Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.043
Filter
1.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967794

ABSTRACT

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , DNA Repair , Drug Resistance, Neoplasm , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Liver Neoplasms , Proto-Oncogene Proteins , Sorafenib , Transcription Factors , YAP-Signaling Proteins , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic/drug effects , Animals , DNA Repair/drug effects , DNA Repair/genetics , YAP-Signaling Proteins/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Mice, Nude , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Hippo Signaling Pathway , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , DNA Methylation/drug effects
2.
PLoS Biol ; 22(6): e3002678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885262

ABSTRACT

The rates at which mutations accumulate across human cell types vary. To identify causes of this variation, mutations are often decomposed into a combination of the single-base substitution (SBS) "signatures" observed in germline, soma, and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites thought to be caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these 2 signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including postmitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.


Subject(s)
DNA Damage , DNA Repair , Germ-Line Mutation , Humans , DNA Repair/genetics , DNA Damage/genetics , Mutation/genetics , Germ Cells/metabolism , Models, Genetic , Neoplasms/genetics , Neoplasms/pathology , DNA Methylation/genetics , DNA Replication/genetics
3.
World J Surg Oncol ; 22(1): 167, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918791

ABSTRACT

BACKGROUND: Prior research exploring the correlation between the XRCC3 Thr241Met polymorphism and the susceptibility to pancreatic cancer has yielded conflicting outcomes. To date, there has been a notable absence of studies examining this polymorphism. The primary aim of the current investigation is to elucidate the potential role of the XRCC3 Thr241Met polymorphism as a risk factor in the development of pancreatic cancer. METHODS: The comprehensive literature search was meticulously conducted across primary databases, including PubMed, Embase, and CNKI (China National Knowledge Infrastructure), spanning from the inception of each database through January 2024. To synthesize the data, a meta-analysis was performed using either a fixed or random-effects model, as appropriate, to calculate the odds ratios (ORs) and their corresponding 95% confidence intervals (CIs). RESULTS: The analysis revealed significant associations between the XRCC3 Thr241Met polymorphism and an increased risk of pancreatic cancer. This was evidenced through various genetic model comparisons: allele contrast (T vs. C: OR = 0.77, 95% CI = 0.70-0.86, P < 0.001), homozygote comparison (TT vs. CC: OR = 0.71, 95% CI = 0.58-0.88, P = 0.001), heterozygote comparison (TC vs. CC: OR = 0.67, 95% CI = 0.52-0.87, P = 0.003), and a dominant genetic model (TT/TC vs. CC: OR = 0.68, 95% CI = 0.57-0.81, P < 0.001). Additionally, subgroup analyses based on ethnicity disclosed that these associations were particularly pronounced in the Caucasian population, with all genetic models showing significance (P < 0.05). CONCLUSIONS: The XRCC3 Thr241Met polymorphism has been identified as contributing to a reduced risk of pancreatic cancer in the Caucasian population. This finding underscores the need for further research to validate and expand upon our conclusions, emphasizing the urgency for continued investigations in this domain.


Subject(s)
DNA-Binding Proteins , Genetic Predisposition to Disease , Pancreatic Neoplasms , Polymorphism, Single Nucleotide , Humans , Pancreatic Neoplasms/genetics , DNA-Binding Proteins/genetics , Prognosis , Risk Factors , DNA Repair/genetics , Case-Control Studies
4.
PLoS One ; 19(6): e0295464, 2024.
Article in English | MEDLINE | ID: mdl-38917091

ABSTRACT

The presence of SNPs in genes related to DNA damage repair in M. tuberculosis can trigger hypermutagenic phenotypes with a higher probability of generating drug resistance. The aim of this research was to compare the presence of SNPs in genes related to DNA damage repair between sensitive and DR isolates, as well as to describe the dynamics in the presence of SNPs in M. tuberculosis isolated from recently diagnosed TB patients of the state of Veracruz, Mexico. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed. Eighty-six isolates from 67 patients from central Veracruz state, Mexico, were sequenced. The results showed several SNPs in 14 genes that were only present in drug-resistant genomes. In addition, by following of 15 patients, it was possible to describe three different dynamics of appearance and evolution of non-synonymous SNPs in genes related to DNA damage repair: 1) constant fixed SNPs, 2) population substitution, and 3) gain of fixed SNPs. Further research is required to discern the biological significance of each of these pathways and their utility as markers of DR or for treatment prognosis.


Subject(s)
DNA Damage , DNA Repair , Mycobacterium tuberculosis , Polymorphism, Single Nucleotide , Humans , DNA Repair/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , DNA Damage/genetics , Mexico , Longitudinal Studies , Female , Male , Tuberculosis/genetics , Tuberculosis/microbiology , Adult
5.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892180

ABSTRACT

The incidence of thyroid cancer, one of the most common forms of endocrine cancer, is increasing rapidly worldwide in developed and developing countries. Various risk factors can increase susceptibility to thyroid cancer, but particular emphasis is put on the role of DNA repair genes, which have a significant impact on genome stability. Polymorphisms of these genes can increase the risk of developing thyroid cancer by affecting their function. In this article, we present a concise review on the most common polymorphisms of selected DNA repair genes that may influence the risk of thyroid cancer. We point out significant differences in the frequency of these polymorphisms between various populations and their potential relationship with susceptibility to the disease. A more complete understanding of these differences may lead to the development of effective prevention strategies and targeted therapies for thyroid cancer. Simultaneously, there is a need for further research on the role of polymorphisms of previously uninvestigated DNA repair genes in the context of thyroid cancer, which may contribute to filling the knowledge gaps on this subject.


Subject(s)
DNA Repair , Genetic Predisposition to Disease , Thyroid Neoplasms , Humans , Thyroid Neoplasms/genetics , DNA Repair/genetics , Polymorphism, Genetic , Polymorphism, Single Nucleotide
6.
Mol Biol Rep ; 51(1): 725, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851636

ABSTRACT

Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.


Subject(s)
DNA Breaks, Double-Stranded , Neurodegenerative Diseases , Neuroinflammatory Diseases , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/genetics , Animals , DNA Breaks, Double-Stranded/radiation effects , Humans , Neuroinflammatory Diseases/etiology , DNA Repair/genetics , DNA Damage/radiation effects
7.
Sci Rep ; 14(1): 13079, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38844507

ABSTRACT

As patient exposure to ionizing radiation from medical imaging and its risks are continuing issues, this study aimed to evaluate DNA damage and repair markers after myocardial perfusion single-photon emission computed tomography (MPS). Thirty-two patients undergoing Tc-99m sestamibi MPS were studied. Peripheral blood was collected before radiotracer injection at rest and 60-90 min after injection. The comet assay (single-cell gel electrophoresis) was performed with peripheral blood cells to detect DNA strand breaks. Three descriptors were evaluated: the percentage of DNA in the comet tail, tail length, and tail moment (the product of DNA tail percentage and tail length). Quantitative PCR (qPCR) was performed to evaluate the expression of five genes related to signaling pathways in response to DNA damage and repair (ATM, ATR, BRCA1, CDKN1A, and XPC). Mann-Whitney's test was employed for statistical analysis; p < 0.05 was considered significant. Mean Tc-99m sestamibi dose was 15.1 mCi. After radiotracer injection, comparing post-exposure to pre-exposure samples of each of the 32 patients, no statistically significant differences of the DNA percentage in the tail, tail length or tail moment were found. qPCR revealed increased expression of BRCA1 and XPC, without any significant difference regarding the other genes. No significant increase in DNA strand breaks was detected after a single radiotracer injection for MPS. There was activation of only two repair genes, which may indicate that, in the current patient sample, the effects of ionizing radiation on the DNA were not large enough to trigger intense repair responses, suggesting the absence of significant DNA damage.


Subject(s)
DNA Damage , DNA Repair , Tomography, Emission-Computed, Single-Photon , Humans , Female , Male , Tomography, Emission-Computed, Single-Photon/methods , DNA Repair/genetics , Middle Aged , Aged , Technetium Tc 99m Sestamibi , Myocardial Perfusion Imaging/methods , BRCA1 Protein/genetics , Comet Assay
8.
J Cell Mol Med ; 28(12): e18482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899556

ABSTRACT

Hypoxia poses a significant challenge to the effectiveness of radiotherapy in head and neck squamous cell carcinoma (HNSCC) patients, and it is imperative to discover novel approaches to overcome this. In this study, we investigated the underlying mechanisms contributing to x-ray radioresistance in HPV-negative HNSCC cells under mild hypoxic conditions (1% oxygen) and explored the potential for autophagy modulation as a promising therapeutic strategy. Our findings show that HNSCC cells exposed to mild hypoxic conditions exhibit increased radioresistance, which is largely mediated by the hypoxia-inducible factor (HIF) pathway. We demonstrate that siRNA knockdown of HIF-1α and HIF-1ß leads to increased radiosensitivity in HNSCC cells under hypoxia. Hypoxia-induced radioresistance was not attributed to differences in DNA double strand break repair kinetics, as these remain largely unchanged under normoxic and hypoxic conditions. Rather, we identify autophagy as a critical protective mechanism in HNSCC cells following irradiation under mild hypoxia conditions. Targeting key autophagy genes, such as BECLIN1 and BNIP3/3L, using siRNA sensitizes these cells to irradiation. Whilst autophagy's role in hypoxic radioresistance remains controversial, this study highlights the importance of autophagy modulation as a potential therapeutic approach to enhance the effectiveness of radiotherapy in HNSCC.


Subject(s)
Autophagy , Cell Hypoxia , Radiation Tolerance , Squamous Cell Carcinoma of Head and Neck , Humans , Autophagy/radiation effects , Autophagy/genetics , Radiation Tolerance/genetics , Cell Line, Tumor , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Beclin-1/metabolism , Beclin-1/genetics , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , DNA Repair/radiation effects , DNA Repair/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , X-Rays , DNA Breaks, Double-Stranded/radiation effects , Tumor Suppressor Proteins
9.
Environ Microbiol Rep ; 16(3): e13269, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822640

ABSTRACT

Recombinational repair is an important mechanism that allows DNA replication to overcome damaged templates, so the DNA is duplicated timely and correctly. The RecFOR pathway is one of the common ways to load RecA, while the RuvABC complex operates in the resolution of DNA intermediates. We have generated deletions of recO, recR and ruvB genes in Thermus thermophilus, while a recF null mutant could not be obtained. The recO deletion was in all cases accompanied by spontaneous loss of function mutations in addA or addB genes, which encode a helicase-exonuclease also key for recombination. The mutants were moderately affected in viability and chromosome segregation. When we generated these mutations in a Δppol/addAB strain, we observed that the transformation efficiency was maintained at the typical level of Δppol/addAB, which is 100-fold higher than that of the wild type. Most mutants showed increased filamentation phenotypes, especially ruvB, which also had DNA repair defects. These results suggest that in T. thermophilus (i) the components of the RecFOR pathway have differential roles, (ii) there is an epistatic relationship of the AddAB complex over the RecFOR pathway and (iii) that neither of the two pathways or their combination is strictly required for viability although they are necessary for normal DNA repair and chromosome segregation.


Subject(s)
Bacterial Proteins , DNA Helicases , Thermus thermophilus , Thermus thermophilus/genetics , Thermus thermophilus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair/genetics , Gene Deletion , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Chromosome Segregation/genetics , DNA, Bacterial/genetics , Mutation
10.
Sci Rep ; 14(1): 14694, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926398

ABSTRACT

Breast cancer has become the most common type of cancers worldwide. Its high prevalence and malignant features are associated with various environmental factors and molecules. The KH-type splicing regulatory protein (KHSRP) participates in the development of breast cancer, while the underlying mechanisms are largely unknown. In this study, we silenced KHSRP expression in MDA-MB-231 cells by small interfering RNA (siKHSRP), and then assessed its effects on cellular features. Finally, we performed whole transcriptome sequencing (RNA-seq) experiments to explore the downstream targets of KHSRP, and validated their changed pattern using quantitative polymerase chain reaction. We found KHSRP showed higher expression level and was associated with worse prognosis in breast cancer patients. In siKHSRP samples, the proliferation, invasion, and migration abilities were significantly repressed compared with negative control (NC) samples, while the apoptosis level was increased. By investigating the RNA-seq data, we found KHSRP globally regulates the expression and alternative splicing profiles of MDA-MB-231 cells by identifying 1632 differentially expressed genes (DEGs) and 1630 HKSRP-regulated AS events (RASEs). Functional enriched analysis of DEGs demonstrated that cilium assembly and movement and extracellular matrix organization pathways were specifically enriched in up DEGs, consistent with the repressed migration and invasion abilities in siKHSRP cells. Interestingly, the cell cycle and DNA damage and repair associated pathways were enriched in both down DEGs and RASE genes, suggesting that KHSRP may modulate cell proliferation by regulating genes in these pathways. Finally, we validated the changed expression and AS patterns of genes in cell cycle and DNA damage/repair pathways. Expression levels of BIRC5, CCNA2, CDK1, FEN1, FOXM1, PTTG1, and UHRF1 were downregulated in siKHSRP samples. The AS patterns of PARK7, ERCC1, CENPX, and UBE2A were also dysregulated in siKHSRP samples and confirmed PCR experiments. In summary, our study comprehensively explored the downstream targets and their functions of KHSRP in breast cancer cells, highlighting the molecular mechanisms of KHSRP on the oncogenic features of breast cancer. The identified molecular targets could be served as potential therapeutic targets for breast cancer in future.


Subject(s)
Alternative Splicing , Breast Neoplasms , Cell Proliferation , DNA Repair , Gene Expression Regulation, Neoplastic , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , DNA Repair/genetics , Cell Line, Tumor , Female , Cell Proliferation/genetics , Cell Movement/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Apoptosis/genetics , Carcinogenesis/genetics , MDA-MB-231 Cells
11.
BMC Cancer ; 24(1): 723, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872153

ABSTRACT

BACKGROUND: Among the 10% of pancreatic cancers that occur in a familial context, around a third carry a pathogenic variant in a cancer predisposition gene. Genetic studies of pancreatic cancer predisposition are limited by high mortality rates amongst index patients and other affected family members. The genetic risk for pancreatic cancer is often shared with breast cancer susceptibility genes, most notably BRCA2, PALB2, ATM and BRCA1. Therefore, we hypothesized that additional shared genetic etiologies might be uncovered by studying families presenting with both breast and pancreatic cancer. METHODS: Focusing on a multigene panel of 276 DNA Damage Repair (DDR) genes, we performed next-generation sequencing in a cohort of 41 families with at least three breast cancer cases and one pancreatic cancer. When the index patient with pancreatic cancer was deceased, close relatives (first or second-degree) affected with breast cancer were tested (39 families). RESULTS: We identified 27 variants of uncertain significance in DDR genes. A splice site variant (c.1605 + 2T > A) in the RAD17 gene stood out, as a likely loss of function variant. RAD17 is a checkpoint protein that recruits the MRN (MRE11-RAD50-NBS1) complex to initiate DNA signaling, leading to DNA double-strand break repair. CONCLUSION: Within families with breast and pancreatic cancer, we identified RAD17 as a novel candidate predisposition gene. Further genetic studies are warranted to better understand the potential pathogenic effect of RAD17 variants and in other DDR genes.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Pancreatic Neoplasms , Adult , Aged , Female , Humans , Middle Aged , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing , Nuclear Proteins , Pancreatic Neoplasms/genetics , Pedigree
12.
Mol Biol Rep ; 51(1): 754, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874681

ABSTRACT

BACKGROUND: Telomeropathies are a group of inherited disorders caused by germline pathogenic variants in genes involved in telomere maintenance, resulting in excessive telomere attrition that affects several tissues, including hematopoiesis. RecQ and RTEL1 helicases contribute to telomere maintenance by unwinding telomeric structures such as G-quadruplexes (G4), preventing replication defects. Germline RTEL1 variants also are etiologic in telomeropathies. METHODS AND RESULTS: Here we investigated the expression of RecQ (RECQL1, BLM, WRN, RECQL4, and RECQL5) and RTEL1 helicase genes in peripheral blood mononuclear cells (PBMCs) from human telomeropathy patients. The mRNA expression levels of all RecQ helicases, but not RTEL1, were significantly downregulated in patients' primary cells. Reduced RecQ expression was not attributable to cell proliferative exhaustion, as RecQ helicases were not attenuated in T cells exhausted in vitro. An additional fifteen genes involved in DNA damage repair and RecQ functional partners also were downregulated in the telomeropathy cells. CONCLUSION: These findings indicate that the expression of RecQ helicases and functional partners involved in DNA repair is downregulated in PBMCs of telomeropathy patients.


Subject(s)
Leukocytes, Mononuclear , RecQ Helicases , Adult , Female , Humans , Male , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Repair/genetics , Leukocytes, Mononuclear/metabolism , RecQ Helicases/genetics , RecQ Helicases/metabolism , Telomere/metabolism , Telomere/genetics , Telomere Homeostasis/genetics
13.
Elife ; 122024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896472

ABSTRACT

Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.


Subject(s)
DNA Damage , DNA Repair , Neoplasms , Up-Regulation , Humans , DNA Repair/genetics , Neoplasms/genetics , Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Transcription, Genetic
14.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928450

ABSTRACT

Abnormal cell proliferation and growth leading to cancer primarily result from cumulative genome mutations. Single gene mutations alone do not fully explain cancer onset and progression; instead, clustered mutations-simultaneous occurrences of multiple mutations-are considered to be pivotal in cancer development and advancement. These mutations can affect different genes and pathways, resulting in cells undergoing malignant transformation with multiple functional abnormalities. Clustered mutations influence cancer growth rates, metastatic potential, and drug treatment sensitivity. This summary highlights the various types and characteristics of clustered mutations to understand their associations with carcinogenesis and discusses their potential clinical significance in cancer. As a unique mutation type, clustered mutations may involve genomic instability, DNA repair mechanism defects, and environmental exposures, potentially correlating with responsiveness to immunotherapy. Understanding the characteristics and underlying processes of clustered mutations enhances our comprehension of carcinogenesis and cancer progression, providing new diagnostic and therapeutic approaches for cancer.


Subject(s)
Carcinogenesis , Mutation , Neoplasms , Humans , Neoplasms/genetics , Neoplasms/pathology , Carcinogenesis/genetics , Genomic Instability , Cell Transformation, Neoplastic/genetics , DNA Repair/genetics , Animals
16.
Oncologist ; 29(7): 638-e952, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38815151

ABSTRACT

BACKGROUND: The National Cancer Institute-Children's Oncology Group Pediatric Molecular Analysis for Therapy Choice (MATCH) precision oncology platform trial enrolled children aged 1-21 years with treatment-refractory solid tumors and predefined actionable genetic alterations. Patients with tumors harboring alterations in DNA damage repair (DDR) genes were assigned to receive olaparib. METHODS: Tumor and blood samples were submitted for centralized molecular testing. Tumor and germline sequencing were conducted in parallel. Olaparib was given twice daily for 28-day cycles starting at a dose 30% lower than the adult recommended phase 2 dose (RP2D). The primary endpoint was the objective response. RESULTS: Eighteen patients matched (1.5% of those screened) based on the presence of a deleterious gene alteration in BRCA1/2, RAD51C/D, or ATM detected by tumor sequencing without germline subtraction or analysis of loss of heterozygosity (LOH). Eleven (61%) harbored a germline mutation, with only one exhibiting LOH. Six patients enrolled and received the olaparib starting dose of 135 mg/m2/dose. Two participants were fully evaluable; 4 were inevaluable because <85% of the prescribed dose was administered during cycle 1. There were no dose-limiting toxicities or responses. Minimal hematologic toxicity was observed. CONCLUSION: Most DDR gene alterations detected in Pediatric MATCH were germline, monoallelic, and unlikely to confer homologous recombination deficiency predicting sensitivity to olaparib monotherapy. The study closed due to poor accrual. CLINICALTRIALS.GOV IDENTIFIER: NCT03233204. IRB approved: initial July 24, 2017.


Subject(s)
DNA Repair , Neoplasms , Phthalazines , Piperazines , Humans , Phthalazines/therapeutic use , Phthalazines/adverse effects , Phthalazines/administration & dosage , Piperazines/therapeutic use , Piperazines/administration & dosage , Piperazines/adverse effects , Child , Female , Male , Child, Preschool , Adolescent , Neoplasms/drug therapy , Neoplasms/genetics , Infant , DNA Repair/drug effects , DNA Repair/genetics , Young Adult , Germ-Line Mutation , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , DNA-Binding Proteins/genetics , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , DNA Damage/drug effects , Adult
17.
Curr Probl Cancer ; 50: 101104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718710

ABSTRACT

OBJECTIVE: DNA repair genes and their variants have been found to alter the risk of oral cancer. METHOD: The level of expression of XRCC3, NBS1, and OGG1 genes among 20 cases of oral cancer, 6 pre-oral cancer, and 50 healthy control subjects was measured with RT-PCR. All the subjects were also genotyped for XRCC3 rs861539 C>T, NBS1 rs1805794 C>G, and OGG1 rs1052133 C>G polymorphisms by the PCR-RFLP method; their genotypes were correlated with their level of expression. Further, a localized fold structure analysis of the mRNA sequence surrounding the studied SNPs was performed with RNAfold. RESULTS: Results showed increased expression of XRCC3, NBS1, and OGG1 transcripts among oral cancer (4.49 fold, 3.45 fold, and 3.27 fold) as well as pre-oral cancer (3.04 fold, 5.32 fold, and 1.74 fold) as compared to control subjects. The transcript level of OGG1 was found to be significantly increased (6.68 fold, p-value 0.009) with the GG genotype compared to the CC genotype. The C>T polymorphism of XRCC3 and the C>G polymorphism of OGG1 result in an apparent change in its mRNA secondary structure. Folding energy with the C allele for XRCC3 C>T polymorphism was lower than that of the T allele (MFE C vs T: -50.20 kcal/mol vs -48.70 kcal/mol). In the case of OGG1 C>G polymorphism MFE for the C allele was higher (-23.30 kcal/mole) than with the G allele (-24.80 kcal/mol). CONCLUSION: Our results showed elevated levels of XRCC3, NBS1, and OGG1 both in oral cancer and pre-oral cancer conditions, which indicates their role as prospective biomarkers of oral cancer and pre-cancerous lesions. SNPs in these genes alter their level of expression, possibly by altering the secondary structure of their transcript. However, due to the small sample size our study can only provide a suggestive conclusion and warned future study with large sample size to verify our findings.


Subject(s)
Biomarkers, Tumor , Cell Cycle Proteins , DNA Glycosylases , DNA Repair , DNA-Binding Proteins , Mouth Neoplasms , Nuclear Proteins , Polymorphism, Single Nucleotide , Humans , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , DNA Glycosylases/genetics , Biomarkers, Tumor/genetics , Male , DNA Repair/genetics , Case-Control Studies , Middle Aged , DNA-Binding Proteins/genetics , Female , Nuclear Proteins/genetics , Cell Cycle Proteins/genetics , Genotype , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Adult , RNA, Messenger/genetics , Genetic Predisposition to Disease
18.
Lung Cancer ; 192: 107831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805902

ABSTRACT

OBJECTIVES: This study aims to investigate the association between DNA double-strand breaks (DSBs) repair capacity, variations in DSBs-related genes, and the occurrence and prognosis of lung cancer in the Chinese population. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 98 lung cancer patients and 60 healthy individuals. The individual DSBs repair capacity was assessed by measuring changes in γ-H2AX levels after treatment with etoposide. Exonic sequencing of 45 DSBs-related genes was performed on PBMC DNA. Logistic regression analysis was conducted to examine the relationship between lung cancer risk and DSBs repair capacity as well as germlines gene variations. Survival analysis employed the Cox proportional hazards regression model, Kaplan-Meier method, and Log-rank test. RESULTS: Lower DSBs repair capacity predicted an increased risk of developing lung cancer (OR = 0.94, 95 %CI = 0.917-0.964, P<0.001). Among lung cancer patients, higher DSBs repair capacity was associated with shorter progression-free survival (PFS) during first-line treatment (HR = 1.80, 95 %CI = 1.10-3.00, P = 0.031). Patients with BRCA1 mutations had shorter overall survival (OS) (HR = 1.92, 95 %CI = 1.12-3.28, P = 0.018). Patients with FOXO3 mutations had shorter PFS (HR = 4.23, 95 %CI = 1.44-12.36, P = 0.009). Analysis of patients treated with immune checkpoint inhibitors (ICIs) indicated that LIG4 mutations were associated with shorter PFS (HR = 2.90, 95 %CI = 1.00-8.10, P = 0.041). CONCLUSIONS: This study concludes that assessing DSBs repair capacity holds promise for predicting both lung cancer risk and prognosis in the Chinese population. Further large-scale studies and functional validation of specific gene mutations related to double-strand breaks are necessary for confirmation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Female , Male , Prognosis , Middle Aged , DNA Repair/genetics , Aged , Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Leukocytes, Mononuclear/metabolism , Risk Factors
19.
PLoS Genet ; 20(5): e1011148, 2024 May.
Article in English | MEDLINE | ID: mdl-38776358

ABSTRACT

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Subject(s)
Cell Cycle Proteins , DNA Damage , DNA Repair , DNA Replication , Genomic Instability , Rad52 DNA Repair and Recombination Protein , Ribonucleotide Reductases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Damage/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , DNA Repair/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism
20.
Signal Transduct Target Ther ; 9(1): 135, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760366

ABSTRACT

DNA double-strand break (DSB) sites that prevent the disjunction of broken DNA ends are formed through poly (ADP-ribose) (PAR) polymerase 1 (PARP1)-DNA co-condensation. The co-condensates apply mechanical forces to hold the DNA ends together and generate enzymatic activity for the synthesis of PAR. PARylation can promote the release of PARP1 from DNA ends and recruit various proteins, such as Fused in sarcoma (FUS) proteins, thereby stabilizing broken DNA ends and preventing their separation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA , Poly (ADP-Ribose) Polymerase-1 , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , DNA Repair/genetics , DNA/genetics , DNA/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...