Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.791
Filter
1.
Biomolecules ; 14(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39062563

ABSTRACT

Affinity chromatography is a widely used technique for antibody isolation. This article presents the successful synthesis of a novel affinity resin with a mutant form of protein A (BsrtA) immobilized on it as a ligand. The key aspect of the described process is the biocatalytic immobilization of the ligand onto the matrix using the sortase A enzyme. Moreover, we used a matrix with primary amino groups without modification, which greatly simplifies the synthesis process. The resulting resin shows a high dynamic binding capacity (up to 50 mg IgG per 1 mL of sorbent). It also demonstrates high tolerance to 0.1 M NaOH treatment and maintains its effectiveness even after 100 binding, elution, and sanitization cycles.


Subject(s)
Bacterial Proteins , Biocatalysis , Chromatography, Affinity , Cysteine Endopeptidases , Chromatography, Affinity/methods , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Immunoglobulins/chemistry , Immunoglobulins/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism
2.
Mol Inform ; 43(8): e202300279, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38973780

ABSTRACT

During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Molecular Docking Simulation , Protease Inhibitors , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Catalytic Domain , COVID-19 , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Betacoronavirus/enzymology , Betacoronavirus/drug effects , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Pandemics , Drug Evaluation, Preclinical/methods
3.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 8): 183-190, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39052022

ABSTRACT

Enteroviruses cause a wide range of disorders with varying presentations and severities, and some enteroviruses have emerged as serious public health concerns. These include Coxsackievirus B3 (CVB3), an active causative agent of viral myocarditis, and Coxsackievirus B4 (CVB4), which may accelerate the progression of type 1 diabetes. The 3C proteases from CVB3 and CVB4 play important roles in the propagation of these viruses. In this study, the 3C proteases from CVB3 and CVB4 were expressed in Escherichia coli and purified by affinity chromatography and gel-filtration chromatography. The crystals of the CVB3 and CVB4 3C proteases diffracted to 2.10 and 2.01 Šresolution, respectively. The crystal structures were solved by the molecular-replacement method and contained a typical chymotrypsin-like fold and a conserved His40-Glu71-Cys147 catalytic triad. Comparison with the structures of 3C proteases from other enteroviruses revealed high similarity with minor differences, which will guide the design of 3C-targeting inhibitors with broad-spectrum properties.


Subject(s)
3C Viral Proteases , Amino Acid Sequence , Cysteine Endopeptidases , Enterovirus B, Human , Models, Molecular , Viral Proteins , 3C Viral Proteases/chemistry , Crystallography, X-Ray , Enterovirus B, Human/enzymology , Enterovirus B, Human/chemistry , Enterovirus B, Human/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Catalytic Domain , Humans , Protein Conformation , Cloning, Molecular
4.
Int J Biol Macromol ; 276(Pt 1): 133706, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981557

ABSTRACT

Main proteases (Mpros) are a class of conserved cysteine hydrolases among coronaviruses and play a crucial role in viral replication. Therefore, Mpros are ideal targets for the development of pan-coronavirus drugs. X77, previously developed against SARS-CoV Mpro, was repurposed as a non-covalent tight binder inhibitor against SARS-CoV-2 Mpro during COVID-19 pandemic. Many novel inhibitors with favorable efficacy have been discovered using X77 as a reference, suggesting that X77 could be a valuable scaffold for drug design. However, the broad-spectrum performance of X77 and underlying mechanism remain less understood. Here, we reported the crystal structures of Mpros from SARS-CoV-2, SARS-CoV, and MERS-CoV, and several Mpro mutants from SARS-CoV-2 variants bound to X77. A detailed analysis of these structures revealed key structural determinants essential for interaction and elucidated the binding modes of X77 with different coronaviral Mpros. The potencies of X77 against these investigated Mpros were further evaluated through molecular dynamic simulation and binding free energy calculation. These data provide molecular insights into broad-spectrum inhibition against coronaviral Mpros by X77 and the similarities and differences of X77 when bound to various Mpros, which will promote X77-based design of novel antivirals with broad-spectrum efficacy against different coronaviruses and SARS-CoV-2 variants.


Subject(s)
Coronavirus 3C Proteases , Molecular Dynamics Simulation , SARS-CoV-2 , SARS-CoV-2/enzymology , SARS-CoV-2/drug effects , Crystallography, X-Ray , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Protein Binding , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , COVID-19/virology , Severe acute respiratory syndrome-related coronavirus/enzymology , Betacoronavirus/enzymology , Betacoronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/enzymology , Middle East Respiratory Syndrome Coronavirus/drug effects , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Binding Sites , Coronavirus Infections/virology , Coronavirus Infections/drug therapy , Pandemics , Pneumonia, Viral/virology , Pneumonia, Viral/drug therapy
5.
Bioorg Med Chem ; 111: 117835, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39053075

ABSTRACT

Achieving effective intracellular delivery of therapeutic molecules such as antibodies (IgG) is a challenge in biomedical research and pharmaceutical development. Conjugation of IgG with a cell-penetrating peptide is a rational approach. Here, not only the efficacy of the conjugates in internalizing into cells, but also the physicochemical property of the conjugates allowing their solubilized states in solution without forming aggregates are critical. In this study, we have shown that the first requirement can be addressed using a cell-permeable attenuated cationic amphiphilic lytic (CP-ACAL) peptide, L17ER4. The second requirement can be addressed by ligation of IgG to L17ER4 using sortase A, where the use of a linker of appropriate chain length is also important. For evaluation, the intracellular delivery efficacy was studied using conjugate structures with different orientations and conjugation modes of L17ER4 in ligation to a model protein, green fluorescent protein fused to a nuclear localization signal (NLS-EGFP). The effect of tetraarginine positioning in the L17ER4 sequence was also investigated. Following these studies, an optimized peptide sequence containing L17ER4 was ligated to an anti-green fluorescent protein (GFP) IgG bearing a sortase A recognition sequence. Treatment of the cells with the conjugate of anti-GFP IgG and L17ER4 resulted in a high efficiency of cytosolic translocation of the conjugate and the binding to the target protein in the cell without significant aggregate formation. The feasibility of the d-form of L17ER4 as a CP-ACAL was also confirmed.


Subject(s)
Cell-Penetrating Peptides , Cysteine Endopeptidases , Immunoglobulin G , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Humans , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Cations/chemistry , Peptides/chemistry , Peptides/pharmacology , HeLa Cells , Drug Delivery Systems , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry
6.
Bioconjug Chem ; 35(8): 1172-1181, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38994647

ABSTRACT

Enzymatic site-specific bioconjugation techniques, in particular sortase-mediated ligation, are increasingly used to generate conjugated proteins for a wide array of applications. Extension of the utility and practicality of sortagging for diverse purposes is critically dependent on further improvement of the efficiency of sortagging reactions with a wider structural variety of substrates. We present a comprehensive comparative mass spectrometry screening study of synthetic nonpeptidic incoming amine nucleophile substrates of Staphylococcus aureus Sortase A enzyme. We have identified the optimal structural motifs among the chemically diverse set of 452 model primary and secondary amine-containing sortagging substrates, and we demonstrate the utility of representative amine linkers for efficient C-terminal biotinylation of nanobodies.


Subject(s)
Amines , Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Staphylococcus aureus , Aminoacyltransferases/metabolism , Amines/chemistry , Staphylococcus aureus/enzymology , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/chemistry , Biotinylation , Substrate Specificity , Single-Domain Antibodies/chemistry , Mass Spectrometry
7.
Sci Rep ; 14(1): 13799, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877048

ABSTRACT

Cardiovascular diseases (CVDs), mainly caused by thrombosis complications, are the leading cause of mortality worldwide, making the development of alternative treatments highly desirable. In this study, the thrombolytic potential of green kiwifruit (Actinidia deliciosa cultivar Hayward) was assessed using in-vitro and in-silico approaches. The crude green kiwifruit extract demonstrated the ability to reduce blood clots significantly by 73.0 ± 1.12% (P < 0.01) within 6 h, with rapid degradation of Aα and Bß fibrin chains followed by the γ chain in fibrinolytic assays. Molecular docking revealed six favorable conformations for the kiwifruit enzyme actinidin (ADHact) and fibrin chains, supported by spontaneous binding energies and distances. Moreover, molecular dynamics simulation confirmed the binding stability of the complexes of these conformations, as indicated by the stable binding affinity, high number of hydrogen bonds, and consistent distances between the catalytic residue Cys25 of ADHact and the peptide bond. The better overall binding affinity of ADHact to fibrin chains Aα and Bß may contribute to their faster degradation, supporting the fibrinolytic results. In conclusion, this study demonstrated the thrombolytic potential of the green kiwifruit-derived enzyme and highlighted its potential role as a natural plant-based prophylactic and therapeutic agent for CVDs.


Subject(s)
Actinidia , Fibrinolytic Agents , Molecular Docking Simulation , Molecular Dynamics Simulation , Actinidia/chemistry , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Fruit/chemistry , Fibrin/metabolism , Fibrin/chemistry , Animals , Humans , Computer Simulation , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism
8.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893535

ABSTRACT

The aim of this study was to investigate the transition from non-covalent reversible over covalent reversible to covalent irreversible inhibition of cysteine proteases by making delicate structural changes to the warhead scaffold. To this end, dipeptidic rhodesain inhibitors with different N-terminal electrophilic arenes as warheads relying on the SNAr mechanism were synthesized and investigated. Strong structure-activity relationships of the inhibition potency, the degree of covalency, and the reversibility of binding on the arene substitution pattern were found. The studies were complemented and substantiated by molecular docking and quantum-mechanical calculations of model systems. Furthermore, the improvement in the membrane permeability of peptide esters in comparison to their corresponding carboxylic acids was exemplified.


Subject(s)
Cysteine Proteases , Cysteine Proteinase Inhibitors , Molecular Docking Simulation , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/metabolism , Structure-Activity Relationship , Cysteine Proteases/metabolism , Cysteine Proteases/chemistry , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Molecular Structure
9.
Sci Rep ; 14(1): 12876, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834612

ABSTRACT

This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.


Subject(s)
Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Molecular Docking Simulation , Quercetin , Streptococcus pneumoniae , Streptococcus pneumoniae/drug effects , Quercetin/pharmacology , Quercetin/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Synergism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism
10.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930828

ABSTRACT

The development of new compounds to treat Chagas disease is imperative due to the adverse effects of current drugs and their low efficacy in the chronic phase. This study aims to investigate nitroisoxazole derivatives that produce oxidative stress while modifying the compounds' lipophilicity, affecting their ability to fight trypanosomes. The results indicate that these compounds are more effective against the epimastigote form of T. cruzi, with a 52 ± 4% trypanocidal effect for compound 9. However, they are less effective against the trypomastigote form, with a 15 ± 3% trypanocidal effect. Additionally, compound 11 interacts with a higher number of amino acid residues within the active site of the enzyme cruzipain. Furthermore, it was also found that the presence of a nitro group allows for the generation of free radicals; likewise, the large size of the compound enables increased interaction with aminoacidic residues in the active site of cruzipain, contributing to trypanocidal activity. This activity depends on the size and lipophilicity of the compounds. The study recommends exploring new compounds based on the nitroisoxazole skeleton, with larger substituents and lipophilicity to enhance their trypanocidal activity.


Subject(s)
Isoxazoles , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/chemical synthesis , Isoxazoles/chemistry , Isoxazoles/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Structure-Activity Relationship , Chagas Disease/drug therapy , Chagas Disease/parasitology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Animals , Catalytic Domain , Molecular Structure
11.
Chemistry ; 30(38): e202401103, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38716707

ABSTRACT

This review covers the most recent advances in the development of inhibitors for the bacterial enzyme sortase A (SrtA). Sortase A (SrtA) is a critical virulence factor, present ubiquitously in Gram-positive bacteria of which many are pathogenic. Sortases are key enzymes regulating bacterial adherence to host cells, by anchoring extracellular matrix-binding proteins to the bacterial outer cell wall. By targeting virulence factors, effective treatment can be achieved, without inducing antibiotic resistance to the treatment. This is a potentially more sustainable, long-term approach to treating bacterial infections, including ones that display multiple resistance to current therapeutics. There are many promising approaches available for SrtA inhibition, some of which have the potential to advance into further clinical development, with peptidomimetic and in vivo active small molecules being among the most promising. There are currently no approved drugs on the market targeting SrtA, despite its promise, adding to the relevance of this review article, as it extends to the pharmaceutical industry additionally to academic researchers.


Subject(s)
Aminoacyltransferases , Anti-Bacterial Agents , Bacterial Proteins , Cysteine Endopeptidases , Peptidomimetics , Small Molecule Libraries , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gram-Positive Bacteria/drug effects
12.
Trends Biochem Sci ; 49(7): 596-610, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692993

ABSTRACT

Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Protein Engineering , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Substrate Specificity , Models, Molecular
13.
Int J Biol Macromol ; 271(Pt 1): 132505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768911

ABSTRACT

Proteases, essential regulators of plant stress responses, remain enigmatic in their precise functional roles. By employing activity-based probes for real-time monitoring, this study aimed to delve into protease activities in Chlamydomonas reinhardtii exposed to oxidative stress induced by hydrogen peroxide. However, our work revealed that the activity-based probes strongly labelled three non-proteolytic proteins-PsbO, PsbP, and PsbQ-integral components of photosystem II's oxygen-evolving complex. Subsequent biochemical assays and mass spectrometry experiments revealed the involvement of CrCEP1, a previously uncharacterized papain-like cysteine protease, as the catalyst of this labelling reaction. Further experiments with recombinant CrCEP1 and PsbO proteins replicated the reaction in vitro. Our data unveiled that endopeptidase CrCEP1 also has transpeptidase activity, ligating probes and peptides to the N-termini of Psb proteins, thereby expanding the repertoire of its enzymatic activities. The hitherto unknown transpeptidase activity of CrCEP1, working in conjunction with its proteolytic activity, unveils putative complex and versatile roles for proteases in cellular processes during stress responses.


Subject(s)
Chlamydomonas reinhardtii , Cysteine Proteases , Cysteine Proteases/metabolism , Cysteine Proteases/chemistry , Chlamydomonas reinhardtii/enzymology , Oxidative Stress , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Plant Proteins/metabolism , Plant Proteins/chemistry , Hydrogen Peroxide/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry
14.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38689446

ABSTRACT

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Escherichia coli , Protein Processing, Post-Translational , Aminoacyltransferases/metabolism , Aminoacyltransferases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/chemistry , Nanoparticles/chemistry
15.
J Biol Chem ; 300(6): 107315, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663827

ABSTRACT

Lewy bodies (LB) are aberrant protein accumulations observed in the brain cells of individuals affected by Parkinson's disease (PD). A comprehensive analysis of LB proteome identified over a hundred proteins, many co-enriched with α-synuclein, a major constituent of LB. Within this context, OTUB1, a deubiquitinase detected in LB, exhibits amyloidogenic properties, yet the mechanisms underlying its aggregation remain elusive. In this study, we identify two critical sites in OTUB1-namely, positions 133 and 173-that significantly impact its amyloid aggregation. Substituting alanine at position 133 and lysine at position 173 enhances both thermodynamic and kinetic stability, effectively preventing amyloid aggregation. Remarkably, lysine at position 173 demonstrates the highest stability without compromising enzymatic activity. The increased stability and inhibition of amyloid aggregation are attributed mainly to the changes in the specific microenvironment at the hotspot. In our exploration of the in-vivo co-occurrence of α-synuclein and OTUB1 in LB, we observed a synergistic modulation of each other's aggregation. Collectively, our study unveils the molecular determinants influencing OTUB1 aggregation, shedding light on the role of specific residues in modulating aggregation kinetics and structural transition. These findings contribute valuable insights into the complex interplay of amino acid properties and protein aggregation, with potential implications for understanding broader aspects of protein folding and aggregation phenomena.


Subject(s)
alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/chemistry , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/chemistry , Protein Aggregates , Lewy Bodies/metabolism , Parkinson Disease/metabolism , Parkinson Disease/genetics , Amyloid/metabolism , Amyloid/chemistry , Protein Stability , Enzyme Stability , Kinetics
16.
J Biol Chem ; 300(6): 107329, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679328

ABSTRACT

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Fimbriae Proteins , Fimbriae, Bacterial , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Aminoacyltransferases/metabolism , Aminoacyltransferases/genetics , Aminoacyltransferases/chemistry , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/genetics , Fimbriae Proteins/metabolism , Fimbriae Proteins/chemistry , Fimbriae Proteins/genetics , Crystallography, X-Ray , Actinomyces/metabolism , Actinomyces/enzymology , Substrate Specificity , Models, Molecular
17.
Protein Pept Lett ; 31(4): 305-311, 2024.
Article in English | MEDLINE | ID: mdl-38644721

ABSTRACT

BACKGROUND: Protease 3C (3Cpro) is the only protease encoded in the human hepatitis A virus genome and is considered as a potential target for antiviral drugs due to its critical role in the viral life cycle. Additionally, 3Cpro has been identified as a potent inducer of ferroptosis, a newly described type of cell death. Therefore, studying the molecular mechanism of 3Cpro functioning can provide new insights into viral-host interaction and the biological role of ferroptosis. However, such studies require a reliable technique for producing the functionally active recombinant enzyme. OBJECTIVE: Here, we expressed different modified forms of 3Cpro with a hexahistidine tag on the N- or C-terminus to investigate the applicability of immobilized metal Ion affinity chromatography (IMAC) for producing 3Cpro. METHODS: We expressed the proteins in Escherichia coli and purified them using IMAC, followed by gel permeation chromatography. The enzymatic activity of the produced proteins was assayed using a specific chromogenic substrate. RESULTS: Our findings showed that the introduction and position of the hexahistidine tag did not affect the activity of the enzyme. However, the yield of the target protein was highest for the variant with seven C-terminal residues replaced by a hexahistidine sequence. CONCLUSION: We demonstrated the applicability of our approach for producing recombinant, enzymatically active 3Cpro.


Subject(s)
3C Viral Proteases , Chromatography, Affinity , Escherichia coli , Histidine , Oligopeptides , Histidine/genetics , Histidine/metabolism , Histidine/chemistry , 3C Viral Proteases/chemistry , 3C Viral Proteases/metabolism , Humans , Oligopeptides/genetics , Oligopeptides/chemistry , Oligopeptides/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Viral Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/biosynthesis , Hepatitis A Virus, Human/genetics , Hepatitis A Virus, Human/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/biosynthesis , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Gene Expression
18.
FEBS J ; 291(13): 2918-2936, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38525648

ABSTRACT

In recent years, a few asparaginyl endopeptidases (AEPs) from certain higher plants have been identified as efficient peptide ligases with wide applications in protein labeling and cyclic peptide synthesis. Recently, we developed a NanoLuc Binary Technology (NanoBiT)-based peptide ligase activity assay to identify more AEP-type peptide ligases. Herein, we screened 61 bamboo species from 16 genera using this assay and detected AEP-type peptide ligase activity in the crude extract of all tested bamboo leaves. From a popular bamboo species, Bambusa multiplex, we identified a full-length AEP-type peptide ligase candidate (BmAEP1) via transcriptomic sequencing. After its zymogen was overexpressed in Escherichia coli and self-activated in vitro, BmAEP1 displayed high peptide ligase activity, but with considerable hydrolytic activity. After site-directed mutagenesis of its ligase activity determinants, the mutant zymogen of [G238V]BmAEP1 was normally overexpressed in E. coli, but failed to activate itself. To resolve this problem, we developed a novel protease-assisted activation approach in which trypsin was used to cleave the mutant zymogen and was then conveniently removed via ion-exchange chromatography. After the noncovalently bound cap domain was dissociated from the catalytic core domain under acidic conditions, the recombinant [G238V]BmAEP1 displayed high peptide ligase activity with much lower hydrolytic activity and could efficiently catalyze inter-molecular protein ligation and intramolecular peptide cyclization. Thus, the engineered bamboo-derived peptide ligase represents a novel tool for protein labeling and cyclic peptide synthesis.


Subject(s)
Cysteine Endopeptidases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Protein Engineering/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Ligases/genetics , Ligases/metabolism , Ligases/chemistry , Bambusa/genetics , Bambusa/enzymology , Mutagenesis, Site-Directed , Plant Leaves/enzymology , Plant Leaves/genetics , Amino Acid Sequence
19.
Chem Biodivers ; 21(5): e202301659, 2024 May.
Article in English | MEDLINE | ID: mdl-38407541

ABSTRACT

Sortase A (SrtA) is an attractive target for developing new anti-infective drugs that aim to interfere with essential virulence mechanisms, such as adhesion to host cells and biofilm formation. Herein, twenty hydroxy, nitro, bromo, fluoro, and methoxy substituted chalcone compounds were synthesized, antimicrobial activities and molecular modeling strategies against the SrtA enzyme were investigated. The most active compounds were found to be T2, T4, and T19 against Streptococcus mutans (S. mutans) with MIC values of 1.93, 3.8, 3.94 µg/mL, and docking scores of -6.46, -6.63, -6.73 kcal/mol, respectively. Also, these three active compounds showed better activity than the chlorohexidine (CHX) (MIC value: 4.88 µg/mL, docking score: -6.29 kcal/mol) in both in vitro and in silico. Structural stability and binding free energy analysis of S.mutans SrtA with active compounds were measured by molecular dynamic (MD) simulations throughout 100 nanoseconds (ns) time. It was observed that the stability of the critical interactions between these compounds and the target enzyme was preserved. To prove further, in vivo biological evaluation studies could be conducted for the most promising precursor compounds T2, T4, and T19, and it might open new avenues to the discovery of more potent SrtA inhibitors.


Subject(s)
Aminoacyltransferases , Bacterial Proteins , Cysteine Endopeptidases , Microbial Sensitivity Tests , Streptococcus mutans , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/chemistry , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Streptococcus mutans/drug effects , Streptococcus mutans/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Structure-Activity Relationship , Molecular Dynamics Simulation , Molecular Docking Simulation , Molecular Structure , Models, Molecular , Chalcone/chemistry , Chalcone/pharmacology , Chalcone/chemical synthesis , Dose-Response Relationship, Drug
20.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38365209

ABSTRACT

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Subject(s)
COVID-19 , Glutamine , Humans , Glutamine/chemistry , SARS-CoV-2 , Cysteine Endopeptidases/chemistry , Inventions , Protease Inhibitors/pharmacology , Amides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL