Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.452
Filter
1.
Afr Health Sci ; 24(1): 307-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38962329

ABSTRACT

Introduction: Pharmacogenetic markers, such as the ATP Binding Cassette (ABCB1) and cytochrome P450 (CYP) 3A5 enzymes, play a crucial role in personalized medicine by influencing drug efficacy and toxicity based on individuals' or populations' genetic variations.This study aims to investigate the genetic polymorphisms of CYP3A5 (rs776746) and ABCB1 (rs1045642) in the West Algerian population and compare the genotypes and allelic distributions with those of various ethnic groups. Methods: The study involved 472 unrelated healthy subjects from the Western Algerian population. DNA genotyping was performed using TaqMan allelic discrimination assay. The variants in our population were compared to those in other ethnic groups available in the 1000 Genomes Project. Genotype and allele frequencies were calculated using the chi-square test and the Hardy-Weinberg equilibrium (HWE). Results: The minor allele frequencies were found to be 0.21 for CYP3A5 6986A and 0.34 for ABCB1 3435T. These frequencies were similar to those observed in North African populations, while notable differences were observed in comparison to certain Caucasian and African populations. Conclusion: The difference in the allelic and genotypic distribution of these polymorphisms emphasize the need for dose adjustments in drugs metabolized by CYP3A5 and transported by ABCB1 to optimize treatments outcomes.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Cytochrome P-450 CYP3A , Gene Frequency , Genotype , Polymorphism, Single Nucleotide , Humans , Cytochrome P-450 CYP3A/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Algeria , Male , Female , Adult , Pharmacogenetics , Middle Aged , Black People/genetics , Alleles , Young Adult
2.
Yakugaku Zasshi ; 144(7): 775-779, 2024.
Article in English | MEDLINE | ID: mdl-38945852

ABSTRACT

Venetoclax (VEN) is used in patients with acute myeloid leukemia (AML) and is primarily metabolized by CYP3A4, a major drug-metabolizing enzyme. Patients with AML simultaneously administered VEN and CYP3A4 inhibitors require a more appropriate management of drug-drug interactions (DDIs). Here, we report two cases of patients with AML (54-year-old man and 22-year-old woman) administrated VEN and CYP3A4 inhibitors, such as posaconazole, cyclosporine, or danazol. In the first case, we evaluated the appropriateness of timing for adjusting VEN dosage subsequent to the cessation of posaconazole. Consequently, modifying the VEN dosage in conjunction with the cessation of Posaconazole simultaneously may result in elevated plasma VEN levels. In the second case, plasma VEN concentrations were markedly elevated when co-administered with several CYP3A4 inhibitors. Additionally, in vitro assays were conducted for reverse translational studies to analyze CYP3A4 inhibition. CYP3A4 inhibition by combinatorial administration of cyclosporine A and danazol was demonstrated in vitro, which potentially explains the increasing plasma VEN concentrations observed in clinical settings. Although the acquisition of therapeutic effects is a major priority for patients, frequent therapeutic drug monitoring and dosage adjustments considering DDIs would be important factors in chemotherapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Cytochrome P-450 CYP3A Inhibitors , Cytochrome P-450 CYP3A , Drug Interactions , Drug Monitoring , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Sulfonamides/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Male , Young Adult , Middle Aged , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/blood , Female , Cytochrome P-450 CYP3A/metabolism , Cyclosporine/administration & dosage , Triazoles/administration & dosage , Antineoplastic Agents/administration & dosage
3.
Toxins (Basel) ; 16(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38922153

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models were utilized to investigate potential interactions between aflatoxin B1 (AFB1) and efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor drug and inducer of several CYP enzymes, including CYP3A4. PBPK simulations were conducted in a North European Caucasian and Black South African population, considering different dosing scenarios. The simulations predicted the impact of EFV on AFB1 metabolism via CYP3A4 and CYP1A2. In vitro experiments using human liver microsomes (HLM) were performed to verify the PBPK predictions for both single- and multiple-dose exposures to EFV. Results showed no significant difference in the formation of AFB1 metabolites when combined with EFV (0.15 µM) compared to AFB1 alone. However, exposure to 5 µM of EFV, mimicking chronic exposure, resulted in increased CYP3A4 activity, affecting metabolite formation. While co-incubation with EFV reduced the formation of certain AFB1 metabolites, other outcomes varied and could not be fully attributed to CYP3A4 induction. Overall, this study provides evidence that EFV, and potentially other CYP1A2/CYP3A4 perpetrators, can impact AFB1 metabolism, leading to altered exposure to toxic metabolites. The results emphasize the importance of considering drug interactions when assessing the risks associated with mycotoxin exposure in individuals undergoing HIV therapy in a European and African context.


Subject(s)
Aflatoxin B1 , Alkynes , Benzoxazines , Cyclopropanes , Drug Interactions , Microsomes, Liver , Models, Biological , Reverse Transcriptase Inhibitors , Aflatoxin B1/pharmacokinetics , Aflatoxin B1/toxicity , Humans , Benzoxazines/pharmacokinetics , Benzoxazines/metabolism , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Reverse Transcriptase Inhibitors/pharmacokinetics , Male , Cytochrome P-450 CYP3A/metabolism , Adult , Female , Cytochrome P-450 CYP1A2/metabolism , Middle Aged , Young Adult , White People
4.
Biomolecules ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38927120

ABSTRACT

Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.


Subject(s)
Receptors, Calcitriol , Vitamin D3 24-Hydroxylase , Vitamin D , Animals , Vitamin D/metabolism , Humans , Vitamin D3 24-Hydroxylase/metabolism , Vitamin D3 24-Hydroxylase/genetics , Mice , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Intestinal Mucosa/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Intestines/enzymology , Calcitriol/metabolism
5.
PLoS One ; 19(6): e0297713, 2024.
Article in English | MEDLINE | ID: mdl-38917098

ABSTRACT

OBJECTIVE: N-butylphthalide (NBP) is a monomeric compound extracted from natural plant celery seeds, whether intestinal microbiota alteration can modify its pharmacokinetics is still unclear. The purpose of this study is to investigate the effect of intestinal microbiota alteration on the pharmacokinetics of NBP and its related mechanisms. METHODS: After treatment with antibiotics and probiotics, plasma NBP concentrations in SD rats were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The effect of intestinal microbiota changes on NBP pharmacokinetics was compared. Intestinal microbiota changes after NBP treatment were analyzed by 16S rRNA sequencing. Expressions of CYP3A1 mRNA and protein in the liver and small intestine tissues under different intestinal flora conditions were determined by qRT-PCR and Western Blot. KEGG analysis was used to analyze the effect of intestinal microbiota changes on metabolic pathways. RESULTS: Compared to the control group, the values of Cmax, AUC0-8, AUC0-∞, t1/2 in the antibiotic group increased by 56.1% (P<0.001), 56.4% (P<0.001), 53.2% (P<0.001), and 24.4% (P<0.05), respectively. In contrast, the CL and Tmax values decreased by 57.1% (P<0.001) and 28.6% (P<0.05), respectively. Treatment with antibiotics could reduce the richness and diversity of the intestinal microbiota. CYP3A1 mRNA and protein expressions in the small intestine of the antibiotic group were 61.2% and 66.1% of those of the control group, respectively. CYP3A1 mRNA and protein expressions in the liver were 44.6% and 63.9% of those in the control group, respectively. There was no significant change in the probiotic group. KEGG analysis showed that multiple metabolic pathways were significantly down-regulated in the antibiotic group. Among them, the pathways of drug metabolism, bile acid biosynthesis and decomposition, and fatty acid synthesis and decomposition were related to NBP biological metabolism. CONCLUSION: Antibiotic treatment could affect the intestinal microbiota, decrease CYP3A1 mRNA and protein expressions and increase NBP exposure in vivo by inhibiting pathways related to NBP metabolism.


Subject(s)
Anti-Bacterial Agents , Benzofurans , Cytochrome P-450 CYP3A , Gastrointestinal Microbiome , Rats, Sprague-Dawley , Animals , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Rats , Benzofurans/pharmacokinetics , Male , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Liver/metabolism , Liver/drug effects , Intestine, Small/metabolism , Intestine, Small/microbiology , Intestine, Small/drug effects
6.
ACS Biomater Sci Eng ; 10(7): 4635-4644, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38822812

ABSTRACT

In the evolving field of drug discovery and development, multiorgans-on-a-chip and microphysiological systems are gaining popularity owing to their ability to emulate in vivo biological environments. Among the various gut-liver-on-a-chip systems for studying oral drug absorption, the chip developed in this study stands out with two distinct features: incorporation of perfluoropolyether (PFPE) to effectively mitigate drug sorption and a unique enterohepatic single-passage system, which simplifies the analysis of first-pass metabolism and oral bioavailability. By introducing a bolus drug injection into the liver compartment, hepatic extraction alone could be evaluated, further enhancing our estimation of intestinal availability. In a study on midazolam (MDZ), PFPE-based chips showed more than 20-times the appearance of intact MDZ in the liver compartment effluent compared to PDMS-based counterparts. Notably, saturation of hepatic metabolism at higher concentrations was confirmed by observations when the dose was reduced from 200 µM to 10 µM. This result was further emphasized when the metabolism was significantly inhibited by the coadministration of ketoconazole. Our chip, which is designed to minimize the dead volume between the gut and liver compartments, is adept at sensitively observing the saturation of metabolism and the effect of inhibitors. Using genome-edited CYP3A4/UGT1A1-expressing Caco-2 cells, the estimates for intestinal and hepatic availabilities were 0.96 and 0.82, respectively; these values are higher than the known human in vivo values. Although the metabolic activity in each compartment can be further improved, this gut-liver-on-a-chip can not only be used to evaluate oral bioavailability but also to carry out individual assessment of both intestinal and hepatic availability.


Subject(s)
Biological Availability , Ethers , Fluorocarbons , Liver , Liver/metabolism , Fluorocarbons/chemistry , Fluorocarbons/pharmacokinetics , Fluorocarbons/metabolism , Humans , Administration, Oral , Lab-On-A-Chip Devices , Caco-2 Cells , Cytochrome P-450 CYP3A/metabolism , Animals
7.
Clin Toxicol (Phila) ; 62(5): 288-295, 2024 May.
Article in English | MEDLINE | ID: mdl-38874383

ABSTRACT

INTRODUCTION: Intentional and unintentional organophosphorus pesticide exposure is a public health concern. Organothiophosphate compounds require metabolic bioactivation by the cytochrome P450 system to their corresponding oxon analogues to act as potent inhibitors of acetylcholinesterase. It is known that interactions between cytochrome P450 and pesticides include the inhibition of major xenobiotic metabolizing cytochrome P450 enzymes and changes on the genetic level. METHODS: In this in vitro study, the influence of the pesticides parathion and paraoxon on human cytochrome P450 and associated oxygenases was investigated with a metabolically competent cell line (HepaRG cells). First, the viability of the cells after exposure to parathion and paraoxon was evaluated. The inhibitory effect of both pesticides on cytochrome P450 3A4, which is a pivotal enzyme in the metabolism of xenobiotics, was examined by determining the dose-response curve. Changes on the transcription level of 92 oxygenase associated genes, including those for important cytochrome P450 enzymes, were evaluated. RESULTS: The exposure of HepaRG cells to parathion and paraoxon at concentrations up to 100 µM resulted in a viability of 100 per cent. After exposure for 24 hours, pronounced inhibition of cytochrome P450 3A4 enzyme activity was shown, indicating 50 per cent effective concentrations of 1.2 µM (parathion) and 2.1 µM (paraoxon). The results revealed that cytochrome P450 involved in parathion metabolism were significantly upregulated. DISCUSSION: Relevant changes of the cytochrome P450 3A4 enzyme activity and significant alteration of genes associated with cytochrome P450 suggest an interference of pesticide exposure with numerous metabolic processes. The major limitations of the work involve the use of a single pesticide and the in vitro model as surrogate to human hepatocytes. CONCLUSION: The data of this study might be of relevance after survival of acute, life-threatening intoxications with organophosphorus compounds, particularly for the co-administration of drugs, which are metabolized by the affected cytochrome P450.


Subject(s)
Cell Survival , Paraoxon , Parathion , Humans , Paraoxon/toxicity , Parathion/toxicity , Cell Survival/drug effects , Pesticides/toxicity , Pesticides/metabolism , Dose-Response Relationship, Drug , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 CYP3A/metabolism , Insecticides/toxicity , Cell Line , Cholinesterase Inhibitors/toxicity
8.
PeerJ ; 12: e17446, 2024.
Article in English | MEDLINE | ID: mdl-38827306

ABSTRACT

Objectives: To investigate the interaction between tramadol and representative tyrosine kinase inhibitors, and to study the inhibition mode of drug-interaction. Methods: Liver microsomal catalyzing assay was developed. Sprague-Dawley rats were administrated tramadol with or without selected tyrosine kinase inhibitors. Samples were prepared and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used for analysis. Besides, liver, kidney, and small intestine were collected and morphology was examined by hematoxyline-eosin (H&E) staining. Meanwhile, liver microsomes were prepared and carbon monoxide differential ultraviolet radiation (UV) spectrophotometric quantification was performed. Results: Among the screened inhibitors, crizotinib takes the highest potency in suppressing the metabolism of tramadol in rat/human liver microsome, following non-competitive inhibitory mechanism. In vivo, when crizotinib was co-administered, the AUC value of tramadol increased compared with the control group. Besides, no obvious pathological changes were observed, including cell morphology, size, arrangement, nuclear morphology with the levels of alanine transaminase (ALT) and aspartate transaminase (AST) increased after multiple administration of crizotinib. Meanwhile, the activities of CYP2D1 and CYP3A2 as well as the total cytochrome P450 abundance were found to be decreased in rat liver of combinational group. Conclusions: Crizotinib can inhibit the metabolism of tramadol. Therefore, this recipe should be vigilant to prevent adverse reactions.


Subject(s)
Crizotinib , Cytochrome P-450 CYP3A , Microsomes, Liver , Rats, Sprague-Dawley , Tramadol , Animals , Tramadol/pharmacology , Crizotinib/pharmacology , Rats , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Cytochrome P-450 CYP3A/metabolism , Male , Drug Interactions , Humans , Tandem Mass Spectrometry , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Analgesics, Opioid/pharmacology
9.
Ann Acad Med Singap ; 53(2): 69-79, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38920231

ABSTRACT

Introduction: Few real-world studies have investigated drug-drug interactions (DDIs) involving non-vitamin-K antagonist oral anticoagulants (NOACs) in patients with nonvalvular atrial fibrillation (NVAF). The interactions encompass drugs inducing or inhibiting cytochrome P450 3A4 and permeability glycoprotein. These agents potentially modulate the breakdown and elimination of NOACs. This study investigated the impact of DDIs on thromboembolism in this clinical scenario. Method: Patients who had NVAF and were treated with NOACs were selected as the study cohort from the National Health Insurance Research Database of Taiwan. Cases were defined as patients hospitalised for a thromboembolic event and who underwent a relevant imaging study within 7 days before hospitalisa-tion or during hospitalisation. Each case was matched with up to 4 controls by using the incidence density sampling method. The concurrent use of a cytochrome P450 3A4/permeability glycoprotein inducer or inhibitor or both with NOACs was identified. The effects of these interactions on the risk of thromboembolic events were examined with univariate and multivariate conditional logistic regressions. Results: The study cohort comprised 60,726 eligible patients. Among them, 1288 patients with a thromboembolic event and 5144 matched control patients were selected for analysis. The concurrent use of a cytochrome P450 3A4/permeability glycoprotein inducer resulted in a higher risk of thromboembolic events (adjusted odds ratio [AOR] 1.23, 95% confidence interval [CI] 1.004-1.51). Conclusion: For patients with NVAF receiving NOACs, the concurrent use of cytochrome P450 3A4/ permeability glycoprotein inducers increases the risk of thromboembolic events.


Subject(s)
Anticoagulants , Atrial Fibrillation , Drug Interactions , Thromboembolism , Humans , Atrial Fibrillation/drug therapy , Atrial Fibrillation/complications , Thromboembolism/prevention & control , Thromboembolism/epidemiology , Thromboembolism/etiology , Anticoagulants/administration & dosage , Anticoagulants/therapeutic use , Male , Female , Aged , Administration, Oral , Taiwan/epidemiology , Middle Aged , Case-Control Studies , Aged, 80 and over , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Cytochrome P-450 CYP3A/metabolism , Factor Xa Inhibitors/therapeutic use , Factor Xa Inhibitors/administration & dosage , Pyridones/administration & dosage , Pyridones/therapeutic use , Pyridones/adverse effects
10.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928254

ABSTRACT

Genetic variation among inhaled corticosteroid (ICS)-metabolizing enzymes may affect asthma control, but evidence is limited. This study tested the hypothesis that single-nucleotide polymorphisms (SNPs) in Cytochrome P450 3A5 (CYP3A5) would affect asthma outcomes. Patients aged 2-18 years with persistent asthma were recruited to use the electronic AsthmaTracker (e-AT), a self-monitoring tool that records weekly asthma control, medication use, and asthma outcomes. A subset of patients provided saliva samples for SNP analysis and participated in a pharmacokinetic study. Multivariable regression analysis adjusted for age, sex, race, and ethnicity was used to evaluate the impact of CYP3A5 SNPs on asthma outcomes, including asthma control (measured using the asthma symptom tracker, a modified version of the asthma control test or ACT), exacerbations, and hospital admissions. Plasma corticosteroid and cortisol concentrations post-ICS dosing were also assayed using liquid chromatography-tandem mass spectrometry. Of the 751 patients using the e-AT, 166 (22.1%) provided saliva samples and 16 completed the PK study. The e-AT cohort was 65.1% male, and 89.6% White, 6.0% Native Hawaiian, 1.2% Black, 1.2% Native American, 1.8% of unknown race, and 15.7% Hispanic/Latino; the median age was 8.35 (IQR: 5.51-11.3) years. CYP3A5*3/*3 frequency was 75.8% in White subjects, 50% in Native Hawaiians and 76.9% in Hispanic/Latino subjects. Compared with CYP3A5*3/*3, the CYP3A5*1/*x genotype was associated with reduced weekly asthma control (OR: 0.98; 95% CI: 0.97-0.98; p < 0.001), increased exacerbations (OR: 6.43; 95% CI: 4.56-9.07; p < 0.001), and increased asthma hospitalizations (OR: 1.66; 95% CI: 1.43-1.93; p < 0.001); analysis of 3/*3, *1/*1 and *1/*3 separately showed an allelic copy effect. Finally, PK analysis post-ICS dosing suggested muted changes in cortisol concentrations for patients with the CYP3A5*3/*3 genotype, as opposed to an effect on ICS PK. Detection of CYP3A5*3/3, CYPA35*1/*3, and CYP3A5*1/*1 could impact inhaled steroid treatment strategies for asthma in the future.


Subject(s)
Adrenal Cortex Hormones , Asthma , Cytochrome P-450 CYP3A , Polymorphism, Single Nucleotide , Humans , Asthma/drug therapy , Asthma/genetics , Child , Male , Female , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Adolescent , Child, Preschool , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/pharmacokinetics , Adrenal Cortex Hormones/administration & dosage , Genotype , Hydrocortisone/blood , Saliva/metabolism , Treatment Outcome
11.
Biol Pharm Bull ; 47(6): 1218-1223, 2024.
Article in English | MEDLINE | ID: mdl-38925922

ABSTRACT

Unknown interactions between drugs remain the limiting factor for clinical application of drugs, and the induction and inhibition of drug-metabolizing CYP enzymes are considered the key to examining the drug-drug interaction (DDI). In this study, using human HepaRG cells as an in vitro model system, we analyzed the potential DDI based on the expression levels of CYP3A4 and CYP1A2. Rifampicin and omeprazole, the potent inducers for CYP3A4 and CYP1A2, respectively, induce expression of the corresponding CYP enzymes at both the mRNA and protein levels. We noticed that, in addition to inducing CYP1A2, omeprazole induced CYP3A4 mRNA expression in HepaRG cells. However, unexpectedly, CYP3A4 protein expression levels were not increased after omeprazole treatment. Concurrent administration of rifampicin and omeprazole showed an inhibitory effect of omeprazole on the CYP3A4 protein expression induced by rifampicin, while its mRNA induction remained intact. Cycloheximide chase assay revealed increased CYP3A4 protein degradation in the cells exposed to omeprazole. The data presented here suggest the potential importance of broadening the current DDI examination beyond conventional transcriptional induction and enzyme-activity inhibition tests to include post-translational regulation analysis of CYP enzyme expression.


Subject(s)
Cytochrome P-450 CYP3A , Drug Interactions , Omeprazole , RNA, Messenger , Rifampin , Omeprazole/pharmacology , Humans , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Rifampin/pharmacology , RNA, Messenger/metabolism , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/biosynthesis , Cell Line
12.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893358

ABSTRACT

Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters may affect the efficacy of the drugs being used together with PDQ. These potential drug-drug interactions (DDIs) are essential for the clinical usage of drugs. In this study, we investigated the inhibitory effect of PDQ on seven CYP450 enzymes and seven drug transporters with in vitro models. PDQ has a significant inhibitory effect on CYP2C19 and P-glycoprotein (P-gp) with a half-inhibitory concentration (IC50) of 0.698 and 0.41 µM, respectively. The inhibition of CYP3A4 and breast cancer-resistant protein (BCRP) is less potent, with IC50 equal to 2.02-6.79 and 1.08 µM, respectively.


Subject(s)
Cytochrome P-450 Enzyme System , Drug Interactions , Ginsenosides , Humans , Ginsenosides/pharmacology , Ginsenosides/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP2C19/metabolism , Neoplasm Proteins/metabolism , Neoplasm Proteins/antagonists & inhibitors
14.
Toxicol Lett ; 397: 34-41, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734219

ABSTRACT

Humantenmine, koumine, and gelsemine are three indole alkaloids found in the highly toxic plant Gelsemium. Humantenmine was the most toxic, followed by gelsemine and koumine. The aim of this study was to investigate and analyze the effects of these three substances on tissue distribution and toxicity in mice pretreated with the Cytochrome P450 3A4 (CYP3A4) inducer ketoconazole and the inhibitor rifampicin. The in vivo test results showed that the three alkaloids were absorbed rapidly and had the ability to penetrate the blood-brain barrier. At 5 min after intraperitoneal injection, the three alkaloids were widely distributed in various tissues and organs, the spleen and pancreas were the most distributed, and the content of all tissues decreased significantly at 20 min. Induction or inhibition of CYP3A4 in vivo can regulate the distribution and elimination effects of the three alkaloids in various tissues and organs. Additionally, induction of CYP3A4 can reduce the toxicity of humantenmine, and vice versa. Changes in CYP3A4 levels may account for the difference in toxicity of humantenmine. These findings provide a reliable and detailed dataset for drug interactions, tissue distribution, and toxicity studies of Gelsemium alkaloids.


Subject(s)
Cytochrome P-450 CYP3A , Gelsemium , Indole Alkaloids , Animals , Gelsemium/chemistry , Cytochrome P-450 CYP3A/metabolism , Indole Alkaloids/toxicity , Tissue Distribution , Male , Mice , Ketoconazole/toxicity , Ketoconazole/pharmacology , Cytochrome P-450 CYP3A Inducers/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Alkaloids
16.
Eur J Clin Pharmacol ; 80(8): 1219-1227, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38691139

ABSTRACT

OBJECTIVES: To describe the pharmacokinetic (PK) characteristics of nirmatrelvir/ritonavir in renal transplant recipients and explore the potential factors that related to the PK variance of nirmatrelvir/ritonavir and its interaction with calcineurin inhibitor (CNI). METHODS: Renal transplant recipients treated with CNI and nirmatrelvir/ritonavir were prospectively enrolled. Steady-state plasma concentrations of nirmatrelvir/ritonavir were determined by high-performance liquid chromatography-tandem mass spectrometry, and the PK parameters were calculated using non-compartmental analysis. Spearman correlation analysis was used for exploring influencing factors. RESULTS: A total of eight recipients were enrolled; for nirmatrelvir and ritonavir, AUC/dose was 0.24179 ± 0.14495 and 0.06196 ± 0.03767 µg·h·mL-1·mg-1. Red blood cell (RBC), hematocrit (Ht), hemoglobins (Hb), and creatinine clearance (Ccr) were negatively correlated with AUC/dose of nirmatrelvir, while Ccr, CYP3A5 genotype, and CYP3A4 genotype were related to the AUC/dose of ritonavir. Ccr was negatively correlated with the C0/dose of tacrolimus (TAC) after termination of nirmatrelvir/ritonavir (rs = -0.943, p = 0.008). CONCLUSIONS: The PK characteristics of nirmatrelvir/ritonavir vary greatly among renal transplant recipients. Factors including Ccr and CYP3A5 genotype were related to the in vivo exposure of nirmatrelvir/ritonavir. During the whole process before and after nirmatrelvir/ritonavir therapy, it is recommended to adjust the CNI basing on renal function to avoid CNI toxicity exposure.


Subject(s)
Calcineurin Inhibitors , Drug Interactions , Kidney Transplantation , Ritonavir , Humans , Ritonavir/pharmacokinetics , Ritonavir/pharmacology , Male , Calcineurin Inhibitors/pharmacokinetics , Calcineurin Inhibitors/pharmacology , Calcineurin Inhibitors/administration & dosage , Female , Middle Aged , Adult , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/administration & dosage , Prospective Studies , Tacrolimus/pharmacokinetics , Tacrolimus/administration & dosage , Tacrolimus/pharmacology , Genotype , Area Under Curve , Transplant Recipients
17.
Pharmacogenet Genomics ; 34(6): 184-190, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38728170

ABSTRACT

PURPOSE: This study was the first to evaluate the effect of CYP3A5*3 gene polymorphisms on plasma concentration of perampanel (PER) in Chinese pediatric patients with epilepsy. METHODS: We enrolled 98 patients for this investigation. Plasma PER concentrations were measured using liquid chromatography-tandem mass spectrometry. Leftover samples from standard therapeutic drug monitoring were allocated for genotyping analysis. The primary measure of efficacy was the rate of seizure reduction with PER treatment at the final checkup. RESULTS: The plasma concentration showed a linear correlation with the daily dose taken ( r  = 0.17; P  < 0.05). The ineffective group showed a significantly lower plasma concentration of PER (490.5 ±â€…297.1 vs. 633.8 ±â€…305.5 µg/ml; P  = 0.019). For the mean concentration-to-dose (C/D) ratio, the ineffective group showed a significantly lower C/D ratio of PER (3.2 ±â€…1.7 vs. 3.8 ±â€…2.0; P  = 0.040). The CYP3A5*3 CC genotype exhibited the highest average plasma concentration of PER at 562.8 ±â€…293.9 ng/ml, in contrast to the CT and TT genotypes at 421.1 ±â€…165.6 ng/ml and 260.0 ±â€…36.1 ng/ml. The mean plasma PER concentration was significantly higher in the adverse events group (540.8 ±â€…285.6 vs. 433.0 ±â€…227.2 ng/ml; P  = 0.042). CONCLUSION: The CYP3A5*3 gene's genetic polymorphisms influence plasma concentrations of PER in Chinese pediatric patients with epilepsy. Given that both efficacy and potential toxicity are closely tied to plasma PER levels, the CYP3A5*3 genetic genotype should be factored in when prescribing PER to patients with epilepsy.


Subject(s)
Anticonvulsants , Cytochrome P-450 CYP3A , Epilepsy , Nitriles , Pyridones , Humans , Cytochrome P-450 CYP3A/genetics , Child , Female , Male , Epilepsy/drug therapy , Epilepsy/genetics , Nitriles/pharmacokinetics , Pyridones/pharmacokinetics , Pyridones/administration & dosage , Pyridones/adverse effects , Child, Preschool , Anticonvulsants/pharmacokinetics , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Polymorphism, Single Nucleotide/genetics , Genotype , Adolescent , Asian People/genetics , East Asian People
18.
Toxicol Lett ; 397: 79-88, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734220

ABSTRACT

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.


Subject(s)
Cell Proliferation , Hepatocytes , Hepatomegaly , Liver , Mice, Inbred C57BL , PPAR alpha , Pregnane X Receptor , Pyrimidines , YAP-Signaling Proteins , Animals , PPAR alpha/agonists , PPAR alpha/metabolism , Hepatomegaly/chemically induced , Hepatomegaly/metabolism , Hepatomegaly/pathology , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , YAP-Signaling Proteins/metabolism , Pyrimidines/pharmacology , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Male , Liver/drug effects , Liver/metabolism , Liver/pathology , Cell Proliferation/drug effects , beta Catenin/metabolism , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cytochrome P-450 CYP4A/metabolism , Cytochrome P-450 CYP4A/genetics , Cytochrome P450 Family 4/genetics , Cytochrome P450 Family 4/metabolism , Mice , Phosphoproteins/metabolism , Phosphoproteins/genetics , Ki-67 Antigen/metabolism , Membrane Proteins , Steroid Hydroxylases , Cytochrome P450 Family 2 , Cytochrome P-450 CYP3A , Aryl Hydrocarbon Hydroxylases
19.
J Agric Food Chem ; 72(19): 10897-10908, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691522

ABSTRACT

Gramine (GRM), which occurs in Gramineae plants, has been developed to be a biological insecticide. Exposure to GRM was reported to induce elevations of serum ALT and AST in rats, but the mechanisms of the observed hepatotoxicity have not been elucidated. The present study aimed to identify reactive metabolites that potentially participate in the toxicity. In rat liver microsomal incubations fortified with glutathione or N-acetylcysteine, one oxidative metabolite (M1), one glutathione conjugate (M2), and one N-acetylcysteine conjugate (M3) were detected after exposure to GRM. The corresponding conjugates were detected in the bile and urine of rats after GRM administration. CYP3A was the main enzyme mediating the metabolic activation of GRM. The detected GSH and NAC conjugates suggest that GRM was metabolized to a quinone imine intermediate. Both GRM and M1 showed significant toxicity to rat primary hepatocytes.


Subject(s)
Activation, Metabolic , Cytochrome P-450 CYP3A , Hepatocytes , Rats, Sprague-Dawley , Animals , Rats , Male , Hepatocytes/metabolism , Hepatocytes/drug effects , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A/genetics , Microsomes, Liver/metabolism , Glutathione/metabolism , Insecticides/toxicity , Insecticides/metabolism , Alkaloids/metabolism
20.
Biomed Pharmacother ; 175: 116421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719708

ABSTRACT

Tofacitinib can effectively improve the clinical symptoms of rheumatoid arthritis (RA) patients. In this current study, a recombinant human CYP2C19 and CYP3A4 system was operated to study the effects of recombinant variants on tofacitinib metabolism. Moreover, the interaction between tofacitinib and myricetin was analyzed in vitro. The levels of M9 (the main metabolite of tofacitinib) was detected by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The findings revealed that 11 variants showed significant changes in the levels of M9 compared to CYP3A4.1, while the other variants didn't reveal any remarkable significances. Compared with CYP2C19.1, 11 variants showed increases in the levels of M9, and 10 variants showed decreases. Additionally, it was demonstrated in vitro that the inhibition of tofacitinib by myricetin was a non-competitive type in rat liver microsomes (RLM) and human liver microsomes (HLM). However, the inhibitory mechanism was a competitive type in CYP3A4.18, and mixed type in CYP3A4.1 and .28, respectively. The data demonstrated that gene polymorphisms and myricetin had significant effects on the metabolism of tofacitinib, contributing to important clinical data for the precise use.


Subject(s)
Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP3A , Drug Interactions , Flavonoids , Microsomes, Liver , Piperidines , Pyrimidines , Humans , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Pyrimidines/pharmacology , Pyrimidines/metabolism , Animals , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Rats , Piperidines/pharmacology , Piperidines/pharmacokinetics , Piperidines/metabolism , Polymorphism, Genetic , Pyrroles/pharmacology , Pyrroles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...