ABSTRACT
Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.
Subject(s)
Arabidopsis , Cell Nucleus , Cytoplasm , Gene Expression Regulation, Plant , Nitrates , Plant Roots , RNA, Messenger , Arabidopsis/genetics , Arabidopsis/metabolism , Nitrates/metabolism , Nitrates/pharmacology , Plant Roots/metabolism , Plant Roots/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Plant/drug effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Nitrate Reductase/metabolism , Nitrate Reductase/geneticsABSTRACT
The Hippo pathway, a signaling cascade involved in the regulation of organ size and several other processes, acts as a conduit between extracellular matrix (ECM) cues and cellular responses. We asked whether the basement membrane (BM), a specialized ECM component known to induce quiescence and differentiation in mammary epithelial cells, would regulate the localization, activity, and interactome of YAP, a Hippo pathway effector. To address this question, we used a broad range of experimental approaches, including 2D and 3D cultures of both mouse and human mammary epithelial cells, as well as the developing mouse mammary gland. In contrast to malignant cells, nontumoral cells cultured with a reconstituted BM (rBM) displayed higher concentrations of YAP in the cytoplasm. Incidentally, when in the nucleus of rBM-treated cells, YAP resided preferentially at the nuclear periphery. In agreement with our cell culture experiments, YAP exhibited cytoplasmic predominance in ductal cells of developing mammary epithelia, where a denser BM is found. Conversely, terminal end bud (TEB) cells with a thinner BM displayed higher nucleus-to-cytoplasm ratios of YAP. Bioinformatic analysis revealed that genes regulated by YAP were overrepresented in the transcriptomes of microdissected TEBs. Consistently, mouse epithelial cells exposed to the rBM expressed lower levels of YAP-regulated genes, although the protein level of YAP and Hippo components were slightly altered by the treatment. Mass spectrometry analysis identified a differential set of proteins interacting with YAP in cytoplasmic fractions of mouse epithelial cells in the absence or presence of rBM. In untreated cells, YAP interactants were enriched in processes related to ubiquitin-mediated proteolysis, whereas in cells exposed to rBM YAP interactants were mainly key proteins related to amino acid, amino sugar, and carbohydrate metabolism. Collectively, we unraveled that the BM induces YAP translocation or retention in the cytoplasm of nontumoral epithelial cells and that in the cytoplasm YAP seems to undertake novel functions in metabolic pathways.
Subject(s)
Adaptor Proteins, Signal Transducing , Basement Membrane , Cytoplasm , Epithelial Cells , Transcription Factors , YAP-Signaling Proteins , Animals , Humans , Mice , Epithelial Cells/metabolism , YAP-Signaling Proteins/metabolism , Female , Cytoplasm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Basement Membrane/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , Cell Nucleus/metabolism , Signal TransductionABSTRACT
OBJECTIVE: The primary goal of this study was to investigate the expressions of TUFT1 (Tuftelin) and Rac1-GTP in the cancerous tissues of individuals with triple-negative breast cancer (TNBC). Additionally, we aimed to explore the correlation between TUFT1 and Rac1-GTP expressions and examine the associations of TUFT1 and Rac1-GTP expressions with the clinical and pathological indicators of the patients. METHODS: Ninety-six patients diagnosed with TNBC, scheduled for surgery between May 2022 and November 2022, were enrolled in this study. Cancerous tissue specimens were collected from these patients, and immunohistochemistry was employed to evaluate the levels of TUFT1 and Rac1-GTP expressions in the cancerous tissues. Subsequent to data collection, a comprehensive analysis was conducted to examine the correlation between TUFT1 and Rac1-GTP expressions. Furthermore, we sought to assess the associations of TUFT1 and Rac1-GTP expressions with the clinical and pathological indicators of the patients. RESULTS: The TUFT1 protein was expressed in both the membrane and cytoplasm of TNBC cancer cells, with notably higher expression observed in the cytoplasm. Rac1-GTP was primarily expressed in the cytoplasm. There was a positive correlation between the levels of TUFT1 and Rac1-GTP expressions (χ2 = 9.816, P < 0.05). The levels of TUFT1 and Rac1-GTP protein expressions showed no correlation with patient age (χ2 = 2.590, 2.565, P > 0.05); however, they demonstrated a positive correlation with tumor size (χ2 = 5.592,5.118), histological grading (χ2 = 6.730, 5.443), and lymph node metastasis (χ2 = 8.221, 5.180) (all with a significance level of P < 0.05). CONCLUSION: A significant correlation was identified between the levels of TUFT1 and Rac1-GTP expressions in the cancerous tissues of patients with TNBC, suggesting a close association with the progression of TNBC. The two molecules play significant roles in facilitating an early diagnosis and treatment of TNBC.
Subject(s)
Triple Negative Breast Neoplasms , rac1 GTP-Binding Protein , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , rac1 GTP-Binding Protein/metabolism , Female , Middle Aged , Adult , Aged , Lymphatic Metastasis , Biomarkers, Tumor/metabolism , Immunohistochemistry , Cytoplasm/metabolismABSTRACT
Neurodegenerative disorders are chronic brain diseases that affect humans worldwide. Although many different factors are thought to be involved in the pathogenesis of these disorders, alterations in several key elements such as the ubiquitin-proteasome system (UPS), the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and the endocannabinoid system (ECS or endocannabinoidome) have been implicated in their etiology. Impairment of these elements has been linked to the origin and progression of neurodegenerative disorders, while their potentiation is thought to promote neuronal survival and overall neuroprotection, as proved with several experimental models. These key neuroprotective pathways can interact and indirectly activate each other. In this review, we summarize the neuroprotective potential of the UPS, ECS, and Nrf2 signaling, both separately and combined, pinpointing their role as a potential therapeutic approach against several hallmarks of neurodegeneration.
Subject(s)
Neurodegenerative Diseases , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , NF-E2-Related Factor 2/metabolism , Cytoplasm/metabolism , Neurodegenerative Diseases/metabolismABSTRACT
Over the past few years, there has been a focus on proteins that create separate liquid phases in the intracellular liquid environment, known as membraneless organelles (MLOs). These organelles allow for the spatiotemporal associations of macromolecules that dynamically exchange within the cellular milieu. They provide a form of compartmentalization crucial for organizing key functions in many cells. Metabolic processes and signaling pathways in both the cytoplasm and nucleus are among the functions performed by MLOs, which are facilitated by diverse combinations of proteins and nucleic acids. However, disruptions in these liquid-liquid phase separation processes (LLPS) may lead to several diseases, such as neurodegenerative disorders and cancer, among others. To foster the study of this process and MLO function, we present MLOsMetaDB (http://mlos.leloir.org.ar), a comprehensive resource of information on MLO- and LLPS-related proteins. Our database integrates and centralizes available information for every protein involved in MLOs, which is otherwise disseminated across a plethora of different databases. Our manuscript outlines the development and features of MLOsMetaDB, which provides an interactive and user-friendly environment with modern biological visualizations and easy and quick access to proteins based on LLPS role, MLO location, and organisms. In addition, it offers an advanced search for making complex queries to generate customized information. Furthermore, MLOsMetaDB provides evolutionary information by collecting the orthologs of every protein in the same database. Overall, MLOsMetaDB is a valuable resource as a starting point for researchers studying the many processes driven by LLPS proteins and membraneless organelles.
Subject(s)
Biomolecular Condensates , Phase Separation , Proteins/metabolism , Organelles/metabolism , Cytoplasm/metabolismABSTRACT
Chemotaxis in Bacteria and Archaea depends on the presence of hexagonal polar arrays composed of membrane-bound chemoreceptors that interact with rings of baseplate signaling proteins. In the alphaproteobacterium Azospirillum brasilense, chemotaxis is controlled by two chemotaxis signaling systems (Che1 and Che4) that mix at the baseplates of two spatially distinct membrane-bound chemoreceptor arrays. The subcellular localization and organization of transmembrane chemoreceptors in chemotaxis signaling clusters have been well characterized but those of soluble chemoreceptors remain relatively underexplored. By combining mutagenesis, microscopy, and biochemical assays, we show that the cytoplasmic chemoreceptors AerC and Tlp4b function in chemotaxis and localize to and interact with membrane-bound chemoreceptors and chemotaxis signaling proteins from both polar arrays, indicating that soluble chemoreceptors are promiscuous. The interactions of AerC and Tlp4b with polar chemotaxis signaling clusters are not equivalent and suggest distinct functions. Tlp4b, but not AerC, modulates the abundance of chemoreceptors within the signaling clusters through an unknown mechanism. The AerC chemoreceptor, but not Tlp4b, is able to traffic in and out of chemotaxis signaling clusters depending on its level of expression. We also identify a role of the chemoreceptor composition of chemotaxis signaling clusters in regulating their polar subcellular organization. The organization of chemotaxis signaling proteins as large membrane-bound arrays underlies chemotaxis sensitivity. Our findings suggest that the composition of chemoreceptors may fine-tune chemotaxis signaling not only through their chemosensory specificity but also through their role in the organization of polar chemotaxis signaling clusters. IMPORTANCE Cytoplasmic chemoreceptors represent about 14% of all chemoreceptors encoded in bacterial and archaeal genomes, but little is known about how they interact with and function in large polar assemblies of membrane-bound chemotaxis signaling clusters. Here, we show that two soluble chemoreceptors with a role in chemotaxis are promiscuous and interact with two distinct membrane-bound chemotaxis signaling clusters that control all chemotaxis responses in Azospirillum brasilense. We also found that any change in the chemoreceptor composition of chemotaxis signaling clusters alters their polar organization, suggesting a dynamic interplay between the sensory specificity of chemotaxis signaling clusters and their polar membrane organization.
Subject(s)
Azospirillum brasilense , Chemotaxis , Chemotaxis/physiology , Azospirillum brasilense/genetics , Azospirillum brasilense/metabolism , Bacterial Proteins/metabolism , Chemoreceptor Cells , Cytoplasm/metabolism , Methyl-Accepting Chemotaxis Proteins/geneticsABSTRACT
Triple-negative breast cancer has a poor prognosis and is non-responsive to first-line therapies; hence, new therapeutic strategies are needed. Enhanced store-operated Ca2+ entry (SOCE) has been widely described as a contributing factor to tumorigenic behavior in several tumor types, particularly in breast cancer cells. SOCE-associated regulatory factor (SARAF) acts as an inhibitor of the SOCE response and, therefore, can be a potential antitumor factor. Herein, we generated a C-terminal SARAF fragment to evaluate the effect of overexpression of this peptide on the malignancy of triple-negative breast cancer cell lines. Using both in vitro and in vivo approaches, we showed that overexpression of the C-terminal SARAF fragment reduced proliferation, cell migration, and the invasion of murine and human breast cancer cells by decreasing the SOCE response. Our data suggest that regulating the activity of the SOCE response via SARAF activity might constitute the basis for further alternative therapeutic strategies for triple-negative breast cancer.
Subject(s)
Membrane Proteins , Triple Negative Breast Neoplasms , Mice , Humans , Animals , Membrane Proteins/metabolism , Calcium/metabolism , Triple Negative Breast Neoplasms/metabolism , Ion Transport , Cytoplasm/metabolism , Calcium Signaling , Stromal Interaction Molecule 1/metabolismABSTRACT
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that mainly affects the motor system. It is a very heterogeneous disorder, so far more than 40 genes have been described as responsible for ALS. The cause of motor neuron degeneration is not yet fully understood, but there is consensus in the literature that it is the result of a complex interplay of several pathogenic processes, which include alterations in nucleocytoplasmic transport, defects in transcription and splicing, altered formation and/or disassembly of stress granules and impaired proteostasis. These defects result in protein aggregation, impaired DNA repair, mitochondrial dysfunction and oxidative stress, neuroinflammation, impaired axonal transport, impaired vesicular transport, excitotoxicity, as well as impaired calcium influx. We argue here that all the above functions ultimately lead to defects in protein synthesis. Fused in Sarcoma (FUS) is one of the genes associated with ALS. It causes ALS type 6 when mutated and is found mislocalized to the cytoplasm in the motor neurons of sporadic ALS patients (without FUS mutations). In addition, FUS plays a role in all cellular functions that are impaired in degenerating motor neurons. Moreover, ALS patients with FUS mutations present the first symptoms significantly earlier than in other forms of the disease. Therefore, the aim of this review is to further discuss ALS6, detail the cellular functions of FUS, and suggest that the localization of FUS, as well as protein synthesis rates, could be hallmarks of the ALS phenotype and thus good therapeutic targets.
Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/pathology , Mutation , Cytoplasm/genetics , Cytoplasm/metabolism , Cytoplasm/pathology , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolismABSTRACT
The unbiased approaches of the last decade have enabled the collection of new data on the biology of annexin A1 (ANXA1) in a variety of scientific aspects, creating opportunities for new biomarkers and/or therapeutic purposes. ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The approaches presented here open pathways for reflection upon, and intrinsic clarification of, the modulating action of this protein in the response to genetic material damage, as well as its level of expression and cellular localization. The objective of this study is to arouse interest, with an emphasis on the mechanisms of nuclear translocation of ANXA1, which remain underexplored and may be beneficial in new inflammatory therapies.
Subject(s)
Annexin A1 , Annexin A1/metabolism , Cell Nucleus/metabolism , Cell Survival , Cytoplasm/metabolism , Female , Humans , Placenta/metabolism , PregnancyABSTRACT
Acute and chronic inflammations are key homeostatic events in health and disease. Sirtuins (SIRTs), a family of NAD-dependent protein deacylases, play a pivotal role in the regulation of these inflammatory responses. Indeed, SIRTs have anti-inflammatory effects through a myriad of signaling cascades, including histone deacetylation and gene silencing, p65/RelA deacetylation and inactivation, and nucleotidebinding oligomerization domain, leucine rich repeat, and pyrin domaincontaining protein 3 inflammasome inhibition. Nevertheless, recent findings show that SIRTs, specifically SIRT6, are also necessary for mounting an active inflammatory response in macrophages. SIRT6 has been shown to positively regulate tumor necrosis factor alpha (TNFα) secretion by demyristoylating pro-TNFα in the cytoplasm. However, how SIRT6, a nuclear chromatin-binding protein, fulfills this function in the cytoplasm is currently unknown. Herein, we show by Western blot and immunofluorescence that in macrophages and fibroblasts there is a subpopulation of SIRT6 that is highly unstable and quickly degraded via the proteasome. Upon lipopolysaccharide stimulation in Raw 264.7, bone marrow, and peritoneal macrophages, this population of SIRT6 is rapidly stabilized and localizes in the cytoplasm, specifically in the vicinity of the endoplasmic reticulum, promoting TNFα secretion. Furthermore, we also found that acute SIRT6 inhibition dampens TNFα secretion both in vitro and in vivo, decreasing lipopolysaccharide-induced septic shock. Finally, we tested SIRT6 relevance in systemic inflammation using an obesity-induced chronic inflammatory in vivo model, where TNFα plays a key role, and we show that short-term genetic deletion of SIRT6 in macrophages of obese mice ameliorated systemic inflammation and hyperglycemia, suggesting that SIRT6 plays an active role in inflammation-mediated glucose intolerance during obesity.
Subject(s)
Inflammation , Macrophages , Sirtuins , Animals , Cytoplasm/metabolism , Inflammation/genetics , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mice , Obesity/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Biogenesis and consumption of the yolk are well-conserved aspects of the reproductive biology in oviparous species. Most egg-laying animals accumulate yolk proteins within the oocytes thus creating the source of nutrients and energy that will feed embryo development. Yolk accumulation drives the generation of a highly specialized oocyte cytoplasm with maternal mRNAs, ribosomes, mitochondria, and, mainly, a set of organelles collectively referred to as yolk granules (Ygs). Following fertilization, the Ygs are involved in regulated mechanisms of yolk degradation to fuel the anabolic metabolism of the growing embryo. Thus, yolk accumulation and degradation are essential processes that allow successful development in many species. Nevertheless, the molecular machinery and mechanisms dedicated to the programmed yolk mobilization throughout development are still enigmatic and remain mostly unexplored. Moreover, while the Ygs functional biology as a nutritional source for the embryo has been acknowledged, several reports have suggested that Ygs cargoes and functions go far beyond yolk storage. Evidence of the role of Ygs in gene expression, microbiota harboring, and paracrine signaling has been proposed. In this study, we summarize the current knowledge of the Ygs functional biology pointing to open questions and where further investigation is needed.
Subject(s)
Embryonic Development , Oocytes , Animals , Biology , Cytoplasm/metabolism , Egg Proteins/metabolism , Oocytes/metabolismABSTRACT
Kidney injury molecule-1 (KIM-1) is a membrane receptor upregulated in the proximal tubule cells following various types of kidney injuries. Notably, studies have suggested a correlation between KIM-1 expression and extracellular signal-regulated kinase (ERK) activation. In this study, we aimed to investigate the association between the kidney overexpression pattern of cytoplasmic phosphorylated-ERK (p-ERK) protein and increased urinary KIM-1 levels in rats exposed to gentamicin or lead acetate, both at the end of toxic exposure and after a 4-week recovery period. Although other proteins were evaluated, only kidney overexpression of cytoplasmic p-ERK protein correlated with increased urinary KIM-1 levels. For both toxic substances, the increased urinary KIM-1 levels corresponded with kidney inflammation. Our results suggest that KIM-1 and p-ERK share a common mechanism in kidney injury mediated by both toxic substances that induce proximal tubule damage.
Subject(s)
Acute Kidney Injury/chemically induced , Acute Kidney Injury/urine , Cell Adhesion Molecules/urine , Extracellular Signal-Regulated MAP Kinases/metabolism , Gentamicins/toxicity , Kidney Tubules, Proximal/injuries , Kidney Tubules, Proximal/metabolism , Organometallic Compounds/toxicity , Signal Transduction/drug effects , Animals , Calcium Channels/metabolism , Cation Transport Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytoplasm/metabolism , Disease Models, Animal , Histones/metabolism , Male , Phosphorylation , Rats , Rats, Wistar , TRPV Cation Channels/metabolismABSTRACT
The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.
Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Calcium/metabolism , Hippocampus/cytology , Neurons/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Culture Techniques , Cell Nucleus/metabolism , Cytoplasm/metabolism , GABA Antagonists/pharmacology , Glutamic Acid/pharmacology , Pyridazines/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Synapses/physiology , Tissue Culture TechniquesABSTRACT
Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (â¼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.
Subject(s)
Calcium Signaling , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Connexins/chemistry , Connexins/metabolism , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Calcium/metabolism , Calmodulin/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Connexins/genetics , Cytoplasm/metabolism , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Indoles/pharmacokinetics , Ion Channels/genetics , Ion Channels/metabolism , Molecular Dynamics Simulation , Nerve Tissue Proteins/genetics , Patch-Clamp Techniques , Phosphorylation , Serine/genetics , Serine/metabolismABSTRACT
In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family is composed of CYFIP1 and CYFIP2. Despite their high similarity and shared interaction with many partners, CYFIP1 and CYFIP2 act at different points in cellular processes. CYFIP1 and CYFIP2 have different expression levels in human tissues, and knockout animals die at different time points of development. CYFIP1, similar to CYFIP2, acts in the WAVE regulatory complex (WRC) and plays a role in actin dynamics through the activation of the Arp2/3 complex and in a posttranscriptional regulatory complex with the fragile X mental retardation protein (FMRP). Previous reports have shown that CYFIP1 and CYFIP2 may play roles in posttranscriptional regulation in different ways. While CYFIP1 is involved in translation initiation via the 5'UTR, CYFIP2 may regulate mRNA expression via the 3'UTR. In addition, this CYFIP protein family is involved in neural development and maturation as well as in different neural disorders, such as intellectual disabilities, autistic spectrum disorders, and Alzheimer's disease. In this review, we map diverse studies regarding the functions, regulation, and implications of CYFIP proteins in a series of molecular pathways. We also highlight mutations and their structural effects both in functional studies and in neural diseases.
Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Neurodegenerative Diseases/genetics , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cytoplasm/metabolism , Cytosol/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/physiology , Humans , Neurodegenerative Diseases/physiopathology , Neurogenesis , Neurons/metabolismABSTRACT
Rotavirus is the most common cause of severe diarrhea in infants and children worldwide and is responsible for about 215,000 deaths annually. Over 85% of these deaths originate in low-income/developing countries in Asia and Africa. Therefore, it is necessary to explore the development of vaccines that avoid the use of "living" viruses and furthermore, vaccines that have viral antigens capable of generating powerful heterotypic responses. Our strategy is based on the expression of the fusion of the anti-DEC205 single-chain variable fragment (scFv) coupled by an OLLAS tag to a viral protein (VP6) of Rotavirus in Nicotiana plants. It was possible to express transiently in N. benthamiana and N. sylvestris a recombinant protein consisting of the single chain variable fragment linked by an OLLAS tag to the VP6 protein. The presence of the recombinant protein, which had a molecular weight of approximately 75 kDa, was confirmed by immunodetection, in both plant species and in both cellular compartments (cytoplasm and apoplast) where it was expressed. In addition, the recombinant protein was modeled, and it was observed that some epitopes of interest are exposed on the surface, which could favor their immunogenic response.
Subject(s)
Antigens, Viral/genetics , Capsid Proteins/genetics , Nicotiana/growth & development , Rotavirus/metabolism , Single-Chain Antibodies/genetics , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antigens, Viral/chemistry , Antigens, Viral/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Models, Molecular , Molecular Weight , Protein Engineering , Protein Structure, Secondary , Recombinant Proteins/metabolism , Rotavirus/genetics , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/metabolism , Nicotiana/genetics , Nicotiana/metabolismABSTRACT
Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of ß1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.
Subject(s)
Calcium/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Receptors, IgG/metabolism , TRPM Cation Channels/metabolism , Calcium Signaling , Cytoplasm/immunology , Cytoplasm/metabolism , Extracellular Matrix/immunology , Extracellular Matrix/metabolism , Extracellular Traps/metabolism , Fluorescent Antibody Technique , GPI-Linked Proteins/metabolism , Humans , Models, Biological , NADPH Oxidases/metabolism , Oxidation-Reduction , Phagocytosis/immunology , Protein Kinase C/metabolism , Reactive Oxygen Species/metabolism , Signal TransductionABSTRACT
Although dengue virus (DENV) replication occurs in the cytoplasm, the nucleus plays an essential role during infection. Both the capsid protein (C) and non-structural protein 5 (NS5) are translocated into the infected cell nucleus to favor viral replication. Previously, our group reported the nuclear localization of the NS3 protein during DENV infection of mosquito cells; however, the nuclear localization of the DENV NS3 protein in human host cells has not been described. Here, we demonstrated that NS3 is present in the nucleus of Huh7 cells at early infection times, and later, it is mainly located in the cytoplasm.
Subject(s)
Cell Nucleus/metabolism , Dengue Virus/metabolism , Serine Endopeptidases/metabolism , Cell Line, Tumor , Cytoplasm/metabolism , HumansABSTRACT
A dimer of the heat-shock protein of 90-kDa (Hsp90) represents the critical core of the chaperone complex associated to the glucocorticoid receptor (GR) oligomer. The C-terminal end of the Hsp90 dimer shapes a functional acceptor site for co-chaperones carrying tetratricopeptide repeat (TPR) domains, where they bind in a mutually exclusive and competitive manner. They impact on the biological properties of the GRâ¢Hsp90 complex and are major players of the GR transport machinery. Recently, we showed that the overexpression of a chimeric TPR peptide influences the subcellular distribution of GR. In this study, the functional role of endogenous proteins carrying TPR or TPR-like sequences on GR subcellular distribution was characterized. It is demonstrated that, contrarily to the positive influence of FKBP52 on GR nuclear accumulation, FKBP51 and 14-3-3 impaired this property. While SGT1α showed no significant effect, the overexpression of the Ser/Thr phosphatase PP5 resulted in a nearly equal nuclear-cytoplasmic redistribution of GR rather than its typical cytoplasmic localization in the absence of steroid. This observation led to analyse the influence of the phosphorylation status of GR, which resulted not linked to its nucleo-cytoplasmic shuttling mechanism. Nonetheless, it was evidenced that both PP5 and FKBP52 are related to the anchorage of the GR to nucleoskeleton structures. The influence of these TPR domain proteins on the steroid-dependent transcriptional activity of GR was also characterized. It is postulated that the pleiotropic actions of the GR in different cell types may be the consequence of the relative abundance of different TPR-domain interacting co-chaperones.
Subject(s)
Cell Nucleus/metabolism , Cytoplasm/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Receptors, Glucocorticoid/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Protein Binding , Protein Domains , Protein Transport , Receptors, Glucocorticoid/genetics , Tetratricopeptide RepeatABSTRACT
BACKGROUND: PTP4A3 is a subclass of a protein tyrosine phosphatase super family and is expressed in a range of epithelial neoplasms. We evaluated PTP4A3 expression and its association with clinicopathological parameters in different types of functioning pituitary adenomas. METHODS: A total of 34 functioning pituitary adenomas samples were evaluated in this observational study. PTP4A3 expression was examined by immunohistochemical staining, and, possible correlations between PTP4A3 and some clinicopathological variables were investigated. RESULTS: PTP4A3 was expressed in 19 out of 34 tumours (55%), at the cytoplasmic level of tumorous cells. Moreover, there was significant association (p=0.042) between PTP4A3 expression and tumorous size. CONCLUSIONS: PTP4A3 was expressed in more than half of the tumours analysed, with there being a significant association with the tumorous size of functioning adenomas. This allows to speculate that PTP4A3 may regulate tumour growth, although further investigations are necessary to determine if this phosphatase can serve as a biomarker or used as a therapeutic target in pituitary macroadenomas.