro and promotes recovery in pre-clinical models of MS. However, it has remained unclear which TAM receptor is responsible for transducing this effect and whether post-translational modification of GAS6 is required. In this study, we show that the promotion of myelination requires post-translational modification of the GLA domain of GAS6 via vitamin K-dependent γ-carboxylation. We also confirmed that the intracerebroventricular provision of GAS6 for 2 weeks to demyelinated wild-type (WT) mice challenged with cuprizone increased the density of myelinated axons in the corpus callosum by over 2-fold compared with vehicle control. Conversely, the provision of GAS6 to Tyro3 KO mice did not significantly improve the density of myelinated axons. The improvement in remyelination following the provision of GAS6 to WT mice was also accompanied by an increased density of CC1+ve mature oligodendrocytes compared with vehicle control, whereas this improvement was not observed in the absence of Tyro3. This effect occurs independent of any influence on microglial activation. This work therefore establishes that the remyelinative activity of GAS6 is dependent on Tyro3 and includes potentiation of oligodendrocyte numbers.


Subject(s)
Cuprizone , Demyelinating Diseases , Intercellular Signaling Peptides and Proteins , Mice, Inbred C57BL , Mice, Knockout , Receptor Protein-Tyrosine Kinases , Remyelination , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/pharmacology , Remyelination/physiology , Remyelination/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Cuprizone/toxicity , Mice , Disease Models, Animal , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Male , Female
13.
MAGMA ; 37(5): 765-790, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38635150

ABSTRACT

Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.


Subject(s)
Cuprizone , Demyelinating Diseases , Disease Models, Animal , Magnetic Resonance Imaging , Cuprizone/toxicity , Animals , Mice , Magnetic Resonance Imaging/methods , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/chemically induced , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/chemically induced , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/chemically induced , Myelin Sheath , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Humans , Sensitivity and Specificity
14.
J Neurosci ; 44(13)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38395617

ABSTRACT

Myelinating oligodendrocytes die in human disease and early in aging. Despite this, the mechanisms that underly oligodendrocyte death are not resolved and it is also not clear whether these mechanisms change as oligodendrocyte lineage cells are undergoing differentiation and maturation. Here, we used a combination of intravital imaging, single-cell ablation, and cuprizone-mediated demyelination, in both female and male mice, to discover that oligodendrocyte maturation dictates the dynamics and mechanisms of cell death. After single-cell phototoxic damage, oligodendrocyte precursor cells underwent programmed cell death within hours, differentiating oligodendrocytes died over several days, while mature oligodendrocytes took weeks to die. Importantly cells at each maturation stage all eventually died but did so with drastically different temporal dynamics and morphological features. Consistent with this, cuprizone treatment initiated a caspase-3-dependent form of rapid cell death in differentiating oligodendrocytes, while mature oligodendrocytes never activated this executioner caspase. Instead, mature oligodendrocytes exhibited delayed cell death which was marked by DNA damage and disruption in poly-ADP-ribose subcellular localization. Thus, oligodendrocyte maturation plays a key role in determining the mechanism of death a cell undergoes in response to the same insult. This means that oligodendrocyte maturation is important to consider when designing strategies for preventing cell death and preserving myelin while also enhancing the survival of new oligodendrocytes in demyelinating conditions.


Subject(s)
Cuprizone , Demyelinating Diseases , Humans , Mice , Male , Female , Animals , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Apoptosis/physiology , Cell Differentiation , Mice, Inbred C57BL
15.
Glia ; 72(5): 960-981, 2024 05.
Article in English | MEDLINE | ID: mdl-38363046

ABSTRACT

In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.


Subject(s)
Cognitive Dysfunction , Demyelinating Diseases , Humans , Animals , Mice , Myelin Sheath , Demyelinating Diseases/chemically induced , Cuprizone/toxicity , Brain , Disease Models, Animal , Cognitive Dysfunction/chemically induced , Mice, Inbred C57BL , Oligodendroglia/physiology
16.
Mol Neurobiol ; 61(9): 6822-6841, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38353925

ABSTRACT

Demyelination is the loss of myelin in CNS, resulting in damaged myelin sheath. Oxidative stress and neuroinflammation play a key role in inducing demyelinating diseases like MS; hence, controlling oxidative stress and neuroinflammation is important. Cuprizone (CPZ), a copper chelator, generates oxidative stress and neuroinflammation, thereby inducing demyelination. Therefore, the CPZ-induced demyelinating mouse model (CPZ model) is widely used in research. The present study was intended to unravel a mechanism of inhibition of demyelination by arsenic in a CPZ model, which is otherwise known for its toxicity. We investigated an alternative mechanism of inhibition of demyelination by arsenic through the reversal of SOD1 activity employing in silico analysis, analytical chemistry techniques, and in vitro and in vivo experiments. In vivo experiments showed protection of body weight, survivability, and myelination of the corpus callosum in CPZ and arsenic-co-exposed animals, where neuroinflammation was apparently not involved. In vitro experiments revealed that arsenic-mediated reversal of impaired SOD1 activity leads to reduced cellular ROS levels and better viability of primary oligodendrocytes. Reversal of SOD1 activity was also observed in the corpus callosum tissue isolated from experimental animals. In silico and analytical chemistry studies revealed that similar to copper, arsenic can potentially bind to CPZ and thereby make the copper freely available for SOD1 activity. Suitable neurobehavior tests further validated the protective effect of arsenic. Taken together, the present study revealed that arsenic protects oligodendrocytes and demyelination of corpus callosum by reversing CPZ-induced impaired SOD1 activity.


Subject(s)
Arsenic , Corpus Callosum , Cuprizone , Demyelinating Diseases , Disease Models, Animal , Microglia , Animals , Cuprizone/toxicity , Corpus Callosum/pathology , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Microglia/drug effects , Microglia/pathology , Microglia/metabolism , Arsenic/toxicity , Mice, Inbred C57BL , Mice , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Male , Superoxide Dismutase-1/metabolism , Oligodendroglia/drug effects , Oligodendroglia/pathology , Oligodendroglia/metabolism , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Myelin Sheath/pathology , Reactive Oxygen Species/metabolism
17.
Biomed Pharmacother ; 173: 116297, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394854

ABSTRACT

Hericium erinaceus mycelium extract (HEM), containing erinacine A (HeA) and erinacine S (HeS), has shown promise in promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), crucial for myelin production in the central nervous system (CNS). The main aim of this study was to characterize the protective effects of HEM and its components on OLs and myelin in demyelinating rodents by exposure to cuprizone (CPZ), a copper chelating agent commonly used to induce demyelination in the corpus callosum of the brain. Rats were fed by CPZ-containing diet and simultaneously orally administered HEM, HeA, or HeS on a daily basis for three weeks. We found that HEM and HeS preserved myelin and OLs in the corpus callosum of CPZ-fed rats, along with reduced microglia and astrocyte activation, and downregulated IL-1ß expression. Furthermore, post-treatment with HeS, in mouse models with acute (6 weeks) or chronic (12 weeks) CPZ-induced demyelination demonstrated oral administration during the final 4 weeks (HeS4/6 or HeS4/12) effectively preserved myelin in the corpus callosum. Additionally, HeS4/6 and HeS4/12 inhibited anxious and depressive-like behaviors in CPZ-fed mice. In summary, simultaneous administration of HEM and HeS in rats during short-term CPZ intoxication preserved OLs and myelin. Furthermore, post-administration of HeS not only inhibited demyelination and gliosis but also alleviated anxiety and depression in both acute and chronic CPZ-fed mice. This study presents compelling evidence supporting the potential of HeS as a promising small active compound for protecting OLs and preserving myelin in demyelinating diseases associated with emotional disorders.


Subject(s)
Cuprizone , Demyelinating Diseases , Hericium , Rats , Mice , Animals , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/prevention & control , Rodentia , Oligodendroglia , Myelin Sheath/metabolism , Mice, Inbred C57BL , Disease Models, Animal
18.
Exp Neurol ; 375: 114730, 2024 May.
Article in English | MEDLINE | ID: mdl-38401853

ABSTRACT

Demyelination is a proper syndrome in plenty of central nervous system (CNS) diseases, which is the main obstacle to recovery and still lacks an effective treatment. To overcome the limitations of the brain-blood barrier on drug permeability, we modified an exosome secreted by neural stem cells (NSCs), which had transfected with lentivirus armed with platelet-derived growth factors A (PDGFA)-ligand. Through the in vivo and in vitro exosomes targeting test, the migration ability to the lesion areas and OPCs significantly improved after ligand modification. Furthermore, the targeted exosomes loaded with 3,5, 30-L-triiodothyronine (T3) have a critical myelination ability in CNS development, administrated to the cuprizone animal model treatment. The data shows that the novel drug vector loaded with T3 significantly promotes remyelination compared with T3 alone. At the same time, it improved the CNS microenvironment by reducing astrogliosis, inhibiting pro-inflammatory microglia, and alleviating axon damage. This investigation provides a straightforward strategy to produce a targeting exosome and indicates a possible therapeutic manner for demyelinating disease.


Subject(s)
Demyelinating Diseases , Exosomes , Animals , Mice , Demyelinating Diseases/therapy , Demyelinating Diseases/drug therapy , Oligodendroglia , Ligands , Exosomes/metabolism , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , Triiodothyronine/therapeutic use , Cuprizone/toxicity , Mice, Inbred C57BL , Myelin Sheath/pathology , Disease Models, Animal
19.
J Neuroimmunol ; 387: 578286, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38215583

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). If demyelination is persistent, it will result in irreversible axonal injury and loss. The purpose of the current study was to investigate the effects of treadmill training on myelin proteomic markers and cerebellum morphology in a rat model of cuprizone-induced toxic demyelination. METHODS: Thirty male rats were randomly assigned to five groups (n = 6 per group), consisting of a healthy control group (Control), a cuprizone (CPZ) group, and three exercise training groups: exercise training before and during the CPZ administration (EX-CPZ-EX), exercise training before the CPZ administration (EX-CPZ), and exercise training during the CPZ administration (CPZ-EX). A rat model of CPZ-induced toxic demyelination consisted of feeding the rats cuprizone pellets (0.2%) for 6 weeks. All exercise groups performed a treadmill training protocol 5 days/week for 6 weeks. Levels of Myelin proteolipid protein (PLP), Myelin oligodendrocyte glycoprotein (MOG), axonal injury in the cerebellar tissue, and volume, weight, and length of the cerebellum were determined. RESULTS: Results indicated a significant decrease in PLP and MOG in the CPZ groups compared to the Control group (****p < 0.0001). There was a significant increase in PLP and MOG and a significant decrease in axonal injury in the EX-CPZ-EX group as compared to other CPZ groups (****p < 0.0001), and CPZ-MS and CPZ-EX were not significantly different from one another. However, there were no significant differences between the groups for the volume, weight, or length of the cerebellum. CONCLUSION: Treadmill training improved myelin sheath structural proteins and axonal injury in cerebellar tissue in a rat model of CPZ-induced toxic demyelination.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Rats , Male , Animals , Mice , Myelin Sheath , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Proteomics , Multiple Sclerosis/metabolism , Myelin-Oligodendrocyte Glycoprotein , Cerebellum/metabolism , Disease Models, Animal , Mice, Inbred C57BL
20.
FASEB J ; 38(2): e23413, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38243760

ABSTRACT

Sphingosine-1-phosphate receptor (S1PR) modulators are clinically used to treat relapse-remitting multiple sclerosis (MS) and the early phase of progressive MS when inflammation still prevails. In the periphery, S1PR modulators prevent lymphocyte egress from lymph nodes, hence hampering neuroinflammation. Recent findings suggest a role for S1PR modulation in remyelination. As the Giα-coupled S1P1 subtype is the most prominently expressed S1PR in oligodendrocyte precursor cells (OPCs), selective modulation (functional antagonism) of S1P1 may have direct effects on OPC functionality. We hypothesized that functional antagonism of S1P1 by ponesimod induces remyelination by boosting OPC differentiation. In the cuprizone mouse model of demyelination, we found ponesimod to decrease the latency time of visual evoked potentials compared to vehicle conditions, which is indicative of functional remyelination. In addition, the Y maze spontaneous alternations test revealed that ponesimod reversed cuprizone-induced working memory deficits. Myelin basic protein (MBP) immunohistochemistry and transmission electron microscopy of the corpus callosum revealed an increase in myelination upon ponesimod treatment. Moreover, treatment with ponesimod alone or in combination with A971432, an S1P5 monoselective modulator, significantly increased primary mouse OPC differentiation based on O4 immunocytochemistry. In conclusion, S1P1 functional antagonism by ponesimod increases remyelination in the cuprizone model of demyelination and significantly increases OPC differentiation in vitro.


Subject(s)
Cuprizone , Demyelinating Diseases , Thiazoles , Mice , Animals , Cuprizone/toxicity , Sphingosine-1-Phosphate Receptors/metabolism , Oligodendroglia , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Evoked Potentials, Visual , Cell Differentiation/physiology , Mice, Inbred C57BL , Myelin Sheath/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL