Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Pharmacol Rep ; 76(3): 535-556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38602606

ABSTRACT

BACKGROUND: Genetic alterations are well characterized as contributors to the pathogenesis of cancers. Epigenetic abnormalities can lead to perturbations of the expression of genes in cancer cells without structural defects. Deregulation of proteins of the transcription machinery may result in perturbations of target genes. Mediator, a multiprotein component of the transcription machinery facilitates the function of RNA polymerase II, which transcribes most human genes. A part of the mediator with kinase activity, called the Mediator kinase module shows genetic alterations in a sub-set of colorectal cancers. METHODS: Data from publicly available genomic series of colorectal cancer patients were examined to determine alterations of Mediator kinase module component genes, including MED12, MED12L, MED13, MED13L, CDK8, CDK19, and CCNC. The prevalence of alterations in genomically defined colorectal cancer sub-sets was also interrogated. The effect of Mediator kinase module member gene expression on colorectal cancer relapse-free survival was investigated. RESULTS: Mutations in genes of the Mediator kinase module were present in a small percentage of colorectal cancers, ranging between 2 to 10% for MED12 and MED13 and alternative units MED12L and MED13L and below 2% for kinases CDK8 and CDK19 and cyclin C. Amplifications of the CDK8 gene were observed in 3% to 5% of colorectal cancers. The highest prevalence of mutations was observed in MSI cancers and the equivalent CMS1 group, with other genomic groups showing much lower frequency. An association of higher expression of MED12 with inferior relapse-free survival was observed. In contrast, higher expression of cyclin C was associated with improved survival. Colorectal cancer cell lines with CDK8 amplifications displayed sensitivity to several small molecule inhibitors of the KRAS/PI3K pathway but not to BET inhibitors. CONCLUSION: The Mediator kinase module is deregulated in a sub-set of colorectal cancers with differences observed in genomically defined groups. These variations may result in differences in sensitivity to targeted therapies and may have to be taken into consideration as such therapies are developed.


Subject(s)
Colorectal Neoplasms , Cyclin C , Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Gene Expression Regulation, Neoplastic , Mediator Complex , Mutation , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mediator Complex/genetics , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinases/genetics , Cyclin C/genetics
2.
Science ; 378(6620): eabn5647, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36356142

ABSTRACT

T cells are the major arm of the immune system responsible for controlling and regressing cancers. To identify genes limiting T cell function, we conducted genome-wide CRISPR knockout screens in human chimeric antigen receptor (CAR) T cells. Top hits were MED12 and CCNC, components of the Mediator kinase module. Targeted MED12 deletion enhanced antitumor activity and sustained the effector phenotype in CAR- and T cell receptor-engineered T cells, and inhibition of CDK8/19 kinase activity increased expansion of nonengineered T cells. MED12-deficient T cells manifested increased core Meditator chromatin occupancy at transcriptionally active enhancers-most notably for STAT and AP-1 transcription factors-and increased IL2RA expression and interleukin-2 sensitivity. These results implicate Mediator in T cell effector programming and identify the kinase module as a target for enhancing potency of antitumor T cell responses.


Subject(s)
Cyclin C , Mediator Complex , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Mediator Complex/genetics , T-Lymphocytes/immunology , Transcription Factors/genetics , Genome-Wide Association Study , Cyclin C/genetics , Genetic Testing , Immunotherapy, Adoptive , Neoplasms/immunology , Neoplasms/therapy
3.
Clin Transl Med ; 12(3): e770, 2022 03.
Article in English | MEDLINE | ID: mdl-35343092

ABSTRACT

BACKGROUND: Cyclin C (CCNC) was reported to take part in regulating mitochondria-derived oxidative stress under cisplatin stimulation. However, its effect in gastric cancer is unknown. This study aimed to investigate the role of cyclin C and its ubiquitylation in regulating cisplatin resistance in gastric cancer. METHODS: The interaction between HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1 (HACE1) and cyclin C was investigated by GST pull-down assay, co-immunoprecipitation and ubiquitylation assay. Mitochondria-derived oxidative stress was studied by MitoSOX Red assay, seahorse assay and mitochondrial membrane potential measurement. Cyclin C-associated cisplatin resistance was studied in vivo via xenograft. RESULTS: HACE1 catalysed the ubiquitylation of cyclin C by adding Lys11-linked ubiquitin chains when cyclin C translocates to cytoplasm induced by cisplatin treatment. The ubiquitin-modified cyclin C then anchor at mitochondira, which induced mitochondrial fission and ROS synthesis. Depleting CCNC or mutation on the ubiquitylation sites decreased mitochondrial ROS production and reduced cell apoptosis under cisplatin treatment. Xenograft study showed that disrupting cyclin C ubiquitylation by HACE1 conferred impairing cell apoptosis response upon cisplatin administration. CONCLUSIONS: Cyclin C is a newly identified substrate of HACE1 E3 ligase. HACE1-mediated ubiquitylation of cyclin C sheds light on a better understanding of cisplatin-associated resistance in gastric cancer patients. Ubiquitylation of cyclin C by HACE1 regulates cisplatin-associated sensitivity in gastric cancer. With cisplatin-induced nuclear-mitochondrial translocation of cyclin C, its ubiquitylation by HACE1 increased mitochondrial fission and mitochondrial-derived oxidative stress, leading to cell apoptosis.


Subject(s)
Cisplatin , Stomach Neoplasms , Cisplatin/pharmacology , Cyclin C/genetics , Humans , Stomach Neoplasms/drug therapy , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
Nucleic Acids Res ; 49(13): 7476-7491, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34197614

ABSTRACT

Poly (ADP-ribose) polymerase inhibitor (PARPi)-based therapies initially reduce tumor burden but eventually lead to acquired resistance in cancer patients with BRCA1 or BRCA2 mutation. To understand the potential PARPi resistance mechanisms, we performed whole-genome CRISPR screens to discover genetic alterations that change the gene essentiality in cells with inducible depletion of BRCA2. We identified that several RNA Polymerase II transcription Mediator complex components, especially Cyclin C (CCNC) as synthetic survival targets upon BRCA2 loss. Total mRNA sequencing demonstrated that loss of CCNC could activate the transforming growth factor (TGF)-beta signaling pathway and extracellular matrix (ECM)-receptor interaction pathway, however the inhibition of these pathways could not reverse cell survival in BRCA2 depleted CCNC-knockout cells, indicating that the activation of these pathways is not required for the resistance. Moreover, we showed that the improved survival is not due to restoration of homologous recombination repair although decreased DNA damage signaling was observed. Interestingly, loss of CCNC could restore replication fork stability in BRCA2 deficient cells, which may contribute to PARPi resistance. Taken together, our data reveal CCNC as a critical genetic determinant upon BRCA2 loss of function, which may help the development of novel therapeutic strategies that overcome PARPi resistance.


Subject(s)
BRCA2 Protein/genetics , Cyclin C/genetics , BRCA2 Protein/metabolism , CRISPR-Cas Systems , Cell Survival , DNA Damage , DNA Replication , Gene Expression Regulation , Gene Knockout Techniques , HEK293 Cells , Humans , Mediator Complex/genetics , Mediator Complex/physiology , Recombinational DNA Repair , Stress, Physiological/genetics
5.
Nucleic Acids Res ; 49(15): 8665-8683, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34329458

ABSTRACT

The protein kinase ATR plays pivotal roles in DNA repair, cell cycle checkpoint engagement and DNA replication. Consequently, ATR inhibitors (ATRi) are in clinical development for the treatment of cancers, including tumours harbouring mutations in the related kinase ATM. However, it still remains unclear which functions and pathways dominate long-term ATRi efficacy, and how these vary between clinically relevant genetic backgrounds. Elucidating common and genetic-background specific mechanisms of ATRi efficacy could therefore assist in patient stratification and pre-empting drug resistance. Here, we use CRISPR-Cas9 genome-wide screening in ATM-deficient and proficient mouse embryonic stem cells to interrogate cell fitness following treatment with the ATRi, ceralasertib. We identify factors that enhance or suppress ATRi efficacy, with a subset of these requiring intact ATM signalling. Strikingly, two of the strongest resistance-gene hits in both ATM-proficient and ATM-deficient cells encode Cyclin C and CDK8: members of the CDK8 kinase module for the RNA polymerase II mediator complex. We show that Cyclin C/CDK8 loss reduces S-phase DNA:RNA hybrid formation, transcription-replication stress, and ultimately micronuclei formation induced by ATRi. Overall, our work identifies novel biomarkers of ATRi efficacy in ATM-proficient and ATM-deficient cells, and highlights transcription-associated replication stress as a predominant driver of ATRi-induced cell death.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , Transcription, Genetic , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , DNA Replication/drug effects , Humans , Mice , Mouse Embryonic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects
6.
Biochem Genet ; 59(1): 114-133, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32780225

ABSTRACT

The full-length cDNA of cyclin C of the giant tiger shrimp Penaeus monodon (PmCyC) was isolated by RACE-PCR. It was 1443 bp in length containing an open reading frame (ORF) of 804 bp and 267 deduced amino acids. Tissue distribution analysis indicated that PmCyC was more abundantly expressed in ovaries and testes than other tissues of female and male juveniles (P < 0.05). A pair of primers was designed, and an amplification product of 403 bp containing an intron of 123 bp was obtained. Polymorphism of amplified PmCyC gene segments of the 5th (3-month-old G5, N = 30) and 7th (5-month-old G7, N = 18) generations of domesticated juveniles was analyzed. Four conserved SNPs (T>C134, T>C188, G>A379, and T>C382) were found within the examined sequences. A TaqMan genotyping assay was developed for detection of a T>C134 SNP. Association analysis indicated that this SNP displayed significant association with body weight (P < 4.2e-10) and total length (P < 2e-09) of the examined G7 P. monodon (N = 419) with an allele substitution effect of 5.02 ± 0.78 g and 1.41 ± 0.19 cm, respectively. Juveniles with C/C134 (22.80 ± 2.51 g and 12.97 ± 0.53 cm, N = 19) and T/C134 (20.41 ± 0.93 g and 12.77 ± 0.21 cm, N = 129) genotypes exhibited a significantly greater average body weight and total length than those with a T/T134 genotype (14.72 ± 0.53 g and 11.37 ± 0.13 cm, N = 271) (P < 0.05).


Subject(s)
Cyclin C/genetics , Penaeidae/genetics , Polymorphism, Single Nucleotide , Animals , DNA, Complementary/metabolism , Female , Genotype , Introns , Male , Open Reading Frames , Ovary/metabolism , Penaeidae/growth & development , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Testis/metabolism , Tissue Distribution
7.
J Biol Chem ; 295(48): 16280-16291, 2020 11 27.
Article in English | MEDLINE | ID: mdl-32934007

ABSTRACT

The Cdk8 kinase module (CKM) is a detachable Mediator subunit composed of cyclin C and one each of paralogs Cdk8/Cdk19, Med12/Med12L, and Med13/Med13L. Our previous RNA-Seq studies demonstrated that cyclin C represses a subset of hydrogen peroxide-induced genes under normal conditions but is involved in activating other loci following stress. Here, we show that cyclin C directs this transcriptional reprograming through changes in its promoter occupancy. Following peroxide stress, cyclin C promoter occupancy increased for genes it activates while decreasing at loci it represses under normal conditions. Promoter occupancy of other CKM components generally mirrored cyclin C, indicating that the CKM moves as a single unit. It has previously been shown that some cyclin C leaves the nucleus following cytotoxic stress to induce mitochondrial fragmentation and apoptosis. We observed that CKM integrity appeared compromised at a subset of repressed promoters, suggesting a source of cyclin C that is targeted for nuclear release. Interestingly, mTOR inhibition induced a new pattern of cyclin C promoter occupancy indicating that this control is fine-tuned to the individual stress. Using inhibitors, we found that Cdk8 kinase activity is not required for CKM movement or repression but was necessary for full gene activation. In conclusion, this study revealed that different stress stimuli elicit specific changes in CKM promoter occupancy correlating to altered transcriptional outputs. Finally, although CKM components were recruited or expelled from promoters as a unit, heterogeneity was observed at individual promoters, suggesting a mechanism to generate gene- and stress-specific responses.


Subject(s)
Cell Nucleus/metabolism , Cyclin C/metabolism , Mitochondria/metabolism , Oxidative Stress , Promoter Regions, Genetic , Transcription, Genetic , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Transformed , Cell Nucleus/genetics , Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Hydrogen Peroxide/pharmacology , Mice , Mice, Knockout , Mitochondria/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
8.
PLoS Genet ; 16(5): e1008832, 2020 05.
Article in English | MEDLINE | ID: mdl-32463833

ABSTRACT

Dysregulation of CDK8 (Cyclin-Dependent Kinase 8) and its regulatory partner CycC (Cyclin C), two subunits of the conserved Mediator (MED) complex, have been linked to diverse human diseases such as cancer. Thus, it is essential to understand the regulatory network modulating the CDK8-CycC complex in both normal development and tumorigenesis. To identify upstream regulators or downstream effectors of CDK8, we performed a dominant modifier genetic screen in Drosophila based on the defects in vein patterning caused by specific depletion or overexpression of CDK8 or CycC in developing wing imaginal discs. We identified 26 genomic loci whose haploinsufficiency can modify these CDK8- or CycC-specific phenotypes. Further analysis of two overlapping deficiency lines and mutant alleles led us to identify genetic interactions between the CDK8-CycC pair and the components of the Decapentaplegic (Dpp, the Drosophila homolog of TGFß, or Transforming Growth Factor-ß) signaling pathway. We observed that CDK8-CycC positively regulates transcription activated by Mad (Mothers against dpp), the primary transcription factor downstream of the Dpp/TGFß signaling pathway. CDK8 can directly interact with Mad in vitro through the linker region between the DNA-binding MH1 (Mad homology 1) domain and the carboxy terminal MH2 (Mad homology 2) transactivation domain. Besides CDK8 and CycC, further analyses of other subunits of the MED complex have revealed six additional subunits that are required for Mad-dependent transcription in the wing discs: Med12, Med13, Med15, Med23, Med24, and Med31. Furthermore, our analyses confirmed the positive roles of CDK9 and Yorkie in regulating Mad-dependent gene expression in vivo. These results suggest that CDK8 and CycC, together with a few other subunits of the MED complex, may coordinate with other transcription cofactors in regulating Mad-dependent transcription during wing development in Drosophila.


Subject(s)
Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Transcription Factors/metabolism , Animals , Cyclin C/metabolism , Cyclin-Dependent Kinase 8/metabolism , Drosophila , Gene Expression Regulation, Developmental , Haploinsufficiency , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Signal Transduction , Transcription, Genetic
9.
J Am Heart Assoc ; 9(7): e014366, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32248761

ABSTRACT

Background Nuclear-to-mitochondrial communication regulating gene expression and mitochondrial function is a critical process following cardiac ischemic injury. In this study, we determined that cyclin C, a component of the Mediator complex, regulates cardiac and mitochondrial function in part by modifying mitochondrial fission. We tested the hypothesis that cyclin C functions as a transcriptional cofactor in the nucleus and a signaling molecule stimulating mitochondrial fission in response to stimuli such as cardiac ischemia. Methods and Results We utilized gain- and loss-of-function mouse models in which the CCNC (cyclin C) gene was constitutively expressed (transgenic, CycC cTg) or deleted (knockout, CycC cKO) in cardiomyocytes. The knockout and transgenic mice exhibited decreased cardiac function and altered mitochondria morphology. The hearts of knockout mice had enlarged mitochondria with increased length and area, whereas mitochondria from the hearts of transgenic mice were significantly smaller, demonstrating a role for cyclin C in regulating mitochondrial dynamics in vivo. Hearts from knockout mice displayed altered gene transcription and metabolic function, suggesting that cyclin C is essential for maintaining normal cardiac function. In vitro and in vivo studies revealed that cyclin C translocates to the cytoplasm, enhancing mitochondria fission following stress. We demonstrated that cyclin C interacts with Cdk1 (cyclin-dependent kinase 1) in vivo following ischemia/reperfusion injury and that, consequently, pretreatment with a Cdk1 inhibitor results in reduced mitochondrial fission. This finding suggests a potential therapeutic target to regulate mitochondrial dynamics in response to stress. Conclusions Our study revealed that cyclin C acts as a nuclear-to-mitochondrial signaling factor that regulates both cardiac hypertrophic gene expression and mitochondrial fission. This finding provides new insights into the regulation of cardiac energy metabolism following acute ischemic injury.


Subject(s)
Cyclin C/metabolism , Energy Metabolism , Mitochondria, Heart/metabolism , Mitochondrial Dynamics , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Animals , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/metabolism , Cells, Cultured , Cyclin C/deficiency , Cyclin C/genetics , Disease Models, Animal , Energy Metabolism/drug effects , Humans , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Mitochondrial Dynamics/drug effects , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Protein Kinase Inhibitors/pharmacology , Protein Transport , Rats, Wistar , Signal Transduction
10.
Proc Natl Acad Sci U S A ; 117(6): 2894-2905, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988137

ABSTRACT

The Mediator kinase module regulates eukaryotic transcription by phosphorylating transcription-related targets and by modulating the association of Mediator and RNA polymerase II. The activity of its catalytic core, cyclin-dependent kinase 8 (CDK8), is controlled by Cyclin C and regulatory subunit MED12, with its deregulation contributing to numerous malignancies. Here, we combine in vitro biochemistry, cross-linking coupled to mass spectrometry, and in vivo studies to describe the binding location of the N-terminal segment of MED12 on the CDK8/Cyclin C complex and to gain mechanistic insights into the activation of CDK8 by MED12. Our data demonstrate that the N-terminal portion of MED12 wraps around CDK8, whereby it positions an "activation helix" close to the T-loop of CDK8 for its activation. Intriguingly, mutations in the activation helix that are frequently found in cancers do not diminish the affinity of MED12 for CDK8, yet likely alter the exact positioning of the activation helix. Furthermore, we find the transcriptome-wide gene-expression changes in human cells that result from a mutation in the MED12 activation helix to correlate with deregulated genes in breast and colon cancer. Finally, functional assays in the presence of kinase inhibitors reveal that binding of MED12 remodels the active site of CDK8 and thereby precludes the inhibition of ternary CDK8 complexes by type II kinase inhibitors. Taken together, our results not only allow us to propose a revised model of how CDK8 activity is regulated by MED12, but also offer a path forward in developing small molecules that target CDK8 in its MED12-bound form.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Mediator Complex/metabolism , Catalytic Domain , Cyclin C/genetics , Cyclin C/metabolism , Cyclin-Dependent Kinase 8/chemistry , Cyclin-Dependent Kinase 8/genetics , Enzyme Activation , Humans , Mediator Complex/genetics , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains
11.
J Cell Sci ; 132(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31331961

ABSTRACT

The cyclin C-Cdk8 kinase has been identified as both a tumor suppressor and an oncogene depending on the cell type. The genomic locus encoding cyclin C (Ccnc) is often deleted in aggressive anaplastic thyroid tumors. To test for a potential tumor suppressor role for cyclin C, Ccnc alone, or Ccnc in combination with a previously described thyroid tumor suppressor Pten, was deleted late in thyroid development. Although mice harboring individual Pten or Ccnc deletions exhibited modest thyroid hyperplasia, the double mutant demonstrated dramatic thyroid expansion resulting in animal death by 22 weeks. Further analysis revealed that Ccncthyr-/- tissues exhibited a reduction in signal transducer and activator of transcription 3 (Stat3) phosphorylation at Ser727. Further analysis uncovered a post-transcriptional requirement of both Pten and cyclin C in maintaining the levels of the p21 and p53 tumor suppressors (also known as CDKN1A and TP53, respectively) in thyroid tissue. In conclusion, these data reveal the first tumor suppressor role for cyclin C in a solid tumor model. In addition, this study uncovers new synergistic activities of Pten and cyclin C to promote quiescence through maintenance of p21 and p53.


Subject(s)
Cyclin C/metabolism , PTEN Phosphohydrolase/metabolism , Thyroid Neoplasms/metabolism , Animals , Cell Line, Tumor , Cyclin C/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Mice , Mice, Knockout , PTEN Phosphohydrolase/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology
12.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905399

ABSTRACT

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Subject(s)
Cyclin-Dependent Kinase 8/genetics , Developmental Disabilities/genetics , Mediator Complex/genetics , Mutation, Missense , Brain/abnormalities , Child , Child, Preschool , Cyclin C/genetics , Cyclin-Dependent Kinases/genetics , Exome , Female , Heart Defects, Congenital/genetics , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Male , Mutation , Phenotype , Phosphorylation , Syndrome
13.
PLoS Biol ; 17(1): e2006767, 2019 01.
Article in English | MEDLINE | ID: mdl-30695077

ABSTRACT

Accurate genome duplication underlies genetic homeostasis. Metazoan Mdm2 binding protein (MTBP) forms a main regulatory platform for origin firing together with Treslin/TICRR and TopBP1 (Topoisomerase II binding protein 1 (TopBP1)-interacting replication stimulating protein/TopBP1-interacting checkpoint and replication regulator). We report the first comprehensive analysis of MTBP and reveal conserved and metazoa-specific MTBP functions in replication. This suggests that metazoa have evolved specific molecular mechanisms to adapt replication principles conserved with yeast to the specific requirements of the more complex metazoan cells. We uncover one such metazoa-specific process: a new replication factor, cyclin-dependent kinase 8/19-cyclinC (Cdk8/19-cyclin C), binds to a central domain of MTBP. This interaction is required for complete genome duplication in human cells. In the absence of MTBP binding to Cdk8/19-cyclin C, cells enter mitosis with incompletely duplicated chromosomes, and subsequent chromosome segregation occurs inaccurately. Using remote homology searches, we identified MTBP as the metazoan orthologue of yeast synthetic lethal with Dpb11 7 (Sld7). This homology finally demonstrates that the set of yeast core factors sufficient for replication initiation in vitro is conserved in metazoa. MTBP and Sld7 contain two homologous domains that are present in no other protein, one each in the N and C termini. In MTBP the conserved termini flank the metazoa-specific Cdk8/19-cyclin C binding region and are required for normal origin firing in human cells. The N termini of MTBP and Sld7 share an essential origin firing function, the interaction with Treslin/TICRR or its yeast orthologue Sld3, respectively. The C termini may function as homodimerisation domains. Our characterisation of broadly conserved and metazoa-specific initiation processes sets the basis for further mechanistic dissection of replication initiation in vertebrates. It is a first step in understanding the distinctions of origin firing in higher eukaryotes.


Subject(s)
Carrier Proteins/metabolism , Carrier Proteins/physiology , Saccharomyces cerevisiae Proteins/metabolism , Carrier Proteins/genetics , Cell Cycle Proteins/metabolism , Computational Biology/methods , Cyclin C/genetics , Cyclin C/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinase 8/physiology , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/physiology , DNA Replication/physiology , DNA-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Mitosis , Protein Binding , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
14.
J Biol Chem ; 293(13): 4870-4882, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29440396

ABSTRACT

Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs.


Subject(s)
Cyclin C/metabolism , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Exons , Leiomyoma/metabolism , Mediator Complex/metabolism , Mutation , Neoplasm Proteins/metabolism , Allosteric Regulation , Cyclin C/genetics , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinases/genetics , Female , Humans , Leiomyoma/genetics , Leiomyoma/pathology , Mediator Complex/genetics , Myometrium/metabolism , Myometrium/pathology , Neoplasm Proteins/genetics
15.
Mol Med Rep ; 16(4): 4107-4112, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29067469

ABSTRACT

Cisplatin (DDP)­based chemotherapy is the most widely used therapy for non­small cell lung cancer (NSCLC). However, the existence of chemoresistance has become a major limitation in its efficacy. Long non­coding RNAs (lncRNAs) have been shown to be involved in chemotherapy drug resistance. The aim of the present study was to investigate the biological role of lncRNA AK001796 in cisplatin­resistant NSCLC A549/DDP cells. Reverse transcription­quantitative polymerase chain reaction (RT­qPCR) analysis was performed to monitor the differences in the expression of AK001796 in cisplatin-resistant (A549/DDP) cells and parental A549 cells. Cellular sensitivity to cisplatin and cell viability were examined using an MTT assay. Cell apoptosis and cell cycle distribution were measured using flow cytometry. The expression levels of cell cycle proteins cyclin C (CCNC), baculoviral IAP repeat containing 5 (BIRC5), cyclin­dependent kinase 1 (CDK1) and G2 and S phase­expressed 1 (GTSE1) were assessed using RT­qPCR and western blot analyses. It was found that the expression of AK001796 was increased in A549/DDP cells, compared with that in A549 cells. The knockdown of AK001796 by small interfering RNA reduced cellular cisplatin resistance and cell viability, and resulted in cell­cycle arrest, with a marked increase in the proportion of A549/DDP cells in the G0/G1 phase. By contrast, the knockdown of AK001796 increased the number of apoptotic cancer cells during cisplatin treatment. It was also shown that the knockdown of AK001796 positively induced the expression of cell apoptosis­associated factors, CCNC and BIRC5, and suppressed the expression of cell cycle­associated factors, CDK1 and GTSE5. Taken together, these findings indicated that lncRNA AK001796 increased the resistance of NSCLC cells to cisplatin through regulating cell apoptosis and cell proliferation, and thus provides an attractive therapeutic target for NSCLC.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , G1 Phase Cell Cycle Checkpoints/drug effects , RNA, Long Noncoding/metabolism , A549 Cells , Antineoplastic Agents/therapeutic use , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/therapeutic use , Cyclin C/genetics , Cyclin C/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , RNA Interference , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , Survivin
16.
Hum Mol Genet ; 26(22): 4367-4374, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28973654

ABSTRACT

In this study, we report a novel duplication causing North Carolina macular dystrophy (NCMD) identified applying whole genome sequencing performed on eight affected members of two presumed unrelated families mapping to the MCDR1 locus. In our families, the NCMD phenotype was associated with a 98.4 kb tandem duplication encompassing the entire CCNC and PRDM13 genes and a common DNase 1 hypersensitivity site. To study the impact of PRDM13 or CCNC dysregulation, we used the Drosophila eye development as a model. Knock-down and overexpression of CycC and CG13296, Drosophila orthologues of CCNC and PRDM13, respectively, were induced separately during eye development. In flies, eye development was not affected, while knocking down either CycC or CG13296 mutant models. Overexpression of CycC also had no effect. Strikingly, overexpression of CG13296 in Drosophila leads to a severe loss of the imaginal eye-antennal disc. This study demonstrated for the first time in an animal model that overexpression of PRDM13 alone causes a severe abnormal retinal development. It is noteworthy that mutations associated with this autosomal dominant foveal developmental disorder are frequently duplications always including an entire copy of PRDM13, or variants in one DNase 1 hypersensitivity site at this locus.


Subject(s)
Corneal Dystrophies, Hereditary/genetics , Cyclin C/genetics , Histone-Lysine N-Methyltransferase/genetics , Adult , Animals , Chromosome Mapping , Chromosomes, Human, Pair 6 , Corneal Dystrophies, Hereditary/metabolism , Cyclin C/metabolism , Drosophila melanogaster , Eye Proteins/genetics , Female , Genetic Linkage , Haplotypes , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , PR-SET Domains , Pedigree , Whole Genome Sequencing
17.
J Biol Chem ; 292(21): 8918-8932, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28351837

ABSTRACT

Brown adipose tissue is important for maintaining energy homeostasis and adaptive thermogenesis in rodents and humans. As disorders arising from dysregulated energy metabolism, such as obesity and metabolic diseases, have increased, so has interest in the molecular mechanisms of adipocyte biology. Using a functional screen, we identified cyclin C (CycC), a conserved subunit of the Mediator complex, as a novel regulator for brown adipocyte formation. siRNA-mediated CycC knockdown (KD) in brown preadipocytes impaired the early transcriptional program of differentiation, and genetic KO of CycC completely blocked the differentiation process. RNA sequencing analyses of CycC-KD revealed a critical role of CycC in activating genes co-regulated by peroxisome proliferator activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Overexpression of PPARγ2 or addition of the PPARγ ligand rosiglitazone rescued the defects in CycC-KO brown preadipocytes and efficiently activated the PPARγ-responsive promoters in both WT and CycC-KO cells, suggesting that CycC is not essential for PPARγ transcriptional activity. In contrast, CycC-KO significantly reduced C/EBPα-dependent gene expression. Unlike for PPARγ, overexpression of C/EBPα could not induce C/EBPα target gene expression in CycC-KO cells or rescue the CycC-KO defects in brown adipogenesis, suggesting that CycC is essential for C/EBPα-mediated gene activation. CycC physically interacted with C/EBPα, and this interaction was required for C/EBPα transactivation domain activity. Consistent with the role of C/EBPα in white adipogenesis, CycC-KD also inhibited differentiation of 3T3-L1 cells into white adipocytes. Together, these data indicate that CycC activates adipogenesis in part by stimulating the transcriptional activity of C/EBPα.


Subject(s)
Adipocytes, Brown/metabolism , Adipogenesis , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation , Cyclin C/metabolism , Transcriptional Activation , 3T3-L1 Cells , Animals , CCAAT-Enhancer-Binding Proteins/genetics , Cyclin C/genetics , Humans , Mice , Mice, Knockout , PPAR gamma/genetics , PPAR gamma/metabolism
18.
Ann Oncol ; 28(1): 149-156, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28177473

ABSTRACT

Background: Aneuploidy and chromosomal instability (CIN) are common features of human malignancy that fuel genetic heterogeneity. Although tolerance to tetraploidization, an intermediate state that further exacerbates CIN, is frequently mediated by TP53 dysfunction, we find that some genome-doubled tumours retain wild-type TP53. We sought to understand how tetraploid cells with a functional p53/p21-axis tolerate genome-doubling events. Methods: We performed quantitative proteomics in a diploid/tetraploid pair within a system of multiple independently derived TP53 wild-type tetraploid clones arising spontaneously from a diploid progenitor. We characterized adapted and acute tetraploidization in a variety of flow cytometry and biochemical assays and tested our findings against human tumours through bioinformatics analysis of the TCGA dataset. Results: Cyclin D1 was found to be specifically overexpressed in early but not late passage tetraploid clones, and this overexpression was sufficient to promote tolerance to spontaneous and pharmacologically induced tetraploidy. We provide evidence that this role extends to D-type cyclins and their overexpression confers specific proliferative advantage to tetraploid cells. We demonstrate that tetraploid clones exhibit elevated levels of functional p53 and p21 but override the p53/p21 checkpoint by elevated expression of cyclin D1, via a stoichiometry-dependent and CDK activity-independent mechanism. Tetraploid cells do not exhibit increased sensitivity to abemaciclib, suggesting that cyclin D-overexpressing tumours might not be specifically amenable to treatment with CDK4/6 inhibitors. Conclusions: Our study suggests that D-type cyclin overexpression is an acute event, permissive for rapid adaptation to a genome-doubled state in TP53 wild-type tumours and that its overexpression is dispensable in later stages of tumour progression.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Cyclin C/genetics , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cyclin C/biosynthesis , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytochalasin B/analogs & derivatives , Cytochalasin B/pharmacology , Diploidy , Flow Cytometry , Gene Knockdown Techniques , Genes, p53 , HCT116 Cells , Humans , Protein Kinase Inhibitors/pharmacology , Tetraploidy , Tumor Suppressor Protein p53/metabolism
19.
Cell Cycle ; 15(11): 1479-93, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27096886

ABSTRACT

Mediator is considered an enhancer of RNA-Polymerase II dependent transcription but its function and regulation in pluripotent mouse embryonic stem cells (mESCs) remains unresolved. One means of controlling the function of Mediator is provided by the binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to the core Mediator. Here we report that Med12 operates together with PRC1 to silence key developmental genes in pluripotency. At the molecular level, while PRC1 represses genes it is also required to assemble ncRNA containing Med12-Mediator complexes. In the course of cellular differentiation the H2A ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the association of Cdk8 with Mediator. This remodeling of Mediator-associated protein complexes converts Mediator from a transcriptional repressor to a transcriptional enhancer, which then mediates ncRNA-dependent activation of Polycomb target genes. Altogether, our data reveal how the interplay of PRC1, ncRNA and Mediator complexes controls pluripotency and cellular differentiation.


Subject(s)
Mediator Complex/genetics , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Polycomb-Group Proteins/genetics , RNA, Untranslated/genetics , Transcriptional Activation , Animals , Cell Differentiation , Cell Line , Cyclin C/genetics , Cyclin C/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , DNA-Binding Proteins , Gene Expression Profiling , HEK293 Cells , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Mediator Complex/metabolism , Mice , Molecular Chaperones , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Polycomb-Group Proteins/metabolism , Protein Binding , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Untranslated/metabolism , RNA-Binding Proteins , Signal Transduction
20.
Curr Cancer Drug Targets ; 15(8): 739-49, 2015.
Article in English | MEDLINE | ID: mdl-26452386

ABSTRACT

CDK8 and its paralog CDK19, in complex with CCNC, MED12 and MED13, are transcriptional regulators that mediate several carcinogenic pathways and the chemotherapy-induced tumor-supporting paracrine network. Following up on our previous observation that CDK8, CDK19 and CCNC RNA expression is associated with shorter relapse-free survival (RFS) in breast cancer, we now found by immunohistochemical analysis that CDK8/19 protein is overexpressed in invasive ductal carcinomas relative to non-malignant mammary tissues. Meta-analysis of transcriptomic data revealed that higher CDK8 expression is associated with shorter RFS in all molecular subtypes of breast cancer. These correlations were much stronger in patients who underwent systemic adjuvant therapy, suggesting that CDK8 impacts the failure of systemic therapy. The same associations were found for CDK19, CCNC and MED13. In contrast, MED12 showed the opposite association with a longer RFS. The expression levels of CDK8 in breast cancer samples were directly correlated with the expression of MYC, as well as CDK19, CCNC and MED13 but inversely correlated with MED12. CDK8, CDK19 and CCNC expression was strongly increased and MED12 expression was decreased in tumors with mutant p53. Gene amplification is the most frequent type of genetic alterations of CDK8, CDK19, CCNC and MED13 in breast cancers (9.7% of which have amplified MED13), whereas point mutations are more common in MED12. These results suggest that the expression of CDK8 and its interactive genes has a profound impact on the response to adjuvant therapy in breast cancer in accordance with the role of CDK8 in chemotherapy-induced tumor-supporting paracrine activities.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 8/genetics , Breast Neoplasms/diagnosis , Cyclin C/genetics , Cyclin-Dependent Kinases/genetics , Female , Humans , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...