Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.446
Filter
1.
Mycoses ; 67(8): e13774, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092516

ABSTRACT

BACKGROUND: Fungi clinically relevant to human skin comprise prevalent commensals and well-known pathogens. Only rarely human skin harbours fungi that evade identification. OBJECTIVE: To characterise an enigmatic specimen isolated from a skin lesion. METHODS: A comprehensive clinical and mycological workup including conventional methods for phenotypic characterisation and sequencing based on internal transcribed spacer (ITS) and large subunit (LSU) regions to infer a phylogenetic tree. RESULTS: Cultures on common solid media were macroscopically inconspicuous initially until mycelial tufts developed on the surface, notably on potato dextrose agar. Polymorphous chlamydospores were detected but no aleurospores and ascomata. At 26°C, the isolate grew on standard agars, plant materials and garden soil and utilised peptone, keratins, lipids, inulin, erythrocytes and cellulose. It also grew at 5°C and at 37°C. Nucleotide sequences of its ITS region showed 93% similarity to sequences of different Malbranchea species. The closest matches among LSU rRNA sequences were obtained with the genera Amauroascus, Arthroderma, Auxarthronopsis and Malbranchea (93%-95%). A combined phylogenetic analysis placed the fungus in a sister clade to Neogymnomycetaceae, classified as incertae sedis in Onygenales, on a large distance to either Diploospora rosea or 'Amauroascus' aureus. CONCLUSIONS: The genus Inopinatus gen. nov. (MB854685) with the species Inopinatus corneliae sp. nov. (MB854687) is introduced to accommodate our isolate (holotype: DSM 116806; isotypes: CBS 151104, IHEM 29063). Probably Inopinatus corneliae is a geophilic species that, although potentially harmful, was no relevant pathogen in our case. Its ecology, epidemiology and pathogenicity need to be further clarified.


Subject(s)
DNA, Fungal , DNA, Ribosomal Spacer , Onygenales , Phylogeny , Sequence Analysis, DNA , Skin , Humans , Skin/microbiology , Onygenales/genetics , Onygenales/classification , Onygenales/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Dermatomycoses/microbiology , Keratins/metabolism , DNA, Ribosomal/genetics , Male , Mycological Typing Techniques
2.
Antonie Van Leeuwenhoek ; 117(1): 110, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088091

ABSTRACT

Xenodidymella species have a wide range of hosts and can be found as pathogens and saprobes. In this study, two new species of Xenodidymella were found from leaf diseases of three pasture-medicinal plants in Ilam Province, in the west of Iran, and proposed here as X. ilamica and X. scandicis spp. nov. These species were identified based on morphological features and phylogenetic analyses of the internal transcribed spacer regions 1 & 2 and 5.8S nrDNA (ITS), partial beta-tubulin gene (tub2), and partial RNA polymerase II second largest subunit (rpb2) gene. The four Xenodidymella strains isolated in this study were delimited into two sister clades, with the two isolates of X. ilamica from the leaf spot of Colchicum speciosum and Ficaria kochii and two isolates of X. scandicis from leaf blight of Scandix pecten-veneris. Morphologically, X. scandicis produces larger, ostiolate or poroid pycnidia in vitro, while pycnidia in the cultures of X. ilamica are non-ostiolate and smaller. Some pycnidia in old cultures of X. scandicis produce a neck, but a distinct neck in X. ilamica has not been observed. Moreover, three plants under study are new hosts for the genus Xenodidymella.


Subject(s)
Phylogeny , Tubulin , Iran , Tubulin/genetics , Plants, Medicinal/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , DNA, Fungal/genetics , RNA Polymerase II/genetics , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics
3.
BMC Microbiol ; 24(1): 291, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097685

ABSTRACT

BACKGROUND: Taxol, derived from Taxus trees, is a valuable natural resource for the development of anticancer drugs. Endophytic fungi from Taxus trees are a promising alternative source of Taxol. However, the impact of plant-endophytic microbial interaction on the host's Taxol biosynthesis is largely unknown. RESULTS: In the current study, the diversity of endophytic fungi in three different Taxus species was analyzed using Internal Transcribed Spacer sequencing. A total of 271 Operational Taxonomic Units (OTUs) were identified, grouping into 2 phyla, 8 classes, 16 orders, 19 families, and 19 genera. Alpha and beta diversity analysis indicated significant differences in endophytic fungal communities among the various Taxus trees. At the genus level, Alternaria and Davidiella were predominantly found in T. mairei and T. media, respectively. By utilizing a previously published dataset, a Pearson correlation analysis was conducted to predict the taxol biosynthesis-related fungal genera. Following screening, two isolates of Alternaria (L7 and M14) were obtained. Effect of inoculation with Alternaria isolates on the gene expression and metabolite accumulation of T. mairei was determined by transcriptomic and untargeted metabolomic studies. The co-inoculation assay suggests that the two Alternaria isolates may have a negative regulatory effect on taxol biosynthesis by influencing hormone signaling pathways. CONCLUSION: Our findings will serve as a foundation for advancing the production and utilization of Taxus and will also aid in screening endophytic fungi related to taxol production.


Subject(s)
Alternaria , Endophytes , Paclitaxel , Taxus , Taxus/microbiology , Paclitaxel/biosynthesis , Endophytes/genetics , Endophytes/metabolism , Endophytes/isolation & purification , Endophytes/classification , Alternaria/genetics , Alternaria/metabolism , Alternaria/classification , Alternaria/isolation & purification , Phylogeny , Fungi/genetics , Fungi/metabolism , Fungi/classification , Fungi/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics
4.
BMC Infect Dis ; 24(1): 724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044181

ABSTRACT

BACKGROUND: The Anopheles hyrcanus group is distributed throughout the Oriental and Palaearctic regions and can transmit diseases such as malaria, Japanese encephalitis virus, and filariasis. This investigation marks the inaugural comprehensive study to undertake a phylogenetic analysis of the constituents of this malaria vector group in the northeastern region of Iran, juxtaposed with documented occurrences from different areas within Iran and worldwide. METHODS: Mosquitoes were collected using various methods from nine different locations in Golestan province from April to December 2023. The collected mosquitoes were identified morphologically using valid taxonomic keys. DNA was isolated using the Sambio™ Kit. COI and ITS2 primers were designed using Oligo7 and GeneRunner. PCR and purification were performed with the Qiagen kit. Subsequently, sequencing was carried out at the Mehr Mam GENE Center using an Applied Biosystems 3730XL sequencer. The nucleotide sequences were then analyzed and aligned with GenBank data using BioEdit. Kimura 2-parameter was Utilized for base substitutions. DNA models were selected based on AIC and BIC criteria. Bayesian and Maximum Likelihood trees were constructed, along with a haplotype network. Molecular diversity statistics computed using DnaSP software. RESULTS: In this study, a total of 819 adult mosquitoes were collected. An. hyrcanus was the second most abundant species, predominantly found in Kalaleh and Turkman counties. The sequenced and edited COI and ITS2 sequences were deposited in GenBank under specific accession numbers. Phylogenetic analyses using ML, BI, and NJ methods confirmed a monophyletic lineage for An. hyrcanus with strong support. Molecular analysis of Iranian An. hyrcanus found 11 diverse haplotypes, with the COI gene displaying low diversity. The ITS2 gene revealed two clades - one associating with Iran, Europe, and Asia; the other originating from southwestern Iran. The haplotype network showed two main groups - one from southwest Iran and the other from north Iran. Iran exhibited six distinct haplotypes, while Turkey showcased the highest diversity. CONCLUSIONS: An. hyrcanus in southwestern Iran exhibits a distinct haplogroup, suggesting possible subspecies differentiation. Additional studies are required to validate this phenomenon.


Subject(s)
Anopheles , Electron Transport Complex IV , Mosquito Vectors , Phylogeny , Animals , Iran , Anopheles/genetics , Anopheles/classification , Electron Transport Complex IV/genetics , Mosquito Vectors/genetics , Mosquito Vectors/classification , Haplotypes , Genetic Variation , Genetics, Population , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics
5.
J Parasitol ; 110(4): 311-338, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39034606

ABSTRACT

The tadpole-dwelling pinworm, Gyrinicola batrachiensis (Walton, 1929) Adamson, 1981 was recognized as the sole representative of the genus across Canada and the United States. However, evaluation of the morphology of these parasites across their range revealed considerable morphological variability that suggested diagnosable morphotypes. These morphotypes were associated with different species of anurans, several of which occurred in sympatry. Herein we use an extensive geographic sampling across the United States to obtain the morphotypes, screen their genetic diversity, and analyze this information using an integrative approach. We reconstructed their phylogeny using nuclear ribosomal partial genes 18S and 28S, ITS1, 5.8S, and ITS2, as well as 5 mitochondrial genes generated with Next-Generation sequencing technology. This phylogeny reveals 3 well-resolved lineages, which upon the use of a statistical approach (bPTP [Bayesian implementation of the Poisson tree processes]) supports the delimitation of 4 distinct groups equivalent to species. These putative species groups were tested using morphological characteristics paired with a MANOVA and canonical variate analysis. Results suggest that at least 4 species of Gyrinicola are present within North America, resulting in the resurrection of G. armatus (Walton, 1933) and the description of 2 new species.


Subject(s)
Bayes Theorem , DNA, Helminth , Genetic Variation , Phylogeny , United States , Animals , DNA, Helminth/chemistry , Anura/parasitology , Oxyuroidea/classification , Oxyuroidea/genetics , Oxyuroidea/anatomy & histology , RNA, Ribosomal, 28S/genetics , DNA, Ribosomal Spacer/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics
6.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38977869

ABSTRACT

Trichophyton indotineae is an emerging species of the Trichophyton mentagrophytes complex (TMC), responsible for an epidemic of widespread hairless skin infections that is frequently (50-70%) resistant to terbinafine. In order to initiate appropriate treatment as quickly as possible without waiting for culture positivity (10-15 days) and molecular identification from the strain, we developed a dual quantitative PCR (qPCR) for the direct detection of T. indotineae in clinical samples. We first designed a T. indotineae-specific qPCR assay (TI-qPCR) targeting a single specific polymorphism in the internal transcribed spacer region. Although none of the 94 non-dermatophyte and 7 dermatophyte species were amplified, this TI-qPCR allowed amplification of other TMC species at a lower yield. With equal amounts (0.1 ng) of DNA per reaction, the mean quantitative cycle (Cq) values for T. indotineae and non-indotineae TMC were 27.9 (±0.1) and 38.9 (±0.3), respectively. Therefore, we normalized this assay against a previously validated pan-dermatophyte qPCR assay (PD-qPCR) and relied on the ΔCq [(TI-qPCR) - (PD-qPCR)] to identify T. indotineae versus other TMC species. Dual assay was validated using 86 clinical samples of culture-confirmed T. indotinea and 19 non-indotineae TMC cases. The mean ΔCq for non-indotineae TMC was 9.6 ± 2.7, whereas the ΔCq for T. indotinea was -1.46 ± 2.1 (P < .001). Setting the ΔCq at 4.5 as a cutoff value resulted in 100% specificity for the detection of T. indotineae. This dual qPCR assay quickly detects T. indotineae from skin scrapings, aiding in early diagnosis and treatment for patients with suspected infection.


Identifying the emerging species Trichophyton indotineae is long and requires to wait for culture positivity. We developed a dual qPCR strategy to detect T. indotineae directly from clinical sample with a 100% sensitivity.


Subject(s)
Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Tinea , Humans , Real-Time Polymerase Chain Reaction/methods , Tinea/diagnosis , Tinea/microbiology , DNA, Fungal/genetics , Trichophyton/genetics , Trichophyton/isolation & purification , Trichophyton/classification , Molecular Diagnostic Techniques/methods , DNA, Ribosomal Spacer/genetics
7.
J Eukaryot Microbiol ; 71(4): e13039, 2024.
Article in English | MEDLINE | ID: mdl-38956983

ABSTRACT

The planktonic dinoflagellate Prorocentrum compressum is widespread in warm and temperate seas. A strain identified as P. cf. compressum BEA 0681B isolated from the island of Gran Canaria, NE Atlantic Ocean, showed a divergence in rDNA/ITS phylogenies with respect to P. compressum. The Canarian strain was oval, with an average length-to-width ratio of 1.35, smooth thecal surface with less than 150 thecal pores, including oblique pores, sometimes with a bifurcated opening. In contrast, P. compressum was rounder, with a length-to-width ratio < 1.2, with reticulate-foveate ornamentation and 200-300 pores per valve. We propose Prorocentrum canariense sp. nov. These species clustered as the most early-branching lineage in the clade Prorocentrum sensu stricto. Although this clade mainly contains planktonic species, the closer relatives were the benthic species P. tsawwassenense and P. elegans. Interestingly, P. compressum and P. canariense sp. nov. are widely distributed in temperate and warm seas without an apparent morphological adaptation to planktonic life. The formation of two concentric hyaline mucilaginous walls could contribute to this success. We discuss the use of Prorocentrum bidens to solve the nomenclature issue of P. compressum that was described citing a diatom as basionym.


Subject(s)
DNA, Protozoan , DNA, Ribosomal , Dinoflagellida , Phylogeny , Dinoflagellida/classification , Dinoflagellida/genetics , DNA, Ribosomal/genetics , DNA, Protozoan/genetics , Atlantic Ocean , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/analysis , Molecular Sequence Data
8.
Fungal Biol ; 128(5): 1917-1932, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059847

ABSTRACT

Here, we report on a Cordyceps species entering into a multi-trophic, multi-kingdom association. Cordyceps cateniannulata, isolated from the stem of wild Coffea arabica in Ethiopia, is shown to function as an endophyte, a mycoparasite and an entomopathogen. A detailed polyphasic taxonomic study, including a multilocus phylogenetic analysis, confirmed its identity. An emended description of C. cateniannulata is provided herein. Previously, this species was known as a pathogen of various insect hosts in both the Old and New World. The endophytic status of C. cateniannulata was confirmed by re-isolating it from inoculated coffee plants. Inoculation studies have further shown that C. cateniannulata is a mycoparasite of Hemileia vastatrix, as well as an entomopathogen of major coffee pests; infecting and killing Hypothenemus hampei and Leucoptera coffeella. This is the first record of C. cateniannulata from Africa, as well as an endophyte and a mycoparasite. The implications for its use as a biocontrol agent are discussed.


Subject(s)
Coffea , Cordyceps , Endophytes , Phylogeny , Endophytes/classification , Endophytes/isolation & purification , Endophytes/genetics , Endophytes/physiology , Cordyceps/genetics , Cordyceps/classification , Coffea/microbiology , Coffea/parasitology , Animals , Plant Diseases/microbiology , Plant Diseases/parasitology , Ethiopia , DNA, Fungal/genetics , DNA, Fungal/chemistry , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/chemistry , Plant Stems/microbiology , Plant Stems/parasitology , Sequence Analysis, DNA , Cluster Analysis
9.
Fungal Biol ; 128(5): 1939-1953, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059849

ABSTRACT

Archaeorhizomyces is a diverse and ubiquitous genus of the subphylum Taphrinomycotina, which contains soil-inhabiting/root-associated fungi. Although ecological importance and root-associating lifestyles of Archaeorhizomyces can be postulated, morphological aspects of fungal body and root colonization are largely unknown due to the scarcity of cultures. We obtained three unidentified Archaeorhizomyces isolates from ericoid mycorrhizal (ErM) roots of Rhododendron scabrum and Rhododendron × obtusum collected in Japan. To advance our understanding of lifestyle of the genus, we investigated their general morphology, phylogeny, and in vitro root-colonizing ability in ericoid mycorrhizal hosts, Vaccinium virgatum and Rhododendron kaempferi. Some morphological characteristics, such as slow glowing white-to-creamy-colored colonies and formation of yeast-like or chlamydospore-like cells, were shared between our strains and two described species, Archaeorhizomycesfinlayi and Archaeorhizomyces borealis, but they were phylogenetically distant. Our strains were clearly distinguished as two undescribed species based on morphology and phylogenetic relationship. As seen in typical ErM fungi, both species frequently formed hyphal coils within vital rhizodermal cells of ErM plants in vitro. The morphology of hyphal coils was also different between species. Consequently, two novel species, Archaeorhizomyces notokirishimae sp. nov. and Archaeorhizomyces ryukyuensis sp. nov., were described.


Subject(s)
DNA, Fungal , Mycorrhizae , Phylogeny , Plant Roots , Plant Roots/microbiology , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/isolation & purification , DNA, Fungal/genetics , Japan , DNA, Ribosomal/genetics , Sequence Analysis, DNA , Rhododendron/microbiology , Cluster Analysis , Soil Microbiology , Molecular Sequence Data , DNA, Ribosomal Spacer/genetics
10.
Diagn Microbiol Infect Dis ; 110(1): 116444, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024933

ABSTRACT

Human ascariasis is a soil-transmitted helminthiasis and remains a neglected tropical disease. Ascaris suum has the potential to cause cross-infections between humans and pigs. In this study, we present a rare case of a patient with asymptomatic infection by Ascaris suum. A 66-year-old male underwent colonoscopy, and a white linear worm body was found in the hepatic curvature. The worm was collected by aspiration and submitted to the laboratory for parasite identification. The patient had no symptoms related to parasitic infection. The worm was highly suspected to be of the genus Ascaris. Because of the difficulty of morphological classification, genetic analysis was performed. From PCR-restriction fragment length polymorphism results and sequence analysis of the internal transcribed spacer-1 region, it was determined to be A. suum. The experience with rapid differentiation of A. suum by performing genetic analysis will be useful for future examinations of parasitic infections.


Subject(s)
Ascariasis , Ascaris suum , DNA, Helminth , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Humans , Ascariasis/parasitology , Ascariasis/diagnosis , Male , Animals , Aged , Ascaris suum/genetics , Ascaris suum/isolation & purification , Polymerase Chain Reaction/methods , DNA, Helminth/genetics , Asymptomatic Infections , DNA, Ribosomal Spacer/genetics
11.
Parasite ; 31: 37, 2024.
Article in English | MEDLINE | ID: mdl-38963405

ABSTRACT

Enterocytozoon bieneusi is an obligate intracellular microsporidian parasite with a worldwide distribution. As a zoonotic pathogen, E. bieneusi can infect a wide range of wildlife hosts through the fecal-oral route. Although the feces of flying squirrels (Trogopterus xanthipes) are considered a traditional Chinese medicine (as "faeces trogopterori"), no literature is available on E. bieneusi infection in flying squirrels to date. In this study, a total of 340 fresh flying squirrel fecal specimens from two captive populations were collected in Pingdingshan city, China, to detect the prevalence of E. bieneusi and assess their zoonotic potential. By nested PCR amplification of the ITS gene, six specimens tested positive, with positive samples from each farm, with an overall low infection rate of 1.8%. The ITS sequences revealed three genotypes, including known genotype D and two novel genotypes, HNFS01 and HNFS02. Genotype HNFS01 was the most prevalent (4/6, 66.7%). Phylogenetic analysis showed that all genotypes clustered into zoonotic Group 1, with the novel genotypes clustering into different subgroups. To our knowledge, this is the first report of E. bieneusi infection in flying squirrels, suggesting that flying squirrels could act as a potential reservoir and zoonotic threat for E. bieneusi transmission to humans in China.


Title: Occurrence et génotypage d'Enterocytozoon bieneusi chez les écureuils volants (Trogopterus xanthipes) de Chine. Abstract: Enterocytozoon bieneusi est un parasite microsporidien intracellulaire obligatoire présent dans le monde entier. En tant qu'agent pathogène zoonotique, E. bieneusi peut infecter un large éventail d'hôtes sauvages par la voie fécale-orale. Bien que les excréments d'écureuils volants (Trogopterus xanthipes) soient considérés comme un ingrédient de médecine traditionnelle chinoise (comme « faeces trogopterori ¼), aucune littérature n'est disponible à ce jour sur l'infection par E. bieneusi chez les écureuils volants. Dans cette étude, un total de 340 spécimens fécaux frais d'écureuils volants provenant de deux populations captives ont été collectés dans la ville de Pingdingshan, en Chine, pour détecter la prévalence d'E. bieneusi et évaluer leur potentiel zoonotique. Par amplification PCR nichée du gène ITS, six échantillons se sont révélés positifs, avec des échantillons positifs dans chaque ferme, et un taux d'infection global faible, à 1,8 %. Les séquences ITS ont révélé trois génotypes, dont le génotype D connu et deux nouveaux génotypes, HNFS01 et HNFS02. Le génotype HNFS01 était le plus répandu (4/6, 66,7 %). L'analyse phylogénétique a montré que tous les génotypes se regroupaient dans le groupe zoonotique 1, les nouveaux génotypes se regroupant en différents sous-groupes. À notre connaissance, il s'agit du premier rapport d'infection par E. bieneusi chez des écureuils volants, ce qui suggère que les écureuils volants pourraient agir comme un réservoir potentiel et une menace zoonotique pour la transmission d'E. bieneusi aux humains en Chine.


Subject(s)
Enterocytozoon , Feces , Genotype , Microsporidiosis , Phylogeny , Sciuridae , Animals , Sciuridae/microbiology , Sciuridae/parasitology , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Feces/microbiology , Feces/parasitology , Prevalence , Zoonoses , Polymerase Chain Reaction/veterinary , DNA, Fungal/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology , Rodent Diseases/parasitology , DNA, Ribosomal Spacer/genetics , Animals, Wild/microbiology
12.
BMC Bioinformatics ; 25(1): 228, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956506

ABSTRACT

BACKGROUND: Fungi play a key role in several important ecological functions, ranging from organic matter decomposition to symbiotic associations with plants. Moreover, fungi naturally inhabit the human body and can be beneficial when administered as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted as the universal marker for classifying fungi. Hence, an accurate and robust method for ITS classification is not only desired for the purpose of better diversity estimation, but it can also help us gain a deeper insight into the dynamics of environmental communities and ultimately comprehend whether the abundance of certain species correlate with health and disease. Although many methods have been proposed for taxonomic classification, to the best of our knowledge, none of them fully explore the taxonomic tree hierarchy when building their models. This in turn, leads to lower generalization power and higher risk of committing classification errors. RESULTS: Here we introduce HiTaC, a robust hierarchical machine learning model for accurate ITS classification, which requires a small amount of data for training and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the established TAXXI benchmark and could correctly classify fungal ITS sequences of varying lengths and a range of identity differences between the training and test data. HiTaC outperforms state-of-the-art methods when trained over noisy data, consistently achieving higher F1-score and sensitivity across different taxonomic ranks, improving sensitivity by 6.9 percentage points over top methods in the most noisy dataset available on TAXXI. CONCLUSIONS: HiTaC is publicly available at the Python package index, BIOCONDA and Docker Hub. It is released under the new BSD license, allowing free use in academia and industry. Source code and documentation, which includes installation and usage instructions, are available at https://gitlab.com/dacs-hpi/hitac .


Subject(s)
Fungi , Machine Learning , Fungi/genetics , Fungi/classification , DNA, Ribosomal Spacer/genetics , Software
13.
Front Cell Infect Microbiol ; 14: 1409685, 2024.
Article in English | MEDLINE | ID: mdl-38957795

ABSTRACT

Introduction: Wild rodents can serve as reservoirs or carriers of E. bieneusi, thereby enabling parasite transmission to domestic animals and humans. This study aimed to investigate the prevalence of E. bieneusi in wild rodents from the Inner Mongolian Autonomous Region and Liaoning Province of China. Moreover, to evaluate the potential for zoonotic transmission at the genotype level, a genetic analysis of the isolates was performed. Methods: A total of 486 wild rodents were captured from two provinces in China. Polymerase chain reaction (PCR) was performed to amplify the vertebrate cytochrome b (cytb) gene in the fecal DNA of the rodents to detect their species. The genotype of E. bieneusi was determined via PCR amplification of the internal transcribed spacer (ITS) region of rDNA. The examination of genetic characteristics and zoonotic potential requires the application of similarity and phylogenetic analysis. Results: The infection rates of E. bieneusi in the four identified rodent species were 5.2% for Apodemus agrarius (n = 89), 4.5% for Cricetulus barabensis (n = 96), 11.3% for Mus musculus (n = 106), and 38.5% for Rattus norvegicus (n = 195). Infection was detected at an average rate of 17.4% among 486 rodents. Of the 11 identified genotypes, nine were known: SHR1 (detected in 32 samples), D (30 samples), EbpA (9 samples), PigEbITS7 (8 samples), HNR-IV (6 samples), Type IV (5 samples), HNR-VII (2 samples), HNH7 (1 sample), and HNPL-V (1 sample). Two novel genotypes were also discovered, NMR-I and NMR-II, each comprising one sample. The genotypes were classified into group 1 and group 13 via phylogenetic analysis. Discussion: Based on the initial report, E. bieneusi is highly prevalent and genetically diverse in wild rodents residing in the respective province and region. This indicates that these animals are crucial for the dissemination of E. bieneusi. Zoonotic E. bieneusi-carrying animals present a significant hazard to local inhabitants. Therefore, it is necessary to increase awareness regarding the dangers presented by these rodents and reduce their population to prevent environmental contamination.


Subject(s)
Animals, Wild , Enterocytozoon , Feces , Genotype , Host Specificity , Microsporidiosis , Phylogeny , Rodentia , Zoonoses , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Enterocytozoon/classification , China/epidemiology , Zoonoses/microbiology , Zoonoses/transmission , Microsporidiosis/epidemiology , Microsporidiosis/veterinary , Microsporidiosis/microbiology , Rodentia/microbiology , Feces/microbiology , Animals, Wild/microbiology , Prevalence , Cytochromes b/genetics , Disease Reservoirs/microbiology , Mice , DNA, Ribosomal Spacer/genetics , Humans , Rodent Diseases/microbiology , Rodent Diseases/epidemiology , Polymerase Chain Reaction , DNA, Fungal/genetics , Rats
14.
Sci Rep ; 14(1): 16525, 2024 07 17.
Article in English | MEDLINE | ID: mdl-39019978

ABSTRACT

Two new Keratinophyton species, K. kautmanovae sp. nov. and K. keniense sp. nov., isolated from soil samples originating from two different geographical and environmental locations (Africa and Europe) are described and illustrated. Phylogenetically informative sequences obtained from the internal transcribed spacer (ITS) region and the nuclear large subunit (LSU) rDNA, as well as their unique phenotype, fully support novelty of these two fungi for this genus. Based on ITS and LSU combined phylogeny, both taxa are resolved in a cluster with eight accepted species, including K. alvearium, K. chongqingense, K. hubeiense, K. durum, K. lemmensii, K. siglerae, K. submersum, and K. sichuanense. The new taxon, K. kautmanovae, is characterized by clavate, smooth to coarsely verrucose conidia, absence of arthroconidia, slow growth at 25 °C, and no growth at 30 °C, while K. keniense is morphologically unique with a high diversity of conidial shapes (clavate, filiform, globose, cymbiform and rhomboid). Both species are described based on their asexual, a chrysosporium-like morph. While the majority of hitherto described Keratinophyton taxa came from Europe, India and China, the new species K. keniense represents the first reported taxonomic novelty for this genus from Africa.


Subject(s)
Onygenales , Phylogeny , Soil Microbiology , Onygenales/genetics , Onygenales/classification , Onygenales/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Europe , Africa , DNA, Ribosomal/genetics
15.
BMC Ecol Evol ; 24(1): 103, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080515

ABSTRACT

BACKGROUND: Tongoloa is a genus comprising approximately 20 species, primarily distributed in the mountainous regions of southwest China. The insufficiency of specimen materials and morphological similarities among species render it a taxonomically challenging genus within the Apiaceae family. To elucidate the phylogenetic relationships and taxonomy of Chinese Tongoloa, this study utilized a total of 115 nrITS sequences, including 47 recently obtained sequences, for phylogenetic reconstruction. RESULTS: Phylogenetic relationships reconstructed from ITS sequences indicate that the East Asia Clade and the Komarovia Clade are sister groups, and Tongoloa belongs to the East Asia Clade. Species of Tongoloa are subdivided into 3 distinct groups, all sharing similar fruit morphologies and are clearly differentiated from related taxa. Several Tongoloa-like members classified under other genera are interpreted to be closely related to Tongoloa. Morphological and molecular data indicate that Tongoloa, Sinolimprichtia subclade and Chinese Trachydium subclade are separate yet genetically contiguous taxa. It is confirmed that Tongoloa zhongdianensis belongs to the Hymenidium Clade, while Sinocarum is classified within the Acronema Clade. Two new taxa are found in the Hengduan Mountains. CONCLUSION: Tongoloa is a genus within the East Asia Clade of Apiaceae, and the phylogeny reconstructed based on ITS sequences divides it into 3 main groups. By integrating fruit morphology and molecular phylogenetic analyses, we preliminary clarified the intricate taxonomic relationships among Tongoloa and related taxa. These results provide valuable opportunities for a deeper understanding of the phylogeny of Tongoloa.


Subject(s)
Apiaceae , Phylogeny , China , Apiaceae/genetics , Apiaceae/classification , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA
16.
Antonie Van Leeuwenhoek ; 117(1): 109, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083124

ABSTRACT

The genetic variety and habitats of Camptophora species, generally known as black yeast, have not been clarified. In this study, we re-evaluated Camptophora based on morphological observations and phylogenetic analyses. Because prior investigations on Camptophora only included a few strains/specimens, 24 Camptophora-related strains were newly obtained from 13 leaf samples of various plant species to redefine the genetic and species concepts of Camptophora. Their molecular phylogenetic relationships were examined using small subunit nuclear ribosomal DNA (nSSU, 18S rDNA), the internal transcribed spacer (ITS) rDNA operon, the large subunit nuclear ribosomal DNA (LSU, 28S rDNA), ß-tubulin, the second largest subunit of RNA polymerase II (rpb2), and mitochondrial small subunit DNA (mtSSU). Single- and multi-locus analyses using nSSU-ITS-LSU-rpb2-mtSSU revealed a robust phylogenetic relationship among Camptophora species within Chaetothyriaceae. Camptophora species could be distinguished from other chaetothyriaceous genera by their snake-shaped conidia with microcyclic conidiation and loosely interwoven mycelial masses. Based on the results of phylogenetic analyses, two undescribed lineages were recognized, and Ca. schimae was excluded from the genus. ITS sequence comparison with environmental DNA sequences revealed that the distribution of the genus is restricted to the Asia-Pacific region. Camptophora has been isolated or detected from abrupt sources, and this was attributed to its microcycle. The mechanisms driving genetic diversity within species are discussed with respect to their phyllosphere habitats.


Subject(s)
DNA, Fungal , Phylogeny , DNA, Fungal/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/genetics , Spores, Fungal/genetics , Spores, Fungal/cytology , Spores, Fungal/classification , Sequence Analysis, DNA , Plant Leaves/microbiology , RNA Polymerase II/genetics , Ascomycota/genetics , Ascomycota/classification , Tubulin/genetics
17.
J Food Sci ; 89(8): 4745-4757, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955792

ABSTRACT

Food fraud is a problematic yet common phenomenon in the food industry. It impacts numerous sectors, including the market of edible mushrooms. Morel mushrooms are prized worldwide for their culinary and medicinal use. They represent a taxonomically complex group in which food fraud has already been reported. Among the methods to evaluate food fraud, some rely on comparisons of genetic sequences obtained from a sample to existing databases. However, the quality and usefulness of the results are limited by the type of comparison tool and the quality of the database used. The Centroid-based approach is applied by SmartGene in a proprietary artificial intelligence-based method for the generation of automatically curated reference databases that can be further expert curated. In this study, using sequences of the ribosomal internal transcribed spacer (ITS) of the genus Morchella (true morels), we compared this approach to the traditional pairwise alignment tool using two other databases: UNITE and Mycobank (MLST). The Centroid-based approach using an expert-curated database was more performant for the identification of 53 representative ITS sequences corresponding to validated species (83% accuracy, compared to 36% and 47% accuracy for UNITE and MLST, respectively). The Centroid method also revealed an inaccurate taxonomic annotation for sequences of commercial cultivars submitted to public databases. Combined with the web-based commercial software IDNS® available at Smartgene, the Centroid-based approach constitutes a valuable tool to ensure the quality of morel products on the market for actors of the food industry. PRACTICAL APPLICATION: The Centroid-based approach can be used by agri-food actors who need to identify true morels down to the species level without any prior taxonomical knowledge. These include routine laboratories of the food industry, food distributors, and public surveillance agencies. This is a reliable method that requires minimal skills and resources, therefore being particularly adapted for nonspecialists.


Subject(s)
Ascomycota , Ascomycota/genetics , Ascomycota/classification , DNA, Fungal/genetics , Food Contamination/analysis , DNA, Ribosomal Spacer/genetics
18.
Vet Parasitol Reg Stud Reports ; 52: 101056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880573

ABSTRACT

This study focuses on the occurrence, identification, and molecular characterization of Eimeria species causing coccidiosis in cattle in the Kashmir Valley, India. Coccidiosis, caused by apicomplexan parasites of the genus Eimeria, poses a significant threat to global cattle farming. Conventional techniques for identification, which rely on the morphology of sporulated oocysts, have drawbacks, leading to the adoption of molecular techniques to accurately delimit species. A total of 190 cattle were sampled in nine farms and parasitological examination revealed an occurrence of 45.7% for Eimeria spp. Molecular analysis using PCR and sequencing identified three predominant species: E. zuernii, E. alabamensis, and E. bovis. The study highlights the widespread occurrence of these species globally, as supported by previous research conducted in Bangladesh, Austria, Egypt, and Brazil. The phylogenetic analysis based on internal transcribed spacer (ITS-1) gene sequences revealed distinct clusters for E. zuernii and E. bovis, while E. alabamensis formed a separate clade. The genetic diversity and phylogenetic connections provide insights into the evolutionary relationships among these Eimeria species. This study contributes valuable information for understanding the epidemiology and genetic diversity of cattle coccidiosis in the Kashmir Valley, emphasizing the importance of molecular characterization for accurate species identification.


Subject(s)
Cattle Diseases , Coccidiosis , Eimeria , Genetic Variation , Animals , Cattle , Coccidiosis/epidemiology , Coccidiosis/parasitology , Coccidiosis/veterinary , Eimeria/classification , Eimeria/genetics , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , India/epidemiology , Phylogeny , Polymerase Chain Reaction , DNA, Ribosomal Spacer/genetics
19.
Appl Microbiol Biotechnol ; 108(1): 376, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884656

ABSTRACT

Mushroom poisoning contributes significantly to global foodborne diseases and related fatalities. Amanita mushrooms frequently cause such poisonings; however, identifying these toxic species is challenging due to the unavailability of fresh and intact samples. It is often necessary to analyze residues, vomitus, or stomach extracts to obtain DNA sequences for the identification of species responsible for causing food poisoning. This usually proves challenging to obtain usable DNA sequences that can be analyzed using conventional molecular biology techniques. Therefore, this study aimed to develop a DNA mini-barcoding method for the identification of Amanita species. Following the evaluation and optimization of universal primers for DNA mini-barcoding in Amanita mushrooms, we found that the internal transcribed spacer (ITS) gene sequence primer ITS-a was the most suitable DNA barcode primer for identifying Amanita species. Forty-three Amanita samples were subsequently amplified and sequenced. The sequences obtained were analyzed for intra- and inter-species genetic distances, and a phylogenetic tree was constructed. The findings indicated that the designed primers had strong universality among the Amanita samples and could accurately identify the target gene fragment with a length of 290 bp. Notably, the DNA mini-barcode accurately identified the 43 Amanita samples, demonstrating high consistency with the conventional DNA barcode. Furthermore, it effectively identified DNA from digested samples. In summary, this DNA mini-barcode is a promising tool for detecting accidental ingestion of toxic Amanita mushrooms. It may be used as an optimal barcode for species identification and traceability in events of Amanita-induced mushroom poisoning. KEY POINTS: • Development of a DNA mini-barcoding method for Amanita species identification without fresh samples. • The ITS-a primer set was optimized for robust universality in Amanita samples. • The mini-barcode is suitable for screening toxic mushroom species in mushroom poisoning cases.


Subject(s)
Amanita , DNA Barcoding, Taxonomic , DNA, Fungal , Mushroom Poisoning , Phylogeny , Mushroom Poisoning/diagnosis , Amanita/genetics , DNA, Fungal/genetics , DNA Primers/genetics , DNA, Ribosomal Spacer/genetics , Sequence Analysis, DNA , Humans
20.
Mycopathologia ; 189(4): 52, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864945

ABSTRACT

Treatment-resistant dermatophytosis caused by the members of the Trichophyton mentagrophytes/Trichophyton interdigitale species group (TMTISG) is increasing worldwide. We aimed to determine the prevalence of TMTISG in patients with dermatophytosis in two centers from north of Iran and detect the possible mutations in the squalene epoxidase (SQLE) gene in relevant terbinafine (TRB) resistant pathogenic isolates. From November 2021 to December 2022, 1960 patients suspected to dermatophytosis and referred to two mycology referral laboratories in the north of Iran were included in the study. Identification of all dermatophyte isolates was confirmed by RFLP of rDNA internal transcribed spacer (ITS) regions. Antifungal susceptibility testing against five common antifungals using the CLSI-M38-A3 protocol was performed. The TMTISG isolates resistant to TRB, were further analyzed to determine the possible mutations in the SQLE gene. Totally, 647 cases (33%) were positive for dermatophytosis of which 280 cases (43.3%) were identified as members of TMTISG. These were more frequently isolated from tinea corporis 131 (44.56%) and tinea cruris 116 (39.46%). Of 280 TMTISG isolates, 40 (14.3%) were resistant to TRB (MIC ≥ 4 µg/mL), all found to be T. indotineae in ITS sequencing. In SQLE sequencing 34 (85%) of TRB-resistant isolates had coincident mutations of Phe397Leu and Ala448Thr whereas four and two isolates had single mutations of Phe397Leu and Leu393Ser, respectively. Overall, the resistance of Iranian TMTISG isolates to TRB greatly occurred by a mutation of Phe397Leu in the SQLE gene as alone or in combination with Ala448Thr. Nevertheless, for the occurrence of in vitro resistance, only the presence of Phe397Leu mutation seems to be decisive.


Subject(s)
Antifungal Agents , Arthrodermataceae , Drug Resistance, Fungal , Microbial Sensitivity Tests , Squalene Monooxygenase , Terbinafine , Tinea , Iran/epidemiology , Drug Resistance, Fungal/genetics , Humans , Antifungal Agents/pharmacology , Terbinafine/pharmacology , Cross-Sectional Studies , Tinea/microbiology , Tinea/epidemiology , Prevalence , Arthrodermataceae/genetics , Arthrodermataceae/drug effects , Male , Female , Squalene Monooxygenase/genetics , Adult , Middle Aged , Mutation , Aged , Young Adult , Adolescent , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Child
SELECTION OF CITATIONS
SEARCH DETAIL