Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.484
1.
PLoS One ; 19(5): e0303976, 2024.
Article En | MEDLINE | ID: mdl-38820537

The blaNDM-1 gene and its variants encode metallo-beta-lactamases that confer resistance to almost all beta-lactam antibiotics. Genes encoding blaNDM-1 and its variants can be found in several Acinetobacter species, and they are usually linked to two different plasmid clades. The plasmids in one of these clades contain a gene encoding a Rep protein of the Rep_3 superfamily. The other clade consists of medium-sized plasmids in which the gene (s) involved in plasmid replication initiation (rep)have not yet been identified. In the present study, we identified the minimal replication region of a blaNDM-1-carrying plasmid of Acinetobacter haemolyticus AN54 (pAhaeAN54e), a member of this second clade. This region of 834 paired bases encodes three small peptides, all of which have roles in plasmid maintenance. The plasmids containing this minimal replication region are closely related; almost all contain blaNDM genes, and they are found in multiple Acinetobacter species, including A. baumannii. None of these plasmids contain an annotated Rep gene, suggesting that their replication relies on the minimal replication region that they share with the plasmid pAhaeAN54e. These observations suggest that this plasmid lineage plays a crucial role in the dissemination of the blaNDM-1 gene and its variants.


Acinetobacter , Plasmids , Replication Origin , beta-Lactamases , beta-Lactamases/genetics , Plasmids/genetics , Acinetobacter/genetics , Acinetobacter/drug effects , Replication Origin/genetics , DNA Replication/genetics , Bacterial Proteins/genetics
2.
PLoS Genet ; 20(5): e1011148, 2024 May.
Article En | MEDLINE | ID: mdl-38776358

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Cell Cycle Proteins , DNA Damage , DNA Repair , DNA Replication , Genomic Instability , Rad52 DNA Repair and Recombination Protein , Ribonucleotide Reductases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Damage/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , DNA Repair/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Minichromosome Maintenance Proteins/metabolism , Minichromosome Maintenance Proteins/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Ribonucleoside Diphosphate Reductase/genetics , Ribonucleoside Diphosphate Reductase/metabolism
3.
Elife ; 122024 Apr 03.
Article En | MEDLINE | ID: mdl-38567819

Based on experimentally determined average inter-origin distances of ~100 kb, DNA replication initiates from ~50,000 origins on human chromosomes in each cell cycle. The origins are believed to be specified by binding of factors like the origin recognition complex (ORC) or CTCF or other features like G-quadruplexes. We have performed an integrative analysis of 113 genome-wide human origin profiles (from five different techniques) and five ORC-binding profiles to critically evaluate whether the most reproducible origins are specified by these features. Out of ~7.5 million union origins identified by all datasets, only 0.27% (20,250 shared origins) were reproducibly obtained in at least 20 independent SNS-seq datasets and contained in initiation zones identified by each of three other techniques, suggesting extensive variability in origin usage and identification. Also, 21% of the shared origins overlap with transcriptional promoters, posing a conundrum. Although the shared origins overlap more than union origins with constitutive CTCF-binding sites, G-quadruplex sites, and activating histone marks, these overlaps are comparable or less than that of known transcription start sites, so that these features could be enriched in origins because of the overlap of origins with epigenetically open, promoter-like sequences. Only 6.4% of the 20,250 shared origins were within 1 kb from any of the ~13,000 reproducible ORC-binding sites in human cancer cells, and only 4.5% were within 1 kb of the ~11,000 union MCM2-7-binding sites in contrast to the nearly 100% overlap in the two comparisons in the yeast, Saccharomyces cerevisiae. Thus, in human cancer cell lines, replication origins appear to be specified by highly variable stochastic events dependent on the high epigenetic accessibility around promoters, without extensive overlap between the most reproducible origins and currently known ORC- or MCM-binding sites.


Origin Recognition Complex , Saccharomyces cerevisiae Proteins , Humans , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Replication Origin/genetics , Binding Sites , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Chromosomes, Human/metabolism , DNA/metabolism , Cell Cycle Proteins/metabolism
4.
Trends Genet ; 40(6): 471-479, 2024 Jun.
Article En | MEDLINE | ID: mdl-38643034

Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.


DNA Replication , Enhancer Elements, Genetic , RNA Polymerase III , Transcription, Genetic , V(D)J Recombination , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , DNA Replication/genetics , Transcription, Genetic/genetics , Humans , V(D)J Recombination/genetics , Animals , Gene Expression Regulation/genetics
5.
Nat Commun ; 15(1): 2702, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38538613

The efficiency of replication error repair is a critical factor governing the emergence of mutations. However, it has so far been impossible to study this efficiency at the level of individual cells and to investigate if it varies within isogenic cell populations. In addition, why some errors escape repair remains unknown. Here we apply a combination of fluorescent labelling of the Escherichia coli Mismatch Repair (MMR) complex, microfluidics, and time-lapse microscopy, to monitor in real-time the fate of >20000 replication errors. We show that i) many mutations result from errors that are detected by MMR but inefficiently repaired ii) this limited repair efficiency is due to a temporal constraint imposed by the transient nature of the DNA strand discrimination signal, a constraint that is likely conserved across organisms, and iii) repair capacity varies from cell to cell, resulting in a subpopulation of cells with higher mutation rate. Such variations could influence the fitness and adaptability of populations, accelerating for instance the emergence of antibiotic resistance.


DNA Damage , DNA Replication , DNA Replication/genetics , Mutation , Mutagenesis , Escherichia coli/genetics , DNA Mismatch Repair/genetics
6.
Genes (Basel) ; 15(3)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38540419

The initiation reactions of DNA synthesis are central processes during human chromosomal DNA replication. They are separated into two main processes: the initiation events at replication origins, the start of the leading strand synthesis for each replicon, and the numerous initiation events taking place during lagging strand DNA synthesis. In addition, a third mechanism is the re-initiation of DNA synthesis after replication fork stalling, which takes place when DNA lesions hinder the progression of DNA synthesis. The initiation of leading strand synthesis at replication origins is regulated at multiple levels, from the origin recognition to the assembly and activation of replicative helicase, the Cdc45-MCM2-7-GINS (CMG) complex. In addition, the multiple interactions of the CMG complex with the eukaryotic replicative DNA polymerases, DNA polymerase α-primase, DNA polymerase δ and ε, at replication forks play pivotal roles in the mechanism of the initiation reactions of leading and lagging strand DNA synthesis. These interactions are also important for the initiation of signalling at unperturbed and stalled replication forks, "replication stress" events, via ATR (ATM-Rad 3-related protein kinase). These processes are essential for the accurate transfer of the cells' genetic information to their daughters. Thus, failures and dysfunctions in these processes give rise to genome instability causing genetic diseases, including cancer. In their influential review "Hallmarks of Cancer: New Dimensions", Hanahan and Weinberg (2022) therefore call genome instability a fundamental function in the development process of cancer cells. In recent years, the understanding of the initiation processes and mechanisms of human DNA replication has made substantial progress at all levels, which will be discussed in the review.


DNA Replication , DNA , Humans , DNA/genetics , DNA/metabolism , DNA Replication/genetics , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Genomic Instability
8.
mSystems ; 9(4): e0022124, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38546227

Initiation of bacterial DNA replication takes place at the origin of replication (oriC), a region characterized by the presence of multiple DnaA boxes that serve as the binding sites for the master initiator protein DnaA. This process is tightly controlled by modulation of the availability or activity of DnaA and oriC during development or stress conditions. Here, we aimed to uncover the physiological and molecular consequences of stopping replication in the model bacterium Bacillus subtilis. We successfully arrested replication in B. subtilis by employing a clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach to specifically target the key DnaA boxes 6 and 7, preventing DnaA binding to oriC. In this way, other functions of DnaA, such as a transcriptional regulator, were not significantly affected. When replication initiation was halted by this specific artificial and early blockage, we observed that non-replicating cells continued translation and cell growth, and the initial replication arrest did not induce global stress conditions such as the SOS response.IMPORTANCEAlthough bacteria constantly replicate under laboratory conditions, natural environments expose them to various stresses such as lack of nutrients, high salinity, and pH changes, which can trigger non-replicating states. These states can enable bacteria to (i) become tolerant to antibiotics (persisters), (ii) remain inactive in specific niches for an extended period (dormancy), and (iii) adjust to hostile environments. Non-replicating states have also been studied because of the possibility of repurposing energy for the production of additional metabolites or proteins. Using clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeting bacterial replication initiation sequences, we were able to successfully control replication initiation in Bacillus subtilis. This precise approach makes it possible to study non-replicating phenotypes, contributing to a better understanding of bacterial adaptive strategies.


Bacillus subtilis , DNA-Binding Proteins , DNA-Binding Proteins/genetics , Bacillus subtilis/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins/genetics , DNA Replication/genetics
9.
Nature ; 627(8005): 890-897, 2024 Mar.
Article En | MEDLINE | ID: mdl-38448592

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Chromatin , DNA Replication , Epistasis, Genetic , Histones , Saccharomyces cerevisiae , Binding Sites , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cryoelectron Microscopy , DNA Replication/genetics , DNA, Fungal/biosynthesis , DNA, Fungal/chemistry , DNA, Fungal/metabolism , DNA, Fungal/ultrastructure , Epistasis, Genetic/genetics , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Multienzyme Complexes/ultrastructure , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Protein Binding , Protein Domains , Protein Multimerization , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
10.
Genes Dev ; 38(3-4): 189-204, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38479839

Chromatin-based epigenetic memory relies on the accurate distribution of parental histone H3-H4 tetramers to newly replicated DNA strands. Mcm2, a subunit of the replicative helicase, and Dpb3/4, subunits of DNA polymerase ε, govern parental histone H3-H4 deposition to the lagging and leading strands, respectively. However, their contribution to epigenetic inheritance remains controversial. Here, using fission yeast heterochromatin inheritance systems that eliminate interference from initiation pathways, we show that a Mcm2 histone binding mutation severely disrupts heterochromatin inheritance, while mutations in Dpb3/4 cause only moderate defects. Surprisingly, simultaneous mutations of Mcm2 and Dpb3/4 stabilize heterochromatin inheritance. eSPAN (enrichment and sequencing of protein-associated nascent DNA) analyses confirmed the conservation of Mcm2 and Dpb3/4 functions in parental histone H3-H4 segregation, with their combined absence showing a more symmetric distribution of parental histone H3-H4 than either single mutation alone. Furthermore, the FACT histone chaperone regulates parental histone transfer to both strands and collaborates with Mcm2 and Dpb3/4 to maintain parental histone H3-H4 density and faithful heterochromatin inheritance. These results underscore the importance of both symmetric distribution of parental histones and their density at daughter strands for epigenetic inheritance and unveil distinctive properties of parental histone chaperones during DNA replication.


Histones , Schizosaccharomyces , Histones/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Heterochromatin/genetics , DNA Replication/genetics , DNA/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Epigenesis, Genetic
11.
Nucleic Acids Res ; 52(9): 5033-5047, 2024 May 22.
Article En | MEDLINE | ID: mdl-38444149

The linear chromosome of Streptomyces exhibits a highly compartmentalized structure with a conserved central region flanked by variable arms. As double strand break (DSB) repair mechanisms play a crucial role in shaping the genome plasticity of Streptomyces, we investigated the role of EndoMS/NucS, a recently characterized endonuclease involved in a non-canonical mismatch repair (MMR) mechanism in archaea and actinobacteria, that singularly corrects mismatches by creating a DSB. We showed that Streptomyces mutants lacking NucS display a marked colonial phenotype and a drastic increase in spontaneous mutation rate. In vitro biochemical assays revealed that NucS cooperates with the replication clamp to efficiently cleave G/T, G/G and T/T mismatched DNA by producing DSBs. These findings are consistent with the transition-shifted mutational spectrum observed in the mutant strains and reveal that NucS-dependent MMR specific task is to eliminate G/T mismatches generated by the DNA polymerase during replication. Interestingly, our data unveil a crescent-shaped distribution of the transition frequency from the replication origin towards the chromosomal ends, shedding light on a possible link between NucS-mediated DSBs and Streptomyces genome evolution.


Chromosomes, Bacterial , DNA Mismatch Repair , Streptomyces , DNA Mismatch Repair/genetics , Streptomyces/genetics , Streptomyces/enzymology , Chromosomes, Bacterial/genetics , Mutation , DNA Replication/genetics , DNA Breaks, Double-Stranded , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation Rate , Endonucleases/genetics , Endonucleases/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Base Pair Mismatch , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics
12.
Nucleic Acids Res ; 52(9): 5138-5151, 2024 May 22.
Article En | MEDLINE | ID: mdl-38554108

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging strands, respectively. Single Dpb3 deletion (dpb3Δ) or Mcm2 mutation (mcm2-3A), which each disrupts one parental histone transfer pathway, leads to the other's predominance. However, the biological impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ mcm2-3A double mutant did not exhibit the asymmetric parental histone patterns caused by a single dpb3Δ or mcm2-3A mutation, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A and dpb3Δ mcm2-3A mutants, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones during DNA replication is essential for maintaining chromatin structure and that lower homologous recombination activity due to parental histone transfer defects is detrimental to cells.


DNA Replication , Histones , Homologous Recombination , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Homologous Recombination/genetics , DNA Replication/genetics , Mutation , Chromatin/metabolism , Chromatin/genetics , DNA Polymerase II/metabolism , DNA Polymerase II/genetics , Epigenesis, Genetic , DNA Repair
13.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Article En | MEDLINE | ID: mdl-38480846

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Saccharomyces cerevisiae Proteins , Telomerase , Humans , DNA Replication/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Telomerase/genetics , Saccharomyces cerevisiae Proteins/metabolism , DNA/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
14.
Curr Opin Genet Dev ; 85: 102161, 2024 04.
Article En | MEDLINE | ID: mdl-38447236

Sustaining cell identity and function across cell division is germane to human development, healthspan, and cancer avoidance. This relies significantly on propagation of chromatin organization between cell generations, as chromatin presents a barrier to cell fate and cell state conversions. Inheritance of chromatin states across the many cell divisions required for development and tissue homeostasis represents a major challenge, especially because chromatin is disrupted to allow passage of the DNA replication fork to synthesize the two daughter strands. This process also leads to a twofold dilution of epigenetic information in histones, which needs to be accurately restored for faithful propagation of chromatin states across cell divisions. Recent research has identified distinct multilayered mechanisms acting to propagate epigenetic information to daughter strands. Here, we summarize key principles of how epigenetic information in parental histones is transferred across DNA replication and how new histones robustly acquire the same information postreplication, representing a core component of epigenetic cell memory.


Epigenome , Histones , Humans , Histones/genetics , Histones/metabolism , Epigenesis, Genetic/genetics , Chromatin/genetics , Cell Cycle/genetics , Cell Division , DNA Replication/genetics
15.
Nat Commun ; 15(1): 2737, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38548820

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume. We show that the chromosomes predominantly exhibit crescent shapes with a non-uniform DNA density that is increased near the origin of replication (oriC). Additionally, we localized ParB and BsSMC proteins - the key drivers of chromosomal organization - along the contour of the crescent chromosome, showing the highest density near oriC. Opening of the BsSMC ring complex disrupted the crescent chromosome shape and instead yielded a torus shape. These findings help to understand the threedimensional organization of the chromosome and the main protein complexes that underlie its structure.


Bacillus subtilis , Chromosome Segregation , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Chromosome Segregation/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Origin Recognition Complex/metabolism , DNA Replication/genetics , Chromosomes, Bacterial/genetics , Chromosomes, Bacterial/metabolism , DNA, Bacterial/metabolism , Replication Origin
16.
Trends Genet ; 40(6): 526-539, 2024 Jun.
Article En | MEDLINE | ID: mdl-38485608

Proliferating cell nuclear antigen (PCNA) is a eukaryotic replicative DNA clamp. Furthermore, DNA-loaded PCNA functions as a molecular hub during DNA replication and repair. PCNA forms a closed homotrimeric ring that encircles the DNA, and association and dissociation of PCNA from DNA are mediated by clamp-loader complexes. PCNA must be actively released from DNA after completion of its function. If it is not released, abnormal accumulation of PCNA on chromatin will interfere with DNA metabolism. ATAD5 containing replication factor C-like complex (RLC) is a PCNA-unloading clamp-loader complex. ATAD5 deficiency causes various DNA replication and repair problems, leading to genome instability. Here, we review recent progress regarding the understanding of the action mechanisms of PCNA unloading complex in DNA replication/repair pathways.


DNA Repair , DNA Replication , Mammals , Proliferating Cell Nuclear Antigen , DNA Replication/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , DNA Repair/genetics , Animals , Humans , Mammals/genetics , Chromatin/genetics , Chromatin/metabolism , Genomic Instability/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA/genetics , DNA/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism
17.
PLoS Biol ; 22(3): e3002552, 2024 Mar.
Article En | MEDLINE | ID: mdl-38502677

Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.


DNA Replication , DNA, Single-Stranded , Humans , DNA, Single-Stranded/genetics , DNA Replication/genetics , Replication Protein A/genetics , Replication Protein A/metabolism , Protein Binding , Ubiquitination , DNA Damage , Genomic Instability , DNA Helicases/genetics , DNA Helicases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Nucleic Acids Res ; 52(7): 3493-3509, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38442257

Gene-strand bias is a characteristic feature of bacterial genome organization wherein genes are preferentially encoded on the leading strand of replication, promoting co-orientation of replication and transcription. This co-orientation bias has evolved to protect gene essentiality, expression, and genomic stability from the harmful effects of head-on replication-transcription collisions. However, the origin, variation, and maintenance of gene-strand bias remain elusive. Here, we reveal that the frequency of inversions that alter gene orientation exhibits large variation across bacterial populations and negatively correlates with gene-strand bias. The density, distance, and distribution of inverted repeats show a similar negative relationship with gene-strand bias explaining the heterogeneity in inversions. Importantly, these observations are broadly evident across the entire bacterial kingdom uncovering inversions and inverted repeats as primary factors underlying the variation in gene-strand bias and its maintenance. The distinct catalytic subunits of replicative DNA polymerase have co-evolved with gene-strand bias, suggesting a close link between replication and the origin of gene-strand bias. Congruently, inversion frequencies and inverted repeats vary among bacteria with different DNA polymerases. In summary, we propose that the nature of replication determines the fitness cost of replication-transcription collisions, establishing a selection gradient on gene-strand bias by fine-tuning DNA sequence repeats and, thereby, gene inversions.


Bacteria , DNA Replication , Evolution, Molecular , Genome, Bacterial , DNA Replication/genetics , Bacteria/genetics , Bacteria/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , Inverted Repeat Sequences , Replication Origin/genetics , Transcription, Genetic , Genomic Instability
19.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38321933

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Ataxia Telangiectasia Mutated Proteins , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , DNA Methylation , Liver , Zebrafish , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle/genetics , Cell Cycle Checkpoints/genetics , Cell Division/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , DNA/metabolism , DNA Replication/genetics , Embryo, Nonmammalian , Liver/growth & development , Liver/metabolism , S Phase , Zebrafish/genetics , Zebrafish/metabolism , Enzyme Activation/genetics
20.
Nucleic Acids Res ; 52(6): 3088-3105, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38300793

Mitochondrial DNA (mtDNA) recombination in animals has remained enigmatic due to its uniparental inheritance and subsequent homoplasmic state, which excludes the biological need for genetic recombination, as well as limits tools to study it. However, molecular recombination is an important genome maintenance mechanism for all organisms, most notably being required for double-strand break repair. To demonstrate the existence of mtDNA recombination, we took advantage of a cell model with two different types of mitochondrial genomes and impaired its ability to degrade broken mtDNA. The resulting excess of linear DNA fragments caused increased formation of cruciform mtDNA, appearance of heterodimeric mtDNA complexes and recombinant mtDNA genomes, detectable by Southern blot and by long range PacBio® HiFi sequencing approach. Besides utilizing different electrophoretic methods, we also directly observed molecular complexes between different mtDNA haplotypes and recombination intermediates using transmission electron microscopy. We propose that the known copy-choice recombination by mitochondrial replisome could be sufficient for the needs of the small genome, thus removing the requirement for a specialized mitochondrial recombinase. The error-proneness of this system is likely to contribute to the formation of pathological mtDNA rearrangements.


Mitochondria , Recombination, Genetic , Animals , Mitochondria/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA Repair , DNA Replication/genetics , Mammals/genetics
...