Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24.777
Filter
1.
Virol J ; 21(1): 172, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095779

ABSTRACT

Human papillomavirus (HPV) 11/16 E6/E7 proteins have been recognized to be pivotal in viral pathogenesis. This study sought to uncover the potential mechanisms of how HPV11/16 E6/E7-transfected keratinocytes inhibit cytokine secretion in peripheral blood mononuclear cells (PBMC). Upon co-culturing HPV11/16 E6/E7-transfected keratinocytes with PBMC in a non-contact manner, we observed a marked decrease in various cytokines secreted by PBMC. To determine if this suppression was mediated by specific common secreted factors, we conducted transcriptomic sequencing on these transfected cells. This analysis identified 53 common differentially secreted genes in all four HPV-transfected cells. Bioinformatics analysis demonstrated these genes were predominantly involved in immune regulation. Results from quantitative PCR (qPCR) and an extensive literature review suggested the downregulation of 12 genes (ACE2, BMP3, BPIFB1, CLU, CST6, CTF1, HMGB2, MMP12, PDGFA, RNASE7, SULF2, TGM2), and upregulation of 7 genes (CCL17, CCL22, FBLN1, PLAU, S100A7, S100A8, S100A9), may be crucial in modulating tumor immunity and combating pathogenic infections, with genes S100A8 and S100A9, and IL-17 signaling pathway being particularly noteworthy. Thus, HPV11/16 E6/E7 proteins may inhibit cytokine secretion of immune cells by altering the expression of host-secreted genes. Further exploration of these genes may yield new insights into the complex dynamics of HPV infection.


Subject(s)
Cytokines , Leukocytes, Mononuclear , Oncogene Proteins, Viral , Humans , Cytokines/metabolism , Cytokines/genetics , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/metabolism , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/immunology , Keratinocytes/virology , Keratinocytes/immunology , Keratinocytes/metabolism , Human papillomavirus 16/genetics , Human papillomavirus 16/immunology , Human papillomavirus 11/genetics , Human papillomavirus 11/immunology , Gene Expression Profiling , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Papillomavirus E7 Proteins/immunology , Coculture Techniques , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics
2.
PLoS One ; 19(8): e0307779, 2024.
Article in English | MEDLINE | ID: mdl-39150929

ABSTRACT

OBJECTIVE: The main pathological change of myocarditis is an inflammatory injury of cardiomyocytes. Long noncoding RNAs (lncRNAs) are closely related to inflammation, and our previous study showed that differential expression of lncRNAs is associated with myocarditis. This study aimed to investigate the impact of lncRNAs on the onset of myocarditis. METHODS: RNA expression was measured by quantitative reverse-transcription polymerase chain reaction (RT-qPCR). Lipopolysaccharide (LPS) was used to induce inflammation in human cardiomyocytes (HCMs). The expression of inflammatory cytokines and myocardial injury markers was detected by enzyme-linked immunosorbent assay (ELISA) and RT-qPCR. Cell viability and apoptosis were measured by the cell counting kit-8 assay and flow cytometry. The binding force between lncRNA NONHSAT122636.2 and microRNA miRNA-2110 was detected using the dual-luciferase assay. RESULTS: NONHSAT122636.2 was dynamically expressed in patients with myocarditis and negatively correlated with inflammation severity. The overexpression of NONHSAT122636.2 improved inflammatory injury in LPS-stimulated HCMs. The study observed that there was a weak binding force between NONHSAT122636.2 and miR-2110. CONCLUSION: NONHSAT122636.2 attenuates myocardial inflammation and apoptosis in myocarditis. Additionally, its expression decreases in the peripheral blood of children suffering from myocarditis and in patients who are diagnosed for the first time showing higher diagnostic sensitivity and specificity. This decrease is negatively correlated with the degree of inflammation. Overall, the study suggests that NONHSAT122636.2 can be exploited as a potential diagnostic biomarker for pediatric myocarditis.


Subject(s)
Apoptosis , MicroRNAs , Myocarditis , Myocytes, Cardiac , RNA, Long Noncoding , Myocarditis/genetics , Myocarditis/pathology , Myocarditis/metabolism , RNA, Long Noncoding/genetics , Humans , Apoptosis/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Male , Female , Lipopolysaccharides/pharmacology , Child , Inflammation/genetics , Inflammation/pathology , Child, Preschool , Cytokines/metabolism , Cytokines/genetics
3.
World J Microbiol Biotechnol ; 40(10): 293, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112831

ABSTRACT

Probiotics are live microorganisms that, when administered in adequate quantities, provide health benefits to the host. In this study, phenotypic and genotypic methods were used to evaluate the probiotic properties of Bacillus altitudinis 1.4. The isolate was sensitive to all antimicrobials tested and presented a positive result in the hemolysis test. B. altitudinis 1.4 spores were more resistant than vegetative cells, when evaluated in simulation of cell viability in the gastrointestinal tract, as well as adhesion to the intestinal mucosa. The isolate was capable of self-aggregation and coaggregation with pathogens such as Escherichia coli ATCC 25922 and Salmonella Enteritidis ATCC 13076. Genomic analysis revealed the presence of genes with probiotic characteristics. From this study it was possible to evaluate the gene expression of pro-inflammatory and anti-inflammatory cytokines for different treatments. Viable vegetative cells of B. altitudinis 1.4 increased the transcription of pro-inflammatory factors, in addition to also increasing the transcription of IL-10, indicating a tendency to stimulate a pro-inflammatory profile. Given the results presented, B. altitudinis 1.4 showed potential to be applied in the incorporation of this microorganism into animal feed, since the spores could tolerate the feed handling and pelletization processes.


Subject(s)
Bacillus , Genome, Bacterial , Probiotics , Probiotics/pharmacology , Bacillus/genetics , Immunologic Factors/pharmacology , Cytokines/metabolism , Cytokines/genetics , Escherichia coli/genetics , Spores, Bacterial/genetics , Bacterial Adhesion , Salmonella enteritidis/genetics , Animal Feed/microbiology , Anti-Bacterial Agents/pharmacology , Animals
4.
Adv Exp Med Biol ; 1448: 121-126, 2024.
Article in English | MEDLINE | ID: mdl-39117811

ABSTRACT

Macrophage activation syndrome (MAS) is a life-threatening episode of hyperinflammation driven by excessive activation and expansion of T cells (mainly CD8) and hemophagocytic macrophages producing proinflammatory cytokines. MAS has been reported in association with almost every rheumatic disease, but it is by far most common in systemic juvenile idiopathic arthritis (SJIA). Clinically, MAS is similar to familial or primary hemophagocytic lymphohistiocytosis (pHLH), a group of rare autosomal recessive disorders linked to various genetic defects all affecting the perforin-mediated cytolytic pathway employed by NK cells and cytotoxic CD8 T lymphocytes. Decreased cytolytic activity in pHLH patients leads to prolonged survival of target cells associated with increased production of proinflammatory cytokines that overstimulate macrophages. The resulting cytokine storm is believed to be responsible for the frequently fatal multiorgan system failure seen in MAS. Whole exome sequencing as well as targeted sequencing of pHLH-associated genes in patients with SJIA-associated MAS demonstrated increased "burden" of rare protein-altering variants affecting the cytolytic pathway compared to healthy controls, suggesting that as in pHLH, genetic variability in the cytolytic pathway contributes to MAS predisposition. Functional studies of some of the novel variants have shown that even in a heterozygous state, their presence partially reduces cytolytic activity that may lead to increased cytokine production.


Subject(s)
Arthritis, Juvenile , Macrophage Activation Syndrome , Humans , Macrophage Activation Syndrome/genetics , Macrophage Activation Syndrome/immunology , Arthritis, Juvenile/genetics , Arthritis, Juvenile/immunology , Arthritis, Juvenile/complications , Genetic Predisposition to Disease , Killer Cells, Natural/immunology , Cytokines/genetics , Cytokines/metabolism , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/immunology , Macrophages/immunology , Macrophages/metabolism
5.
Adv Exp Med Biol ; 1448: 481-496, 2024.
Article in English | MEDLINE | ID: mdl-39117835

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.


Subject(s)
Cytokine Release Syndrome , Disease Models, Animal , Lymphohistiocytosis, Hemophagocytic , Animals , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Mice , Humans , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Cytokines/genetics , T-Lymphocytes, Cytotoxic/immunology , Killer Cells, Natural/immunology
6.
J Infect Dis ; 230(Supplement_1): S40-S50, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140723

ABSTRACT

BACKGROUND: Postinfectious Lyme arthritis (LA) is associated with dysregulated immunity and autoreactive T- and B-cell responses in joints. Here we explored the role of host genetic variation in this outcome. METHODS: The frequency of 253 702 single-nucleotide polymorphisms (SNPs) was determined in 147 patients with LA (87 with postinfectious LA and 60 with antibiotic-responsive LA), and for comparison in 90 patients with erythema migrans or the general population (n = 2504). Functional outcome of candidate SNPs was assessed by evaluating their impact on clinical outcome and on immune responses in blood and synovial fluid in patients with LA. RESULTS: Six SNPs associated with late cornified envelope (LCE3) genes were present at greater frequency in patients with postinfectious LA compared to those with antibiotic-responsive LA (70% vs 30%; odds ratio, 2; P < .01). These SNPs were associated with heightened levels of inflammatory Th17 cytokines in serum but lower levels of interleukin 27, a regulatory cytokine, implying that they may contribute to dysregulated Th17 immunity in blood. Moreover, in patients with postinfectious LA, the levels of these Th17 mediators correlated directly with autoantibody responses in synovial fluid, providing a possible link between LCE3 SNPs, maladaptive systemic Th17 immunity, and autoreactive responses in joints. CONCLUSIONS: Variation in the LCE3 locus, a known genetic risk factor in psoriasis and psoriatic arthritis, is associated with dysregulated systemic Th17 immunity and heightened autoantibody responses in joints. These findings underscore the importance of host genetic predisposition and systemic Th17 immunity in the pathogenesis of postinfectious (antibiotic-refractory) Lyme arthritis.


Subject(s)
Lyme Disease , Polymorphism, Single Nucleotide , Th17 Cells , Humans , Lyme Disease/genetics , Lyme Disease/immunology , Th17 Cells/immunology , Male , Female , Adult , Middle Aged , Synovial Fluid/immunology , Aged , Cytokines/genetics , Cytokines/metabolism , Arthritis, Infectious/genetics , Arthritis, Infectious/immunology , Young Adult
7.
Int J Nanomedicine ; 19: 7731-7750, 2024.
Article in English | MEDLINE | ID: mdl-39099787

ABSTRACT

Purpose: Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods: To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1ß, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/ß-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results: The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion: In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.


Subject(s)
Inflammation , Lignin , Nanoparticles , Zebrafish , Animals , Lignin/chemistry , Lignin/pharmacology , Nanoparticles/chemistry , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Disease Models, Animal , Cytokines/metabolism , Cytokines/genetics , Embryo, Nonmammalian/drug effects , Pseudomonas aeruginosa/drug effects , Wnt Signaling Pathway/drug effects
8.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126012

ABSTRACT

Exposure to ionizing radiation can result in the development of a number of diseases, including cancer, cataracts and neurodegenerative pathologies. Certain occupational groups are exposed to both natural and artificial sources of radiation as a consequence of their professional activities. The development of non-invasive biomarkers to assess the risk of exposure to ionizing radiation for these groups is of great importance. In this context, our objective was to identify epigenetic and molecular biomarkers that could be used to monitor exposure to ionizing radiation. The impact of X-ray exposure on the miRNAs profile and the level of cf mtDNA were evaluated using the RT-PCR method. The levels of pro-inflammatory cytokines in their blood were quantified using the ELISA method. A significant decrease in miR-19a-3p, miR-125b-5p and significant increase in miR-29a-3p was observed in the blood plasma of individuals exposed to X-ray. High levels of pro-inflammatory cytokines and cf mtDNA were also detected. In silico identification of potential targets of these miRNAs was conducted using MIENTURNET. VDAC1 and ALOX5 were identified as possible targets. Our study identified promising biomarkers such as miRNAs and cf mtDNA that showed a dose-dependent effect of X-ray exposure.


Subject(s)
Biomarkers , DNA, Mitochondrial , Epigenesis, Genetic , MicroRNAs , Humans , MicroRNAs/blood , MicroRNAs/genetics , DNA, Mitochondrial/blood , DNA, Mitochondrial/genetics , Epigenesis, Genetic/radiation effects , Biomarkers/blood , X-Rays/adverse effects , Male , Occupational Exposure/adverse effects , Adult , Middle Aged , Cytokines/blood , Cytokines/genetics , Female
9.
BMC Infect Dis ; 24(1): 793, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112975

ABSTRACT

BACKGROUND: Sepsis is a life-threatening condition that is characterized by multiorgan dysfunction and caused by dysregulated cytokine networks, which are closely associated with sepsis progression and outcomes. However, currently available treatment strategies that target cytokines have failed. Thus, this study aimed to investigate the interplay between genetically predicted circulating concentrations of cytokines and the outcomes of sepsis and to identify potential targets for sepsis treatment. METHODS: Data related to 35 circulating cytokines in 31,112 individuals (including 11,643 patients with sepsis) were included in genome-wide association studies (GWASs) from the UK Biobank and FinnGen consortia. A bidirectional two-sample Mendelian randomization (MR) analysis was performed using single nucleotide polymorphisms (SNPs) to evaluate the causal effects of circulating cytokines on sepsis outcomes and other cytokines. RESULTS: A total of 35 inflammatory cytokine genes were identified in the GWASs, and 11 cytokines, including Interleukin-1 receptor antagonist (IL-1ra), macrophage inflammatory protein 1 (MIP1α), IL-16, et al., were associated with sepsis outcome pairs according to the selection criteria of the cis-pQTL instrument. Multiple MR methods verified that genetically predicted high circulating levels of IL-1ra or MIP1α were negatively correlated with genetic susceptibility to risk of sepsis, including sepsis (28-day mortality), septicaemia, streptococcal and pneumonia-derived septicaemia (P ≤ 0.01). Furthermore, genetic susceptibility of sepsis outcomes except sepsis (28-day mortality) markedly associated with the circulating levels of five cytokines, including active plasminogen activator inhibitor (PAI), interleukin 7 (IL-7), tumour necrosis factor alpha (TNF-α), beta nerve growth factor (NGF-ß), hepatic growth factor (HGF) (P < 0.05). Finally, we observed that the causal interaction network between MIP1α or IL-1ra and other cytokines (P < 0.05). CONCLUSIONS: This comprehensive MR analysis provides insights into the potential causal mechanisms that link key cytokines, particularly MIP1α, with risk of sepsis, and the findings suggest that targeting MIP1α may be a potential strategy for preventing sepsis.


Subject(s)
Cytokines , Genome-Wide Association Study , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Sepsis , Humans , Sepsis/genetics , Cytokines/blood , Cytokines/genetics , Male , Female , Genetic Predisposition to Disease , Middle Aged
10.
Signal Transduct Target Ther ; 9(1): 221, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169031

ABSTRACT

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.


Subject(s)
Cytokines , Janus Kinases , STAT Transcription Factors , Signal Transduction , Humans , Janus Kinases/genetics , Janus Kinases/metabolism , Janus Kinases/chemistry , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , STAT Transcription Factors/chemistry , Signal Transduction/genetics , Cytokines/genetics , Cytokines/metabolism , Protein Engineering
11.
Sci Rep ; 14(1): 19353, 2024 08 21.
Article in English | MEDLINE | ID: mdl-39169069

ABSTRACT

Infectious endophthalmitis (IE) poses a significant threat to vision. This study aimed to explore the impact of microRNA (miR)-27a-3p on inflammation in IE. A rat model was developed through intravitreal injection of lipopolysaccharide. Clinical and demographic data were collected for 54 participants: 31 diagnosed with IE and 23 non-infectious patients with idiopathic macular holes. Expression levels of miR-27a-3p and inflammatory genes were quantified via reverse transcription quantitative polymerase chain reaction. Concentrations of inflammatory cytokines in human vitreous samples were measured using enzyme-linked immunosorbent assay. In vitro studies were conducted to explore the target gene of miR-27a-3p. The final animal experiments further verified the role of miR-27a-3p and tuberous sclerosis complex (TSC)1 in inflammatory responses. Results showed that miR-27a-3p was elevated in LPS-treated rats and IE patients. Thirty-one IE patients were divided into the High (n = 15) and Low (n = 16) groups according to the expression of miR-27a-3p. No significant differences were observed in baseline clinical and demographic characteristics between the control and IE patient groups. Pro-inflammatory cytokine mRNA levels and concentrations were notably increased in both LPS-treated rats and the High group of patients. Besides, results showed that TSC1 is a target gene of miR-27a-3p. Moreover, TSC1 inhibition promoted inflammation in rat vitreous samples. In summary, our findings suggested that miR-27a-3p exacerbated inflammatory responses in IE though targeting TSC1, offering novel insights for potential therapeutic strategies targeting miR-27a-3p in the clinical management of IE.


Subject(s)
Endophthalmitis , Inflammation , MicroRNAs , Tuberous Sclerosis Complex 1 Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Endophthalmitis/metabolism , Endophthalmitis/genetics , Endophthalmitis/pathology , Rats , Male , Female , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 1 Protein/metabolism , Inflammation/genetics , Inflammation/metabolism , Aged , Lipopolysaccharides , Cytokines/metabolism , Cytokines/genetics , Middle Aged , Disease Models, Animal , Rats, Sprague-Dawley
13.
Food Res Int ; 192: 114802, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147501

ABSTRACT

Ulcerative colitis is a public health issue with a rising worldwide incidence. It has been found that current medications for treating UC may cause varying degrees of damage to male fertility. Our previous study demonstrated that cyanidin-3-O-glucoside (C3G) treatment could effectively restore reproductive damage in a mouse model of DSS induced colitis. However, the underlying mechanism of C3G alleviates UC induced male reproductive disorders remain scarce. The aim of this study is to discover the molecular mechanisms of C3G on the amelioration of UC stimulated reproductive disorders. The targeted genes toward UC-induced reproductive injury upon C3G treatments were explored by transcriptomic analysis. Hematological analysis, histopathological examination, and real time transcription-polymerase chain reaction (RT-PCR) analysis were applied for conjoined identification. Results showed that C3G may effectively target for reducing pro-inflammatory cytokine IL-6 in testis through cytokine-cytokine receptor interaction pathway. Transcriptome sequencing found that a series of genetic pathways involved in the protective effects of C3G on male reproduction were identified by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Further results presented that C3G could effectively restore mRNA expression levels of Ly6a and Col1a1, closely linked with UC induced male reproductive damage pathways. Sufficient results implied that Ly6a and Col1a1 may be treated as the promising therapeutic targets for the mechanism of C3G in treating UC induced reproductive impairment. C3G administration might be an effective dietary supplementation strategy for male reproduction improvement.


Subject(s)
Anthocyanins , Cytokines , Glucosides , Transcriptome , Male , Animals , Anthocyanins/pharmacology , Glucosides/pharmacology , Mice , Cytokines/metabolism , Cytokines/genetics , Testis/drug effects , Testis/metabolism , Testis/pathology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Gene Expression Profiling , Disease Models, Animal , Infertility, Male/drug therapy , Reproduction/drug effects
14.
Arch Dermatol Res ; 316(8): 551, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167160

ABSTRACT

Hypertrophic scar (HS) results from burns or trauma, causing aesthetic and functional issues. However, observational studies have linked inflammatory cytokines to HS, but the causal pathways involved are unclear. We aimed to determine how circulating inflammatory cytokines contribute to HS formation. Two-sample Mendelian randomization (MR) was used to identify genetic variants associated with hypertrophic scar in a comprehensive, publicly available genome-wide association study (GWAS) involving 766 patients and 207,482 controls of European descent. Additionally, data on 91 plasma proteins were drawn from a GWAS summary involving 14,824 healthy participants. Causal relationships between exposures and outcomes were investigated primarily using the inverse variance weighted (IVW) method. Furthermore, a suite of sensitivity analyses, including MR‒Egger and weighted median approaches, were concurrently employed to fortify the robustness of the conclusive findings. Finally, reverse MR analysis was conducted to evaluate the plausibility of reverse causation between hypertrophic scar and the cytokines identified in our study. In inflammatory cytokines, there was evidence of inverse associations of osteoprotegerin(OPG) levels(OR = 0.59, 95% CI = 0.41 ∼ 0.85, p = 0.01), and leukemia inhibitory factor(LIF) levels(OR = 0.51, 95% CI = 0.32 ∼ 0.82, p = 0.01) are a nominally negative association with hypertrophic scar risk, while CUB domain-domain-containing protein 1(CDCP1) level(OR = 0.59, 95% CI = 0.41 ∼ 0.85, p = 0.01) glial cell line-derived neurotrophic factor(GDNF) levels(OR = 1.42, 95% CI = 1.03 ∼ 1.96, p = 0.01) and programmed cell death 1 ligand 1(PD-L1) levels(OR = 1.47, 95% CI = 1.92 ∼ 2.11, p = 0.04) showed a positive association with hypertrophic scar risk. These associations were similar in the sensitivity analyses. According to our MR findings, OPG and LIF have a protective effect on hypertrophic scar, while CDCP1, GDNF, and PD-L1 have a risk-increasing effect on Hypertrophic scar. Our study adds to the current knowledge on the role of specific inflammatory biomarker pathways in hypertrophic scar. Further validation is needed to assess the potential of these cytokines as pharmacological or lifestyle targets for hypertrophic scar prevention and treatment.


Subject(s)
Cicatrix, Hypertrophic , Genome-Wide Association Study , Leukemia Inhibitory Factor , Mendelian Randomization Analysis , Osteoprotegerin , Humans , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/epidemiology , Cicatrix, Hypertrophic/blood , Cicatrix, Hypertrophic/pathology , Leukemia Inhibitory Factor/genetics , Leukemia Inhibitory Factor/blood , Osteoprotegerin/genetics , Osteoprotegerin/blood , Polymorphism, Single Nucleotide , Glial Cell Line-Derived Neurotrophic Factor/genetics , Cytokines/genetics , Cytokines/blood , Genetic Predisposition to Disease , Risk Factors , Male , Female
15.
BMC Vet Res ; 20(1): 344, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097704

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) induces a poor innate immune response following infection. This study evaluates the effects of transforming growth factor beta 1 (TGFß1) up-regulated by PRRSV on gene expressions of co-stimulatory molecules, type I interferon (IFN), type I IFN-regulated genes (IRGs), pattern recognition receptors, and pro-inflammatory cytokines in PRRSV-inoculated monocyte-derived macrophages (MDMs). Phosphorothioate-modified antisense oligodeoxynucleotides (AS ODNs) specific to various regions of porcine TGFß1 mRNA were synthesized, and those specific to the AUG region efficiently knockdown TGFß1 mRNA expression and protein translation. Transfection of TGFßAS ODNs in MDMs inoculated with either classical PRRSV-2 (cPRRSV-2) or highly pathogenic PRRSV-2 (HP-PRRSV-2) significantly reduced TGFß1 mRNA expression and significantly increased mRNA expressions of CD80, CD86, IFNß, IRGs (i.e. IFN regulatory factor 3 (IRF3), IRF7, myxovirus resistance 1, osteopontin, and stimulator of IFN genes), Toll-like receptor 3, and tumor necrosis factor-alpha. Transfection of TGFßAS ODNs in MDMs inoculated with HP-PRRSV-2 also significantly increased mRNA expressions of IFNα, IFNγ, and 2'-5'-oligoadenylate synthetase 1. The quantity of PRRSV-2 RNA copy numbers was significantly reduced in MDMs transfected with TGFßAS ODNs as compared to untransfected MDMs. Recombinant porcine TGFß1 (rTGFß1) and recombinant porcine IFNα (rIFNα) sustained and reduced the yields of PRRSV-2 RNA copy numbers in PRRSV-2 inoculated MDMs, respectively. These findings demonstrate a strategy of PRRSV for innate immune suppression via an induction of TGFß expression. These findings also suggest TGFß as a potential parameter that future PRRSV vaccine and vaccine adjuvant candidates should take into consideration.


Subject(s)
Cytokines , Interferon Type I , Macrophages , Porcine respiratory and reproductive syndrome virus , Animals , Porcine respiratory and reproductive syndrome virus/physiology , Swine , Interferon Type I/metabolism , Cytokines/genetics , Cytokines/metabolism , Macrophages/drug effects , Macrophages/virology , Macrophages/immunology , Macrophages/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Gene Expression Regulation/drug effects , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/virology , Gene Knockdown Techniques , Immunity, Innate
16.
Front Biosci (Landmark Ed) ; 29(7): 247, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39082331

ABSTRACT

BACKGROUND: Retinal pigment epithelial (RPE) cells have a pivotal function in preserving the equilibrium of the retina and moderating the immunological interaction between the choroid and the retina. This study primarily focuses on delineating the protective effect offered by Kaempferol (Kae) against RPE cell damage. METHODS: Bioinformatics analysis was performed on the GSE30719 dataset to identify hub genes associated with RPE. Subsequently, we analyzed the impact of Kae on RPE apoptosis, cell viability, and inflammatory response through cell experiments, and explored the interaction between hub genes and Kae. RESULTS: Based on the GSE30719 dataset, nine hub genes (ISG15, IFIT1, IFIT3, STAT1, OASL, RSAD2, IRF7, MX2, and MX1) were identified, all of which were highly expressed in the GSE30719 case group. Kae could boost the proliferative activity of RPE cells caused by lipopolysaccharide (LPS), as well as reduce apoptosis and the generation of inflammatory factors (tumor necrosis factor receptor (TNFR), interleukin-1beta (IL-1ß)) and cytokines (IL-1, IL-6, IL-12). STAT1 was shown to inhibit cell proliferation, promote apoptosis, and secrete IL-1/IL-6/IL-12 in LPS-induced RPE cells. Moreover, IRF7 was found to interact with STAT1 in LPS-induced RPE cells, and STAT1 could maintain IRF7 levels through deubiquitination. In addition, we also found that the protective effect of Kae on LPS-induced RPE cell injury was mediated through STAT1/IRF7 axis. CONCLUSION: This study provided evidence that Kae protects RPE cells via regulating the STAT1/IRF7 signaling pathways, indicating its potential therapeutic relevance in the diagnosis and management of retinal disorders linked with RPE cell damage.


Subject(s)
Apoptosis , Interferon Regulatory Factor-7 , Kaempferols , Retinal Pigment Epithelium , STAT1 Transcription Factor , Ubiquitination , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , STAT1 Transcription Factor/metabolism , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Ubiquitination/drug effects , Apoptosis/drug effects , Kaempferols/pharmacology , Cell Line , Cell Proliferation/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Survival/drug effects , Lipopolysaccharides , Proteolysis/drug effects , Signal Transduction/drug effects , Cytokines/metabolism , Cytokines/genetics
17.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38995674

ABSTRACT

Mayaro virus (MAYV), a mosquito-borne alphavirus, is considered an emerging threat to public health with epidemic potential. Phylogenetic studies show the existence of three MAYV genotypes. In this study, we provide a preliminary analysis of the pathogenesis of all three MAYV genotypes in cynomolgus macaques (Macaca facicularis, Mauritian origin). Significant MAYV-specific RNAemia and viremia were detected during acute infection in animals challenged intravenously with the three MAYV genotypes, and strong neutralizing antibody responses were observed. MAYV RNA was detected at high levels in lymphoid tissues, joint muscle and synovia over 1 month after infection, suggesting that this model could serve as a promising tool in studying MAYV-induced chronic arthralgia, which can persist for years. Significant leucopenia was observed across all MAYV genotypes, peaking with RNAemia. Notable differences in the severity of acute RNAemia and composition of cytokine responses were observed among the three MAYV genotypes. Our model showed no outward signs of clinical disease, but several major endpoints for future MAYV pathology and intervention studies are described. Disruptions to normal blood cell counts and cytokine responses were markedly distinct from those observed in macaque models of CHIKV infection, underlining the importance of developing non-human primate models specific to MAYV infection.


Subject(s)
Alphavirus Infections , Alphavirus , Genotype , Macaca fascicularis , RNA, Viral , Viremia , Animals , Macaca fascicularis/virology , Alphavirus/genetics , Alphavirus/pathogenicity , Alphavirus/classification , Alphavirus/isolation & purification , Alphavirus Infections/virology , Alphavirus Infections/veterinary , Viremia/virology , RNA, Viral/genetics , Antibodies, Viral/blood , Antibodies, Neutralizing/blood , Disease Models, Animal , Phylogeny , Cytokines/genetics , Cytokines/blood
18.
Microb Pathog ; 193: 106786, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38971506

ABSTRACT

To better understand the interaction between attenuated vaccines and host antiviral responses, we used bioinformatics and public transcriptomics data to analyze the immune response mechanisms of host cells after canine distemper virus (CDV) infection in Vero cells and screened for potential key effector factors. In this study, CDV-QN-1 infect with Vero cells at an MOI of 0.5, and total RNA was extracted from the cells 24 h later and reverse transcribed into cDNA. Transcriptome high-throughput sequencing perform using Illumina. The results showed that 438 differentially expressed genes were screened, of which 409 were significantly up-regulated and 29 were significantly down-regulated. Eight differentially expressed genes were randomly selected for RT-qPCR validation, and the change trend was consistent with the transcriptomics data. GO and KEGG analysis of differentially expressed genes revealed that most of the differentially expressed genes in CDV-QN-1 infection in the early stage were related to immune response and antiviral activity. The enriched signaling pathways mainly included the interaction between cytokines and cytokine receptors, the NF-kappa B signaling pathway, the Toll-like receptor signaling pathway, and the NOD-like receptor signaling pathway. This study provides a foundation for further exploring the pathogenesis of CDV and the innate immune response of host cells in the early stage of infection.


Subject(s)
Distemper Virus, Canine , Gene Expression Profiling , Vaccines, Attenuated , Animals , Vero Cells , Chlorocebus aethiops , Vaccines, Attenuated/immunology , Vaccines, Attenuated/genetics , Distemper Virus, Canine/genetics , Distemper Virus, Canine/immunology , Transcriptome , Signal Transduction , Computational Biology , High-Throughput Nucleotide Sequencing , Viral Vaccines/immunology , Viral Vaccines/genetics , Cytokines/metabolism , Cytokines/genetics , Distemper/virology , Distemper/genetics , Distemper/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
19.
Rev Assoc Med Bras (1992) ; 70(7): e20230188, 2024.
Article in English | MEDLINE | ID: mdl-39045924

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease is a chronic liver disease and a growing global epidemic. The aim of this study was to investigate the association between a visfatin gene (NAMPT) variant and nonalcoholic fatty liver disease, owing to the connection between this disease and insulin resistance, obesity, inflammation, and oxidative stress, and the role of visfatin in these metabolic disorders. METHODS: In the present case-control study, we enrolled 312 genetically unrelated individuals, including 154 patients with biopsy-proven nonalcoholic fatty liver disease and 158 controls. The rs2058539 polymorphism of NAMPT gene was genotyped using the PCR-RFLP method. RESULTS: Genotype and allele distributions of NAMPT gene rs2058539 polymorphism conformed to the Hardy-Weinberg equilibrium both in the case and control groups (p>0.05). The distribution of NAMPT rs2058539 genotypes and alleles differed significantly between the cases with nonalcoholic fatty liver disease and controls. The "CC" genotype of the NAMPT rs2058539 compared with "AA" genotype was associated with a 2.5-fold increased risk of nonalcoholic fatty liver disease after adjustment for confounding factors [p=0.034; odds ratio (OR)=2.52, 95% confidence interval (CI)=1.36-4.37]. Moreover, the NAMPT rs2058539 "C" allele was significantly overrepresented in the nonalcoholic fatty liver disease patients than controls (p=0.022; OR=1.77, 95%CI=1.14-2.31). CONCLUSION: Our findings indicated for the first time that the NAMPT rs2058539 "CC" genotype is a marker of increased nonalcoholic fatty liver disease susceptibility; however, it needs to be supported by further investigations in other populations.


Subject(s)
Cytokines , Genetic Predisposition to Disease , Genotype , Nicotinamide Phosphoribosyltransferase , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Humans , Nicotinamide Phosphoribosyltransferase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Female , Male , Case-Control Studies , Middle Aged , Risk Factors , Adult , Genetic Predisposition to Disease/genetics , Cytokines/genetics , Gene Frequency/genetics , Alleles , Polymorphism, Restriction Fragment Length , Polymerase Chain Reaction
20.
Lung ; 202(4): 449-457, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38995391

ABSTRACT

BACKGROUND: Gene expression can provide distinct information compared to clinical biomarkers in the context of longitudinal clinical outcomes in asthma patients. OBJECTIVE: This study examined the association between the gene expression levels of upstream (IL-25, IL-33, and TSLP) and downstream cytokines (IL-5, IL-4, and IL-13) in the T2 inflammatory pathway with a 12-month follow-up of exacerbation, lung function, and steroid use. METHODS: Transcriptomic sequencing analysis was performed on peripheral blood mononuclear cells from 279 adult asthmatics. Survival analysis and linear mixed-effect models were used to investigate potential differences between the high-level and low-level gene expression groups and the clinical outcomes. Analysis was performed separately for the upstream, downstream, and all 6 cytokines. RESULTS: In general, T2 inflammatory cytokine gene expression showed a weak correlation with blood eosinophil counts (all r < 0.1) and clinical outcomes. Among moderate-to-severe eosinophilic asthma (MSEA) patients, individuals with elevated levels of downstream cytokines were at increased risk of time-to-first exacerbation (p = 0.044) and a greater increase of inhaled corticosteroid use over time (p = 0.002) compared to those with lower gene expression. There was no association between baseline T2 inflammatory cytokine gene expression and the longitudinal changes in lung function over time among MSEA patients. CONCLUSION: These findings suggest that, among MSEA patients, the gene expression levels of downstream cytokines in the T2 inflammatory pathway may serve as indicators for endotyping asthma.


Subject(s)
Asthma , Cytokines , Interleukin-13 , Interleukin-4 , Leukocytes, Mononuclear , Transcriptome , Humans , Asthma/genetics , Asthma/blood , Asthma/immunology , Asthma/drug therapy , Male , Female , Leukocytes, Mononuclear/metabolism , Adult , Middle Aged , Cytokines/genetics , Cytokines/blood , Longitudinal Studies , Interleukin-4/genetics , Interleukin-4/blood , Interleukin-13/genetics , Interleukin-13/blood , Eosinophils , Thymic Stromal Lymphopoietin , Interleukin-5/genetics , Interleukin-5/blood , Interleukin-33/genetics , Interleukin-33/blood , Interleukin-17/genetics , Interleukin-17/blood , Adrenal Cortex Hormones/therapeutic use , Gene Expression Profiling/methods , Disease Progression , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL