Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.663
Filter
1.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38963813

ABSTRACT

Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.


Subject(s)
Bile Acids and Salts , Cell Proliferation , Hepatectomy , Hepatocytes , Liver Regeneration , Mice, Knockout , Receptors, Calcitriol , Animals , Liver Regeneration/drug effects , Liver Regeneration/physiology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Male , Mice , Hepatocytes/metabolism , Hepatocytes/drug effects , Cell Proliferation/drug effects , Bile Acids and Salts/metabolism , Liver/metabolism , Cyclin D1/metabolism , Cyclin D1/genetics , Cyclin E/metabolism , Cyclin E/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Mice, Inbred C57BL , Vitamin D/pharmacology , Signal Transduction/drug effects , Oncogene Proteins
2.
FASEB J ; 38(13): e23803, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38963404

ABSTRACT

Cancer neuroscience is an emerging field of cancer biology focused on defining the interactions and relationships between the nervous system, developing malignancies, and their environments. Our previous work demonstrates that small extracellular vesicles (sEVs) released by head and neck squamous cell carcinomas (HNSCCs) recruit loco-regional nerves to the tumor. sEVs contain a diverse collection of biological cargo, including microRNAs (miRNAs). Here, we asked whether two genes commonly amplified in HNSCC, CCND1, and PIK3CA, impact the sEV miRNA cargo and, subsequently, sEV-mediated tumor innervation. To test this, we individually overexpressed these genes in a syngeneic murine HNSCC cell line, purified their sEVs, and tested their neurite outgrowth activity on dorsal root ganglia (DRG) neurons in vitro. sEVs purified from Ccnd1-overexpressing cells significantly increased neurite outgrowth of DRG compared to sEVs from parental or Pik3ca over-expressing cells. When implanted into C57BL/6 mice, Ccnd1 over-expressing tumor cells promoted significantly more tumor innervation in vivo. qPCR analysis of sEVs shows that increased expression of Ccnd1 altered the packaging of miRNAs (miR-15-5p, miR-17-5p, and miR-21-5p), many of which target transcripts important in regulating axonogenesis. These data indicate that genetic amplifications harbored by malignancies impose changes in sEV miRNA cargo, which can influence tumorc innervation.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Extracellular Vesicles , Head and Neck Neoplasms , Mice, Inbred C57BL , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Mice , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Ganglia, Spinal/metabolism , Humans , Gene Amplification , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology
3.
Chem Biol Drug Des ; 104(1): e14586, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39013759

ABSTRACT

Thyroid cancer (TC) is one of the most common endocrine malignancies worldwide. Increasing evidence suggests that vitamin D (VD) has potential benefits in the treatment of TC. However, evidence regarding the targets and molecular mechanisms of VD in TC remains limited. In this study, we conducted network pharmacology, molecular docking, and experimental evaluation to explore the target genes, biological functions, and signaling pathways involved in this process. Network analysis revealed 77 potential target genes of VD against TC, and four hub target genes were identified: ESR1, KIT, CCND1, and PGR. Furthermore, we identified the biological processes (BP) and signaling pathways involving these potential target genes, and then determined the possible interaction between the hub targets and VD through molecular docking. Finally, through in vitro experiments, we found that VD effectively inhibits the proliferation of TC cells and downregulates the expression of the ESR1 gene. In conclusion, the effects of VD against TC involve multiple biological targets, BP, and signaling pathways. These findings provide scientific evidence for the application of VD in the treatment of TC.


Subject(s)
Cell Proliferation , Molecular Docking Simulation , Signal Transduction , Thyroid Neoplasms , Vitamin D , Humans , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Vitamin D/pharmacology , Vitamin D/metabolism , Vitamin D/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Signal Transduction/drug effects , Network Pharmacology , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Gene Expression Regulation, Neoplastic/drug effects
4.
Nat Commun ; 15(1): 6076, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39025835

ABSTRACT

Current KRASG12C (OFF) inhibitors that target inactive GDP-bound KRASG12C cause responses in less than half of patients and these responses are not durable. A class of RASG12C (ON) inhibitors that targets active GTP-bound KRASG12C blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity. We have previously shown that PI3K/mTOR and ERK-signaling pathways converge on key cellular processes and that inhibition of both pathways is required for inhibition of these processes and for significant antitumor activity. We find here that the combination of a KRASG12C inhibitor with a selective mTORC1 kinase inhibitor causes synergistic inhibition of Cyclin D1 expression and cap-dependent translation. Moreover, BIM upregulation by KRASG12C inhibition and inhibition of MCL-1 expression by the mTORC1 inhibitor are both required to induce significant cell death. In vivo, this combination causes deep, durable tumor regressions and is well tolerated. This study suggests that the ERK and PI3K/mTOR pathways each mitigate the effects of inhibition of the other and that combinatorial inhibition is a potential strategy for treating KRASG12C-dependent lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Synergism , Lung Neoplasms , Mechanistic Target of Rapamycin Complex 1 , Proto-Oncogene Proteins p21(ras) , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Cell Line, Tumor , Mice , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Female , Bcl-2-Like Protein 11/metabolism , Bcl-2-Like Protein 11/genetics
6.
Nagoya J Med Sci ; 86(2): 223-236, 2024 May.
Article in English | MEDLINE | ID: mdl-38962411

ABSTRACT

Cleft palate is the most common facial birth defect worldwide. It is caused by environmental factors or genetic mutations. Environmental factors such as pharmaceutical exposure in women are known to induce cleft palate. The aim of the present study was to investigate the protective effect of Sasa veitchii extract against medicine-induced inhibition of proliferation of human embryonic palatal mesenchymal cells. We demonstrated that all-trans-retinoic acid inhibited human embryonic palatal mesenchymal cell proliferation in a dose-dependent manner, whereas dexamethasone treatment had no effect on cell proliferation. Cotreatment with Sasa veitchii extract repressed all-trans-retinoic acid-induced toxicity in human embryonic palatal mesenchymal cells. We found that cotreatment with Sasa veitchii extract protected all-trans-retinoic acid-induced cyclin D1 downregulation in human embryonic palatal mesenchymal cells. Furthermore, Sasa veitchii extract suppressed all-trans-retinoic acid-induced miR-4680-3p expression. Additionally, the expression levels of the genes that function downstream of the target genes ( ERBB2 and JADE1 ) of miR-4680-3p in signaling pathways were enhanced by cotreatment with Sasa veitchii extract and all-trans-retinoic acid compared to all-trans-retinoic acid treatment. These results suggest that Sasa veitchii extract suppresses all-trans-retinoic acid-induced inhibition of cell proliferation via modulation of miR-4680-3p expression.


Subject(s)
Cell Proliferation , Cleft Palate , Palate , Plant Extracts , Tretinoin , Humans , Tretinoin/pharmacology , Cell Proliferation/drug effects , Palate/drug effects , Palate/embryology , Palate/cytology , Plant Extracts/pharmacology , MicroRNAs/metabolism , MicroRNAs/genetics , MicroRNAs/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Signal Transduction/drug effects
7.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 841-850, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862441

ABSTRACT

OBJECTIVE: To explore the molecular mechanism by which FEZF1-AS1 overexpression promotes progression of nonsmall cell lung cancer (NSCLC) via the miR-130a-5p/CCND1 axis. METHODS: TCGA database was used to analyze FEZF1-AS1 expression levels in NSCLC. FEZF1-AS1 expression was detected by qRT-PCR in clinical specimens of NSCLC tissues and NSCLC cell lines, and its correlation with clinical features of the patients were analyzed. The binding sites of FEZF1-AS1 with hsa-miR-130a-5p and those of hsa-miR-130a-5p with CCND1 were predicted. CCK8 assay, clone formation assay, scratch assay, and Transwell assay were employed to examine the effects of FEZF1-AS1 knockdown and hsa-miR-130a-5p inhibitor on proliferation, invasion, and migration abilities of lung cancer cell lines. Dual luciferase assay was used to verify the binding of FEZF1-AS1 with hsa-miR-130a-5p and the binding of hsa-miR-130a-5p with CCND1. Western blotting was performed to detect the changes in CCND1 protein expression level in H1299 and H358 cells following FEZF1-AS1 knockdown and treatment with hsa-miR-130a-5p inhibitor. RESULTS: FEZF1-AS1 was highly expressed in NSCLC tissues in close correlation with lymph node metastasis and also in H1299 and H358 cell lines (all P < 0.05). FEZF1-AS1 knockdown obviously reduced proliferation, migration, and invasion abilities of NSCLC cells (P < 0.05). Dual luciferase assay confirmed the binding of hsa-miR-130a-5p with FEZF1-AS1 and CCND1 (P < 0.05), and hsa-miR-130a-5p inhibitor significantly inhibited proliferation, migration, and invasion of NSCLC cells (P < 0.05). FEZF1-AS1 knockdown significantly reduced CCND1 protein expression in NSCLC cells, and this effect was strongly inhibited by treatment with hsa-miR-130a-5p inhibitor (P < 0.05). CONCLUSION: FEZF1-AS1 is highly expressed in NSCLC tissue in close correlation with lymph node metastasis to promote cancer progression through the miR-130a-5p/CCND1 axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Movement , Cell Proliferation , Cyclin D1 , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cyclin D1/metabolism , Cyclin D1/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Disease Progression , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Neoplasm Invasiveness , Gene Expression Regulation, Neoplastic , Repressor Proteins
8.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 211-216, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836660

ABSTRACT

This study investigated the regulatory impact of Toll-like receptor 4 (TLR4) gene on glioma cell proliferation and apoptosis, elucidating the molecular mechanisms underlying TLR4-induced growth inhibition in vivo. U-87MG-Sh and U-87MG-NC cells, with silenced TLR4 and negative control plasmid respectively, were established. Eighteen nude mice, divided into transfection, negative control, and blank control groups, were inoculated with corresponding cells. Over four weeks, the transfection group exhibited significantly reduced tumor growth rates, smaller mass and volume, and lower growth activity compared to controls. Histological analysis revealed sparse tumor cells, increased fibrous connective tissue, and slower angiogenesis in the transfection group. Flow cytometry demonstrated a lower proliferation index and increased G0/1 cell count in the transfection group. mRNA levels of TLR4, NF-κB, and CyclinD1 were significantly lower in the transfection group. TLR4 silencing correlated with U-87MG cell proliferation regulation, growth inhibition, NF-κB and CyclinD1 modulation, and induction of cell cycle arrest and apoptosis. These findings suggest TLR4 as a potential gene therapy target for glioma.


Subject(s)
Apoptosis , Cell Proliferation , Cyclin D1 , Gene Silencing , Glioma , Mice, Nude , NF-kappa B , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Glioma/pathology , Glioma/genetics , Glioma/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Apoptosis/genetics , Humans , NF-kappa B/metabolism , Cyclin D1/metabolism , Cyclin D1/genetics , Mice , Cell Cycle Checkpoints/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C
9.
Zhonghua Bing Li Xue Za Zhi ; 53(6): 557-562, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38825900

ABSTRACT

Objective: To study the correlation between the copy number variations of CCND1 gene and chromosome 11 and their associations with clinicopathologic features in acral melanoma. Methods: Thirty-three acral melanoma cases diagnosed at the Department of Pathology of Peking University Third Hospital, Beijing, China from January 2018 to August 2021 were collected. Fluorescence in situ hybridization (FISH) was used to detect the copy number of CCND1 gene and centromere of chromosome 11. The relationship between the copy numbers of CCND1 and chromosome 11 centromere, and the correlation between CCND1 copy number and clinicopathologic characteristics were analyzed. Results: There were 15 male and 18 female patients, with an age ranging from 22-86 years. 63.6% (21/33) of the patients had an increased CCND1 gene copy number. 21.2% (7/33) of patients with increased CCND1 copy number had an accompanying chromosome 11 centromere copy number increase. 27.3% (9/33) of the cases had a low copy number of CCND1 gene, and 4 of them (4/33, 12.1%) were accompanied by chromosome 11 centromere copy number increase. 36.4% (12/33) of the cases had a high copy number of CCND1 gene, and 3 (3/33, 9.1%) of them were accompanied by chromosome 11 centromere copy number increase. No cases with CCND1 low copy number increase showed CCND1/CEP11 ratio greater than 2.00. The 11 cases with CCND1 high copy number increase showed CCND1/CEP11 ratio greater than or equal to 2.00. However, there was no significant correlation between CCND1 copy number increase and any of the examined clinicopathologic features such as age, sex, histological type, Breslow thickness, ulcer and Clark level. Conclusions: CCND1 copy number increase is a significant molecular alteration in acral melanoma. In some cases, CCND1 copy number increase may be accompanied by the copy number increase of chromosome 11. For these cases the copy number increase in CCND1 gene may be a result of the copy number change of chromosome 11.


Subject(s)
Centromere , Chromosomes, Human, Pair 11 , Cyclin D1 , DNA Copy Number Variations , In Situ Hybridization, Fluorescence , Melanoma , Skin Neoplasms , Humans , Cyclin D1/genetics , Male , Female , Melanoma/genetics , Melanoma/pathology , Middle Aged , Centromere/genetics , Aged , Adult , Aged, 80 and over , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Chromosomes, Human, Pair 11/genetics , Young Adult
10.
Clin Immunol ; 265: 110299, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936524

ABSTRACT

Adult orbital xanthogranulomatous disease (AOXGD) is a spectrum of histiocytoses with four subtypes. Mitogen-activated protein kinase (MAPK) pathway mutations have been detected in various histiocytic neoplasms, little is known about this in AOXGD. Targeted regions of cancer- and histiocytosis-related genes were analyzed and immunohistochemical staining of phosphorylated ERK (pERK), cyclin D1 and PU.1 was performed in 28 AOXGD and 10 control xanthelasma biopsies to assess MAPK pathway activation. Mutations were detected in 7/28 (25%) patients. Positive staining for pERK and/or cyclin D1 was found across all subtypes in 17/27 (63%) patients of whom 12/17 (71%) did not harbour a mutation. Xanthelasma tissue stained negative for pERK and cyclin D1. Relapse occurred in 5/7 (71%) patients with a MAPK pathway mutation compared to 8/21 (38%) patients in whom no mutation could be detected. Molecular analysis and evaluation for systemic disease is warranted to identify patients at risk of recurrent xanthomatous disease.


Subject(s)
MAP Kinase Signaling System , Mutation , Xanthomatosis , Humans , Female , Male , Middle Aged , Adult , MAP Kinase Signaling System/genetics , Aged , Xanthomatosis/genetics , Orbital Diseases/genetics , Cyclin D1/genetics , Cyclin D1/metabolism , Young Adult , Granuloma/genetics
11.
Cell Biochem Funct ; 42(4): e4064, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807466

ABSTRACT

Human dental pulp stem cells are a potentially useful resource for cell-based therapies and tissue repair in dental and medical applications. However, the primary culture of isolated dental pulp stem cells has notably been limited. A major requirement of an ideal human dental pulp stem cell culture system is the preservation of efficient proliferation and innate stemness over prolonged passaging, while also ensuring ease of handling through standard, user-friendly culture methods. In this study, we have engineered a novel human dental pulp stem cell line, distinguished by the constitutive expression of telomerase reverse transcriptase (TERT), and the conditional expression of the R24C mutant cyclin-dependent kinase 4 (CDK4R24C) and Cyclin D1. We have named this cell line Tet-off K4DT hDPSCs. Furthermore, we have conducted a comprehensive comparative analysis of their biological attributes in relation to a previously immortalized human dental pulp stem cells, hDPSC-K4DT, which were immortalized by the constitutive expression of CDK4R24C, Cyclin D1 and TERT. In Tet-off K4DT cells, the expression of the K4D genes can be precisely suppressed by the inclusion of doxycycline. Remarkably, Tet-off K4DT cells demonstrated an extended cellular lifespan, increased proliferative capacity, and enhanced osteogenic differentiation potential when compared to K4DT cells. Moreover, Tet-off K4DT cells had no observable genomic aberrations and also displayed a sustained expression of stem cell markers even at relatively advanced passages. Taken together, the establishment of this new cell line holds immense promise as powerful experimental tool for both fundamental and applied research involving dental pulp stem cells.


Subject(s)
Cell Proliferation , Cyclin-Dependent Kinase 4 , Dental Pulp , Doxycycline , Stem Cells , Humans , Dental Pulp/cytology , Dental Pulp/metabolism , Cell Proliferation/drug effects , Doxycycline/pharmacology , Stem Cells/metabolism , Stem Cells/cytology , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Telomerase/metabolism , Telomerase/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Cell Differentiation/drug effects , Cells, Cultured
12.
Mol Biol Rep ; 51(1): 676, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796661

ABSTRACT

BACKGROUND: The current understanding emphasizes the intricate interplay between the Leukemic cell and its environment. Platelet-derived microparticles play a crucial role in facilitating intercellular communication and contribute to the complex landscape of cancer pathology. This study aimed to investigate the influence of platelet-derived microparticles on cell proliferation, apoptosis, and the expression of key genes, including P53, P21, Cyclin D1, Bax, and Bcl-2, within the context of a chronic myeloid leukemia cell line (K562). METHODS AND RESULTS: Platelet-derived microparticles were obtained through centrifugation at various speeds, and their concentration was quantified using the BCA assay. To determine the size and immunophenotypic characteristics of the PMPs, both the DLS technique and flow cytometry were employed. Cell proliferation was assessed using the MTT assay and hemocytometer, and cell cycle analysis was conducted through DNA content evaluation. Real-time PCR was utilized for gene expression analysis of Bax, Bcl-2, Cyclin D1, P53, and P21. Flow cytometry was employed to examine cell apoptosis. The findings revealed that platelet-derived microparticles have the ability to decrease proliferation of the K562 cell line, while not exerting an impact on apoptosis and cell cycle progression. Analysis through real-time PCR indicated an upregulation in the gene expression of P53, P21, and Bcl-2, accompanied by a downregulation in Bax and Cyclin D1. CONCLUSION: This investigation sheds light on the intricate relationship between chronic myeloid leukemia and its microenvironment, particularly the involvement of platelet-derived microparticles. The study underscores the potential of platelet-derived microparticles to influence cell behavior and gene expression, providing a deeper understanding of their role in CML and its therapeutic implications.


Subject(s)
Apoptosis , Blood Platelets , Cell Proliferation , Cell-Derived Microparticles , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Cell-Derived Microparticles/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Blood Platelets/metabolism , K562 Cells , Cell Proliferation/genetics , Apoptosis/genetics , Cell Cycle/genetics , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Gene Expression Regulation, Leukemic
13.
Cancer Invest ; 42(4): 319-332, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38695671

ABSTRACT

Glioblastoma multiforme (GBM), is a frequent class of malignant brain tumors. Epigenetic therapy, especially with synergistic combinations is highly paid attention for aggressive solid tumors like GBM. Here, RSM optimization has been used to increase the efficient arrest of U87 and U251 cell lines due to synergistic effects. Cell lines were treated with SAHA, 5-Azacytidine, GSK-126, and PTC-209 individually and then RSM was used to find most effective combinations. Results showed that optimized combinations significantly reduce cell survival and induce cell cycle arrest and apoptosis in both cell lines. Expression of cyclin B1 and cyclin D1 were decreased while caspase3 increased expression.


Subject(s)
Apoptosis , Drug Synergism , Epigenesis, Genetic , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Cell Line, Tumor , Apoptosis/drug effects , Epigenesis, Genetic/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Azacitidine/pharmacology , Azacitidine/administration & dosage , Cell Survival/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Cycle Checkpoints/drug effects , Vorinostat/pharmacology , Vorinostat/administration & dosage , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism
14.
Medicine (Baltimore) ; 103(20): e38261, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758844

ABSTRACT

OBJECTIVE: To explore the therapeutic mechanism of Mori Cortex against osteosarcoma (OS), we conducted bioinformatics prediction followed by in vitro experimental validation. METHODS: Gene expression data from normal and OS tissues were obtained from the GEO database and underwent differential analysis. Active Mori Cortex components and target genes were extracted from the Traditional Chinese Medicine System Pharmacology database. By intersecting these targets with differentially expressed genes in OS, we identified potential drug action targets. Using the STRING database, a protein-protein interaction network was constructed. Subsequent analyses of these intersected genes, including Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, were performed using R software to elucidate biological processes, molecular functions, and cellular components, resulting in the simulation of signaling pathways. Molecular docking assessed the binding capacity of small molecules to signaling pathway targets. In vitro validations were conducted on U-2 OS cells. The CCK8 assay was used to determine drug-induced cytotoxicity in OS cells, and Western Blotting was employed to validate the expression of AKT, extracellular signal-regulated kinases (ERK), Survivin, and Cyclin D1 proteins. RESULTS: Through differential gene expression analysis between normal and OS tissues, we identified 12,364 differentially expressed genes. From the TCSMP database, 39 active components and 185 therapeutic targets related to OS were derived. The protein-protein interaction network indicated that AKT1, IL-6, JUN, VEGFA, and CASP3 might be central targets of Mori Cortex for OS. Molecular docking revealed that the active compound Morusin in Mori Cortex exhibits strong binding affinity to AKT and ERK. The CCK8 assay showed that Morusin significantly inhibits the viability of U-2 OS cells. Western Blot demonstrated a reduction in the p-AKT/AKT ratio, the p-ERK/ERK ratio, Survivin, and Cyclin D1. CONCLUSION: Mori Cortex may exert its therapeutic effects on OS through multiple cellular signaling pathways. Morusin, the active component of Mori Cortex, can inhibit cell cycle regulation and promote cell death in OS cells by targeting AKT/ERK pathway.


Subject(s)
Bone Neoplasms , Computational Biology , Drugs, Chinese Herbal , Molecular Docking Simulation , Morus , Osteosarcoma , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Humans , Cell Line, Tumor , Drugs, Chinese Herbal/pharmacology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Protein Interaction Maps , Signal Transduction , Gene Expression Regulation, Neoplastic , Medicine, Chinese Traditional/methods , Survivin/metabolism , Survivin/genetics , Cyclin D1/metabolism , Cyclin D1/genetics
15.
Oncotarget ; 15: 302-311, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742684

ABSTRACT

The main goal of the present study was to analyze the expression profile of cyclin D1 in patients with PC, and to determine possible correlations with clinical and histopathological features. A survey was conducted with 100 patients diagnosed with PC, who were treated at two reference hospitals in São Luís, Maranhão, Brazil, between 2013 and 2017. A review of clinical, epidemiological, and histopathological data was performed, Human Papillomavírus (HPV) DNA was detected using polymerase chain reaction (PCR) and cyclin D1 expression analysis was performed using immunohistochemical techniques. The data revealed that the absence of cyclin D1 expression was significantly associated with HPV-positive histological subtypes (p = 0.001), while its expression was associated with high-grade tumors (p = 0.014), histological subtype (p = 0.001), presence of sarcomatoid transformation (p = 0.04), and perineural invasion (p = 0.023). Patients with cyclin D1 expression exhibited lower disease-free survival compared to the cyclin D1-negative group, although the difference was not statistically significant. The results suggest that cyclin D1 may be a potential biomarker for PC, especially for poorer prognosis.


Subject(s)
Biomarkers, Tumor , Cyclin D1 , Penile Neoplasms , Adult , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Brazil/epidemiology , Cyclin D1/metabolism , Cyclin D1/genetics , Disease-Free Survival , Immunohistochemistry , Papillomavirus Infections/virology , Papillomavirus Infections/metabolism , Penile Neoplasms/genetics , Penile Neoplasms/pathology , Penile Neoplasms/virology , Prognosis
16.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38813981

ABSTRACT

The search for relevant molecular targets is one of the main tasks of modern tumor chemotherapy. To successfully achieve this, it is necessary to have the most complete understanding of the functioning of a transcriptional apparatus of the cell, particularly related to proliferation. The p53 protein plays an important role in regulating processes such as apoptosis, repair, and cell division, and the loss of its functionality often accompanies various types of tumors and contributes to the development of chemoresistance. Additionally, the proliferative activity of tumor cells is closely related to the metabolism of transition metals. For example, the metallochaperone Atox1 - a copper transporter protein - acts as a transcription activator for cyclin D1, promoting progression through the G1/S phase of the cell cycle. On the other hand, p53 suppresses cyclin D1 at the transcriptional level, thereby these proteins have divergent effects on cell cycle progression. However, the contribution of the interaction between these proteins to cell survival is poorly understood. This work demonstrates that not only exists a positive feedback loop between Atox1 and cyclin D1 but also that the activity of this loop depends on the status of the TP53 gene. Upon inactivation of TP53 in A549 and HepG2 cell lines, the expression of ATOX1 and CCND1 genes is enhanced, and their suppression in these cells leads to pronounced apoptosis. This fundamental observation may be useful in selecting more precise interventions for combined therapy of p53-negative tumors.


Subject(s)
Cell Survival , Copper Transport Proteins , Cyclin D1 , Tumor Suppressor Protein p53 , Humans , Cyclin D1/metabolism , Cyclin D1/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Cell Survival/drug effects , Hep G2 Cells , Copper Transport Proteins/metabolism , Copper Transport Proteins/genetics , A549 Cells , Gene Expression Regulation, Neoplastic , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Cell Proliferation , Apoptosis , Metallochaperones/metabolism , Metallochaperones/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
17.
Int J Biochem Cell Biol ; 172: 106601, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821314

ABSTRACT

Abemaciclib (ABM), a cyclin-dependent kinase 4/6 inhibitor, shows pharmacological effects in cell cycle arrest. Epithelial-mesenchymal transition is an important cellular event associated with pathophysiological states such as organ fibrosis and cancer progression. In the present study, we evaluated the contribution of factors associated with cell cycle arrest to ABM-induced epithelial-mesenchymal transition. Treatment with 0.6 µM ABM induced both cell cycle arrest and epithelial-mesenchymal transition-related phenotypic changes. Interestingly, the knockdown of cyclin-dependent kinase 4/6, pharmacological targets of ABM or cyclin D1, which forms complexes with cyclin-dependent kinase 4/6, resulted in cell cycle arrest at the G1-phase and induction of epithelial-mesenchymal transition, indicating that downregulation of cyclin-dependent kinase 4/6-cyclin D1 complexes would mimic ABM. In contrast, knockdown of the Rb protein, which is phosphorylated by cyclin-dependent kinase 4/6, had no effect on the expression level of α-smooth muscle actin, an epithelial-mesenchymal transition marker. Furthermore, ABM-induced epithelial-mesenchymal transition was not affected by Rb knockdown, suggesting that Rb is not involved in the transition process. Our study is the first to suggest that cyclin-dependent kinase 4/6-cyclin D1 complexes, as pharmacological targets of ABM, may contribute to ABM-induced epithelial-mesenchymal transition, followed by clinical disorders such as organ fibrosis and cancer progression. This study suggests that blocking epithelial-mesenchymal transition might be a promising way to prevent negative side effects caused by a medication (ABM) without affecting its ability to treat the disease.


Subject(s)
Aminopyridines , Benzimidazoles , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Epithelial-Mesenchymal Transition , Epithelial-Mesenchymal Transition/drug effects , Benzimidazoles/pharmacology , Humans , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Aminopyridines/pharmacology , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cell Cycle Checkpoints/drug effects , Cyclin D1/metabolism , Cyclin D1/genetics
18.
BMC Pulm Med ; 24(1): 167, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589850

ABSTRACT

BACKGROUND: Cyclin D1 (CCND1) plays a pivotal role in cancer susceptibility and the platinum-based chemotherapy response. This study aims to assess the relationship between a common polymorphism (rs9344 G > A) in CCND1 gene with cancer susceptibility, platinum-based chemotherapy response, toxicities and prognosis of patients with lung cancer. METHODS: This study involved 498 lung cancer patients and 213 healthy controls. Among them, 467 patients received at least two cycles of platinum-based chemotherapy. Unconditional logistical regression analysis and meta-analysis were performed to evaluate the associations. RESULTS: The lung adenocarcinoma risk was significantly higher in patients with AA than GG + GA genotype (adjusted OR = 1.755, 95%CI = 1.057-2.912, P = 0.030). CCND1 rs9344 was significantly correlated with platinum-based therapy response in patients receiving PP regimen (additive model: adjusted OR = 1.926, 95%CI = 1.029-3.605, P = 0.040; recessive model: adjusted OR = 11.340, 95%CI = 1.428-90.100, P = 0.022) and in the ADC subgroups (recessive model: adjusted OR = 3.345, 95%CI = 1.276-8.765, P = 0.014). Furthermore, an increased risk of overall toxicity was found in NSCLC patients (additive model: adjusted OR = 1.395, 95%CI = 1.025-1.897, P = 0.034; recessive model: adjusted OR = 1.852, 95%CI = 1.088-3.152, P = 0.023), especially ADC subgroups (additive model: adjusted OR = 1.547, 95%CI = 1.015-2.359, P = 0.043; recessive model: adjusted OR = 2.030, 95%CI = 1.017-4.052, P = 0.045). Additionally, CCND1 rs9344 was associated with an increased risk of gastrointestinal toxicity in non-smokers (recessive model: adjusted OR = 2.620, 95%CI = 1.083-6.336, P = 0.035). Non-significant differences were observed in the 5-year overall survival rate between CCND1 rs9344 genotypes. A meta-analysis of 5432 cases and 6452 control samples did not find a significant association between lung cancer risk and CCND1 rs9344 polymorphism. CONCLUSION: This study suggests that in the Chinese population, CCND1 rs9344 could potentially serve as a candidate biomarker for cancer susceptibility and treatment outcomes in specific subgroups of patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Cyclin D1/genetics , Case-Control Studies , Polymorphism, Single Nucleotide , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Genotype , Genetic Predisposition to Disease
20.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673893

ABSTRACT

During embryogenesis, basic fibroblast growth factor (bFGF) is released from neural tube and myotome to promote myogenic fate in the somite, and is routinely used for the culture of adult skeletal muscle (SKM) stem cells (MuSC, called satellite cells). However, the mechanism employed by bFGF to promote SKM lineage and MuSC proliferation has not been analyzed in detail. Furthermore, the question of if the post-translational modification (PTM) of bFGF is important to its stemness-promoting effect has not been answered. In this study, GST-bFGF was expressed and purified from E.coli, which lacks the PTM system in eukaryotes. We found that both GST-bFGF and commercially available bFGF activated the Akt-Erk pathway and had strong cell proliferation effect on C2C12 myoblasts and MuSC. GST-bFGF reversibly compromised the myogenesis of C2C12 myoblasts and MuSC, and it increased the expression of Myf5, Pax3/7, and Cyclin D1 but strongly repressed that of MyoD, suggesting the maintenance of myogenic stemness amid repressed MyoD expression. The proliferation effect of GST-bFGF was conserved in C2C12 over-expressed with MyoD (C2C12-tTA-MyoD), implying its independence of the down-regulation of MyoD. In addition, the repressive effect of GST-bFGF on myogenic differentiation was almost totally rescued by the over-expression of MyoD. Together, these evidences suggest that (1) GST-bFGF and bFGF have similar effects on myogenic cell proliferation and differentiation, and (2) GST-bFGF can promote MuSC stemness and proliferation by differentially regulating MRFs and Pax3/7, (3) MyoD repression by GST-bFGF is reversible and independent of the proliferation effect, and (4) GST-bFGF can be a good substitute for bFGF in sustaining MuSC stemness and proliferation.


Subject(s)
Cell Proliferation , Fibroblast Growth Factor 2 , Muscle Development , MyoD Protein , Myoblasts , Muscle Development/genetics , Animals , Mice , MyoD Protein/metabolism , MyoD Protein/genetics , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , PAX7 Transcription Factor/metabolism , PAX7 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , PAX3 Transcription Factor/genetics , Myogenic Regulatory Factor 5/metabolism , Myogenic Regulatory Factor 5/genetics , Cyclin D1/metabolism , Cyclin D1/genetics , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/cytology , Cell Differentiation , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL