Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.410
Filter
1.
Nat Commun ; 15(1): 5187, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992002

ABSTRACT

The histone H2A variant H2A.W occupies transposons and thus prevents access to them in Arabidopsis thaliana. H2A.W is deposited by the chromatin remodeler DDM1, which also promotes the accessibility of chromatin writers to heterochromatin by an unknown mechanism. To shed light on this question, we solve the cryo-EM structures of nucleosomes containing H2A and H2A.W, and the DDM1-H2A.W nucleosome complex. These structures show that the DNA end flexibility of the H2A nucleosome is higher than that of the H2A.W nucleosome. In the DDM1-H2A.W nucleosome complex, DDM1 binds to the N-terminal tail of H4 and the nucleosomal DNA and increases the DNA end flexibility of H2A.W nucleosomes. Based on these biochemical and structural results, we propose that DDM1 counters the low accessibility caused by nucleosomes containing H2A.W to enable the maintenance of repressive epigenetic marks on transposons and prevent their activity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin Assembly and Disassembly , Cryoelectron Microscopy , Histones , Nucleosomes , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleosomes/chemistry , Histones/metabolism , Histones/genetics , Histones/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Protein Binding , Models, Molecular , DNA, Plant/metabolism , DNA, Plant/genetics
2.
BMC Plant Biol ; 24(1): 658, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987689

ABSTRACT

BACKGROUND: The taxonomy of Taxus Linn. remains controversial due to its continuous phenotypic variation and unstable topology, thus adversely affecting the formulation of scientific conservation strategies for this genus. Recently, a new ecotype, known as Qinling type, is mainly distributed in the Qinling Mountains and belongs to a monophyletic group. Here, we employed multiple methods including leaf phenotype comparison (leaf shapes and microstructure), DNA barcoding identification (ITS + trnL-trnF + rbcL), and niche analysis to ascertain the taxonomic status of the Qinling type. RESULTS: Multiple comparisons revealed significant differences in the morphological characters (length, width, and length/width ratio) among the Qinling type and other Taxus species. Leaf anatomical analysis indicated that only the Qinling type and T. cuspidata had no papilla under the midvein or tannins in the epicuticle. Phylogenetic analysis of Taxus indicated that the Qinling type belonged to a monophyletic group. Moreover, the Qinling type had formed a relatively independent niche, it was mainly distributed around the Qinling Mountains, Ta-pa Mountains, and Taihang Mountains, situated at an elevation below 1500 m. CONCLUSIONS: Four characters, namely leaf curvature, margin taper, papillation on midvein, and edges were put forward as primary indexes for distinguishing Taxus species. The ecotype Qingling type represented an independent evolutionary lineage and formed a unique ecological niche. Therefore, we suggested that the Qingling type should be treated as a novel species and named it Taxus qinlingensis Y. F. Wen & X. T. Wu, sp. nov.


Subject(s)
DNA Barcoding, Taxonomic , Phylogeny , Plant Leaves , Taxus , Taxus/genetics , Taxus/anatomy & histology , Taxus/classification , Plant Leaves/anatomy & histology , Plant Leaves/genetics , China , DNA, Plant/genetics , Phenotype
3.
PLoS One ; 19(7): e0307326, 2024.
Article in English | MEDLINE | ID: mdl-39052575

ABSTRACT

Big-bracted dogwoods are popular ornamental trees known for their beautiful spring blooms with showy bracts and four-season appeal. The two most widely grown species are Cornus florida and Cornus kousa, native to Eastern North America and East Asia. Despite their horticultural prominence, there is little information available regarding genetic diversity, population structure, relatedness, and subspecies origins of dogwood cultivars. In this study, 313 cultivars, wild-collected plants, and Rutgers University breeding selections, focusing on C. florida, C. kousa, and interspecific hybrids, were genotyped using restriction-site associated DNA sequencing (RADseq) generating thousands of single nucleotide polymorphism (SNP) and insertion deletion (Indel) markers. The research results showed high genetic diversity among C. florida and C. kousa wild-collected plants and cultivars. For C. florida, pink-bracted plants formed a distinct clade from those with white-bracts with the Mexican C. florida ssp. urbiniana forming an outgroup. For C. kousa, Chinese-collected plants (ssp. chinensis) were a distinct subspecies with clear separation from Japanese and Korean accessions (ssp. kousa) and cultivars were designated as ssp. chinensis, ssp. kousa, or ssp. hybrid. Using this information, a Kompetitive allele specific PCR (KASP) assay genotyping panel was designed to determine C. kousa trees' subspecies makeup. Results revealed many cases of genetically identical cultivars being sold under different names, especially for pink-bracted cultivars of both species. Additionally, reported parent-progeny relationships were evaluated and either validated or discredited. Finally, the hybrid germplasm analysis validated pedigrees of interspecific F1 hybrids and found many of the recent Rutgers breeding selections contain small regions of pacific dogwood (C. nuttallii) DNA introgressed into C. kousa backgrounds. This diversity study elucidates origins, diversity, and relationships of a large population of big-bracted dogwoods. The results can inform plant breeders, arboreta, and the ornamental plant industry, as most modern cultivars and popular historic cultivars are represented.


Subject(s)
Cornus , Genetic Variation , Polymorphism, Single Nucleotide , Cornus/genetics , Cornus/classification , Genotype , Sequence Analysis, DNA , Phylogeny , Hybridization, Genetic , DNA, Plant/genetics
4.
Chin J Nat Med ; 22(7): 663-672, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39059835

ABSTRACT

Variations in herb dosage due to species adulteration and dosing inaccuracies can substantially affect clinical safety and efficacy. Accurate species quantification remains challenging, as current methods often yield inconsistent results. This study introduces a novel pyrosequencing-based technique, termed herb molecular quantification (Herb-Q), designed to precisely quantify herbal products. We evaluated its effectiveness using Pinellia ternata and five of its adulterants. Initially, we assessed commonly used DNA barcodes with sequences from a public database, identifying two candidate regions, Maturase K (matK) and internal transcribed spacer 2 (ITS2), for screening specific single nucleotide polymorphism (SNP) loci, allowing for species-specific identification. These loci were validated by amplifying and sequencing genomic material from collected samples. Our validation studies showed that Herb-Q demonstrated excellent linearity, accuracy, repeatability, and detection limits. We established quantitative standard curves with high R2 values (> 0.99) to enable precise species quantification, which were combined with external standards to provide clear and accurate visual quantification results. The average bias in quantifying the tuber of P. ternata was 2.38%, confirming that Herb-Q can accurately identify and quantify herbal product constituents. Moreover, the entire quantification process took less than 4 h. This study presents a novel, rapid method for accurately quantifying species in herbal products and advances the application of DNA barcoding from species identification to quantitative detection.


Subject(s)
DNA Barcoding, Taxonomic , Pinellia , Pinellia/genetics , Pinellia/chemistry , DNA Barcoding, Taxonomic/methods , Polymorphism, Single Nucleotide , DNA, Plant/genetics , Sequence Analysis, DNA/methods , Drugs, Chinese Herbal/chemistry , Drug Contamination , Plants, Medicinal/genetics , Plants, Medicinal/chemistry , Plants, Medicinal/classification
5.
Shokuhin Eiseigaku Zasshi ; 65(3): 53-60, 2024.
Article in Japanese | MEDLINE | ID: mdl-39034136

ABSTRACT

We have developed a rapid genus identification method for poisonous plants. The real-time PCR using the TaqMan® probe method was employed for detection, with the amplified targets being the "trnL (UAA)-intron" or "trnL-trnF intergenic spacer" regions of chloroplast DNA. The targeted plants were selected six genera (Aconitum, Colchicum, Veratrum, Brugmansia, Scopolia and Narcissus), which have been implicated in many instances of food poisoning in Japan. A tissue lysis solution was used for DNA extraction, which can be completed within approximate 30 min. A master mix corresponding to the tissue lysis solution was used for real-time PCR reagents. As a result, we were able to complete the entire process from DNA extraction to genus identification in 4 to 5 hr. The detection sensitivity was estimated at approximately 1 pg of DNA for all six plant genera. Remarkably, an amplification plot was discerned even with the crude cell lysates of all samples. It was also possible to obtain amplification curves for three plant samples that had been subjected to simulated cooking (boiling). This study suggests that the developed method can rapidly identify six genera of poisonous plants.


Subject(s)
Plants, Toxic , Real-Time Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction/methods , Plants, Toxic/classification , Plants, Toxic/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/analysis , DNA, Plant/genetics , DNA, Plant/analysis , Veratrum/genetics , Veratrum/chemistry , Veratrum/classification , Aconitum/genetics , Aconitum/classification , Aconitum/chemistry , Sensitivity and Specificity , Time Factors , Foodborne Diseases/prevention & control
6.
BMC Ecol Evol ; 24(1): 103, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080515

ABSTRACT

BACKGROUND: Tongoloa is a genus comprising approximately 20 species, primarily distributed in the mountainous regions of southwest China. The insufficiency of specimen materials and morphological similarities among species render it a taxonomically challenging genus within the Apiaceae family. To elucidate the phylogenetic relationships and taxonomy of Chinese Tongoloa, this study utilized a total of 115 nrITS sequences, including 47 recently obtained sequences, for phylogenetic reconstruction. RESULTS: Phylogenetic relationships reconstructed from ITS sequences indicate that the East Asia Clade and the Komarovia Clade are sister groups, and Tongoloa belongs to the East Asia Clade. Species of Tongoloa are subdivided into 3 distinct groups, all sharing similar fruit morphologies and are clearly differentiated from related taxa. Several Tongoloa-like members classified under other genera are interpreted to be closely related to Tongoloa. Morphological and molecular data indicate that Tongoloa, Sinolimprichtia subclade and Chinese Trachydium subclade are separate yet genetically contiguous taxa. It is confirmed that Tongoloa zhongdianensis belongs to the Hymenidium Clade, while Sinocarum is classified within the Acronema Clade. Two new taxa are found in the Hengduan Mountains. CONCLUSION: Tongoloa is a genus within the East Asia Clade of Apiaceae, and the phylogeny reconstructed based on ITS sequences divides it into 3 main groups. By integrating fruit morphology and molecular phylogenetic analyses, we preliminary clarified the intricate taxonomic relationships among Tongoloa and related taxa. These results provide valuable opportunities for a deeper understanding of the phylogeny of Tongoloa.


Subject(s)
Apiaceae , Phylogeny , China , Apiaceae/genetics , Apiaceae/classification , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA
7.
BMC Plant Biol ; 24(1): 723, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080534

ABSTRACT

BACKGROUND: 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS: Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS: Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Nucleus , DNA Repair , Deoxyribodipyrimidine Photo-Lyase , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , Cell Nucleus/radiation effects , Deoxyribodipyrimidine Photo-Lyase/metabolism , Deoxyribodipyrimidine Photo-Lyase/genetics , Ultraviolet Rays , DNA, Plant/metabolism , DNA, Plant/genetics , Pyrimidine Dimers/metabolism , Pyrimidine Dimers/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/metabolism , Chloroplasts/metabolism , DNA Damage
8.
Methods Mol Biol ; 2830: 81-91, 2024.
Article in English | MEDLINE | ID: mdl-38977570

ABSTRACT

Chromatin immunoprecipitation (ChIP) is used to analyze the targeting of a protein to a specific region of chromatin in vivo. Here, we present an instructive ChIP protocol for Arabidopsis imbibed seeds. The protocol covers all steps, from the sampling of imbibed seeds to the reverse crosslinking of immunoprecipitated protein-DNA complexes, and includes experimental tips and notes. The targeting of the protein to DNA is determined by quantitative PCR (qPCR) using reverse crosslinked DNA. The protocol can be further scaled up for ChIP-sequencing (ChIP-seq) analysis. As an example of the protocol, we include a ChIP-quantitative PCR (ChIP-qPCR) analysis demonstrating the targeting of PIF1 to the ABI5 promoter.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chromatin Immunoprecipitation , Seeds , Arabidopsis/genetics , Arabidopsis/metabolism , Chromatin Immunoprecipitation/methods , Seeds/genetics , Seeds/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , Promoter Regions, Genetic , DNA, Plant/genetics , Real-Time Polymerase Chain Reaction/methods
9.
Methods Mol Biol ; 2827: 323-350, 2024.
Article in English | MEDLINE | ID: mdl-38985280

ABSTRACT

This chapter describes a step-by-step protocol for rapid serological quantification of global DNA methylation by enzyme-linked immunosorbent assay (ELISA) in plant tissue culture specimens. As a case study model, we used the coconut palm (Cocos nucifera), from which plumules were subjected to somatic embryogenesis followed by embryogenic calli multiplication. DNA methylation is one of the most common epigenetic markers in the regulation of gene expression. DNA methylation is generally associated with non-expressed genes, that is, gene silencing under certain conditions, and the degree of DNA methylation can be used as a marker of various physiological processes, both in plants and in animal cells. Methylation consists of adding a methyl radical to carbon 5 of the DNA cytosine base. Herein, the global DNA methylation was quantified by ELISA with antibodies against methylated cytosines using a commercial kit (Zymo-Research™). The method allowed the detection of methylation in total DNA extracts from coconut palm embryogenic calli (arising from somatic embryogenesis) cultivated in liquid or solid media by using antibodies against methylated cytosines and enzymatic development with a colorimetric substrate. Control samples of commercially provided Escherichia coli bacterial DNA with previously known methylation percentages were included in the ELISA test to construct an experimental methylation standard curve. The logarithmic regression of this E. coli standard curve allowed methylation quantification in coconut palm samples. The present ELISA methodology, applied to coconut palm tissue culture specimens, is promising for use in other plant species and botanical families. This chapter is presented in a suitable format for use as a step-by-step laboratory procedure manual, with theoretical introduction information, which makes it easy to apply the protocol in samples of any biological nature to evaluate DNA global methylation associated with any physiological process.


Subject(s)
DNA Methylation , Enzyme-Linked Immunosorbent Assay , Epigenesis, Genetic , Enzyme-Linked Immunosorbent Assay/methods , DNA, Plant/genetics , Cocos/genetics , Tissue Culture Techniques/methods , Plant Somatic Embryogenesis Techniques/methods
10.
Shokuhin Eiseigaku Zasshi ; 65(3): 61-66, 2024.
Article in Japanese | MEDLINE | ID: mdl-39034137

ABSTRACT

Since the establishment of procedures for the safety assessment of food products that use recombinant DNA technology, the manufacture, import, and sale of genetically modified (GM) foods that have not undergone safety assessment are prohibited under the Food Sanitation Act. Therefore, a performance study to confirm the GM food testing operations of each laboratory is very important to ensure the reliability of the GM food monitoring system. In 2022, GM papaya line PRSV-YK-which has not yet been authorized in Japan-was selected for testing, and a papaya paste and a DNA solution were used as the test samples. With these samples, a laboratory performance study of the DNA extraction and real-time PCR operations was conducted. This confirmed that the 18 participating laboratories were generally performing the DNA extraction and real-time PCR operations correctly. However, some laboratories using certain DNA amplification reagent with some real-time PCR instruments were not able to determine the PRSV-YK detection test. This suggests that the PRSV-YK detection test may not be able to correctly detect samples containing GM papaya when performed with these combinations of instruments and reagent. In order to ensure the reliability of the PRSV-YK detection test, it is necessary to examine in detail how the combination of DNA polymerase reagents and real-time PCR instruments affects the detection limit, and to implement an appropriate solution.


Subject(s)
Carica , Food, Genetically Modified , Plants, Genetically Modified , Carica/genetics , DNA, Plant/genetics , DNA, Plant/analysis , Food Analysis/methods , Food Safety , Japan , Plants, Genetically Modified/genetics , Potyvirus/genetics , Potyvirus/isolation & purification , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results
11.
Acta Biotheor ; 72(2): 7, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869631

ABSTRACT

In angiosperms cytoplasmic DNA is typically passed on maternally through ovules. Genes in the mtDNA may cause male sterility. When male-sterile (female) cytotypes produce more seeds than cosexuals, they pass on more copies of their mtDNA and will co-occur with cosexuals with a neutral cytotype. Cytoplasmic gynodioecy is a well-known phenomenon in angiosperms, both in wild and crop plants. In some conifer families (e.g. Pinaceae) mitochondria are also maternally inherited. However in some other families (e.g. Taxaceae and Cupressaceae) mtDNA is paternally inherited through the pollen. With paternal mtDNA inheritance, male cytotypes that produce more pollen than cosexuals are expected to co-occur with cosexuals. This is uncharted territory. An ESS model shows that the presence of male cytotypes selects for more female allocation in the cosexual, i.e. for sexual specialisation. An allele that switches sex from male to female can then invade. This leads to rapid loss of the neutral cytotype of the cosexual, fixation of the male cytotype and dioecy with 50% males and 50% females. The models suggest that paternal inheritance of mtDNA facilitates the evolution dioecy. Consistent with this hypothesis the Pinaceae are 100% monoecious, while dioecy is common in the Taxaceae family and in the genus Juniperus (Cupressaceae). However, no reliable data are yet available on both mode of inheritance of mtDNA and gender variation of the same species. When cosexuals benefit from reproductive assurance (high selfing rate, low inbreeding depression, low fertilisation) they maintain themselves next to males and females. This predicted pattern with three sex types present in the same population is observed in conifers in nature.


Subject(s)
DNA, Mitochondrial , Paternal Inheritance , Tracheophyta , DNA, Mitochondrial/genetics , Tracheophyta/genetics , Reproduction/genetics , Pollen/genetics , DNA, Plant/genetics
12.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928124

ABSTRACT

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Subject(s)
Fruit , Macadamia , Polymorphism, Single Nucleotide , Macadamia/genetics , Fruit/genetics , Fruit/growth & development , Seeds/genetics , Seeds/growth & development , Self-Fertilization , Pollen/genetics , Pollen/growth & development , Pollen/drug effects , DNA, Plant/genetics , Nuts/genetics , Nuts/growth & development , Pollination
13.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856917

ABSTRACT

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
14.
BMC Biol ; 22(1): 140, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38915079

ABSTRACT

BACKGROUND: Horizontal gene transfer (HGT) events have rarely been reported in gymnosperms. Gnetum is a gymnosperm genus comprising 25‒35 species sympatric with angiosperms in West African, South American, and Southeast Asian rainforests. Only a single acquisition of an angiosperm mitochondrial intron has been documented to date in Asian Gnetum mitogenomes. We wanted to develop a more comprehensive understanding of frequency and fragment length distribution of such events as well as their evolutionary history in this genus. RESULTS: We sequenced and assembled mitogenomes from five Asian Gnetum species. These genomes vary remarkably in size and foreign DNA content. We identified 15 mitochondrion-derived and five plastid-derived (MTPT) foreign genes. Our phylogenetic analyses strongly indicate that these foreign genes were transferred from diverse eudicots-mostly from the Rubiaceae genus Coptosapelta and ten genera of Malpighiales. This indicates that Asian Gnetum has experienced multiple independent HGT events. Patterns of sequence evolution strongly suggest DNA-mediated transfer between mitochondria as the primary mechanism giving rise to these HGT events. Most Asian Gnetum species are lianas and often entwined with sympatric angiosperms. We therefore propose that close apposition of Gnetum and angiosperm stems presents opportunities for interspecific cell-to-cell contact through friction and wounding, leading to HGT. CONCLUSIONS: Our study reveals that multiple HGT events have resulted in massive amounts of angiosperm mitochondrial DNA integrated into Asian Gnetum mitogenomes. Gnetum and its neighboring angiosperms are often entwined with each other, possibly accounting for frequent HGT between these two phylogenetically remote lineages.


Subject(s)
Gene Transfer, Horizontal , Genome, Mitochondrial , Gnetum , Phylogeny , Gnetum/genetics , DNA, Plant/genetics , Evolution, Molecular , Magnoliopsida/genetics
15.
Planta Med ; 90(7-08): 534-545, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843793

ABSTRACT

Chamomile (Matricaria chamomilla) is an important medicinal plant whose beneficial activities partly rely on certain flavonoids. The first dedicated step in flavonoid biosynthesis is chalcone synthase (CHS, EC 2.3.1.74). The genomic DNA of CHS was studied in six chamomile specimens from different genotypes to describe interspecimen, as well as interspecific, variability. One specimen of M. discoidea was included as an outgroup. The two exons of CHS of M. chamomilla (McCHS) and M. discoidea (MdCHS) were 188 bp and 1,011 bp long, separated by an intron of variable length between 192 and 199 bp in McCHS and 201 bp in MdCHS, respectively. The two exons with 5.3 and 6.2 mutations per 100 bp, respectively, were more conserved than the intron with 11.5 mutations per 100 bp. In total, 96 SNPs were detected in both species, of which 12 SNPs were only present in MdCHS and 80 SNPs only in McCHS. Overall, 70 haplotypes (multilocus genotypes, MLGs) were detected. The samples could be classified into two groups, a 'compact' group of a low number and diversity of haplotypes and a 'variable' group of a high number and diversity of haplotypes. Of the 74 SNPs in McCHS, only six SNPs were non-synonymous. However, the amino acid changes did not affect critical areas of the enzyme. The combination of the six SNPs resulted in nine translated amino acid MLGs. The CHS network located MdCHS, due to the crossing barrier, quite distant from chamomile. MdCHS docked to McCHS at a position from where McCHS divergently evolved into two directions.


Subject(s)
Acyltransferases , Matricaria , Acyltransferases/genetics , Acyltransferases/metabolism , Matricaria/genetics , Matricaria/enzymology , Polymorphism, Single Nucleotide , Haplotypes , Genetic Variation , DNA, Plant/genetics , Genotype , Phylogeny , Introns
17.
Comput Biol Med ; 178: 108664, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875905

ABSTRACT

N4-methylcytosine (4mC) is a modified form of cytosine found in DNA, contributing to epigenetic regulation. It exists in various genomes, including the Rosaceae family encompassing significant fruit crops like apples, cherries, and roses. Previous investigations have examined the distribution and functional implications of 4mC sites within the Rosaceae genome, focusing on their potential roles in gene expression regulation, environmental adaptation, and evolution. This research aims to improve the accuracy of predicting 4mC sites within the genome of Fragaria vesca, a Rosaceae plant species. Building upon the original 4mc-w2vec method, which combines word embedding processing and a convolutional neural network (CNN), we have incorporated additional feature encoding techniques and leveraged pre-trained natural language processing (NLP) models with different deep learning architectures including different forms of CNN, recurrent neural networks (RNN) and long short-term memory (LSTM). Our assessments have shown that the best model is derived from a CNN model using fastText encoding. This model demonstrates enhanced performance, achieving a sensitivity of 0.909, specificity of 0.77, and accuracy of 0.879 on an independent dataset. Furthermore, our model surpasses previously published works on the same dataset, thus showcasing its superior predictive capabilities.


Subject(s)
Neural Networks, Computer , DNA, Plant/genetics , Cytosine/metabolism , Cytosine/chemistry , Genome, Plant , Sequence Analysis, DNA/methods , DNA Methylation/genetics , Fragaria/genetics
18.
Talanta ; 277: 126350, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38843772

ABSTRACT

This work reports the development and application of a disposable amperometric sensor built on magnetic microcarriers coupled to an Express PCR strategy to amplify a specific DNA fragment of the chloroplast trnH-psbA. The procedure involves the selective capture of a 68-mer synthetic target DNA (or unmodified PCR products) through sandwich hybridization with RNA capture probe-modified streptavidin MBs and RNA signaling probes, labeled using antibodies specific to the heteroduplexes and secondary antibodies tagged with horseradish peroxidase. Amperometric measurements were performed on screen-printed electrodes using the H2O2/hydroquinone system. Achieving a LOD of 3 pM for the synthetic target, it was possible to detect 2.5 pg of peanut DNA and around 10 mg kg-1 of peanut in binary mixtures (defatted peanut flours prepared in spelt wheat). However, the detectability decreased between 10 and 1000 times in processed samples depending on the treatment. The Express PCR-bioplatform was applied to the detection of peanut traces in foodstuff.


Subject(s)
Arachis , Arachis/chemistry , Electrochemical Techniques/methods , Chloroplasts/genetics , DNA, Plant/analysis , Biosensing Techniques/methods , Polymerase Chain Reaction/methods , Limit of Detection , Food Contamination/analysis , Food Analysis/methods , Food, Processed
19.
Plant J ; 119(3): 1418-1432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824612

ABSTRACT

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions represented by proteins covalently bound to the DNA. Persisting DPCs interfere with fundamental genetic processes such as DNA replication and transcription. Cytidine analog zebularine (ZEB) has been shown to crosslink DNA METHYLTRANSFERASE1 (MET1). Recently, we uncovered a critical role of the SMC5/6-mediated SUMOylation in the repair of DPCs. In an ongoing genetic screen, we identified two additional candidates, HYPERSENSITIVE TO ZEBULARINE 2 and 3, that were mapped to REGULATOR OF TELOMERE ELONGATION 1 (RTEL1) and polymerase TEBICHI (TEB), respectively. By monitoring the growth of hze2 and hze3 plants in response to zebularine, we show the importance of homologous recombination (HR) factor RTEL1 and microhomology-mediated end-joining (MMEJ) polymerase TEB in the repair of MET1-DPCs. Moreover, genetic interaction and sensitivity assays showed the interdependency of SMC5/6 complex, HR, and MMEJ in the homology-directed repair of MET1-DPCs in Arabidopsis. Altogether, we provide evidence that MET1-DPC repair in plants is more complex than originally expected.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytidine , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/metabolism , Cytidine/pharmacology , Recombinational DNA Repair , DNA Repair , DNA, Plant/genetics , DNA, Plant/metabolism , DNA Damage
20.
Genes (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38927625

ABSTRACT

Orchids of the genus Paphiopedilum, also called slippers, are among the most valued representatives of the Orchidaceae family due to their aesthetic qualities. Due to overexploitation, deforestation, and illegal trade in these plants, especially in the vegetative phase, Paphiopedilum requires special protection. This genus is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Their precise identification is of great importance for the preservation of genetic resources and biodiversity of the orchid family (Orchidaceae). Therefore, the main objective of the study was to investigate the usefulness of the DNA barcoding technique for the identification of endangered orchids of the genus Paphiopedilum and to determine the effectiveness of five loci: matK, rbcL, ITS2, atpF-atpH and trnH-psbA as potential molecular markers for species of this genus. Among single locus barcodes, matK was the most effective at identifying species (64%). Furthermore, matK, ITS2, matK + rbcL, and matK + trnH-psbA barcodes can be successfully used as a complementary tool to identify Paphiopedilum orchids while supporting morphological data provided by taxonomists.


Subject(s)
DNA Barcoding, Taxonomic , Endangered Species , Orchidaceae , DNA Barcoding, Taxonomic/methods , Orchidaceae/genetics , Orchidaceae/classification , Phylogeny , DNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL