Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.043
Filter
1.
Semin Cell Dev Biol ; 164: 1-12, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38823219

ABSTRACT

Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.


Subject(s)
DNA Transposable Elements , RNA, Small Interfering , DNA Transposable Elements/genetics , Animals , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Gene Expression Regulation/genetics , Humans , Evolution, Molecular , Piwi-Interacting RNA
2.
Med Sci Monit ; 30: e945933, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39086277

ABSTRACT

Therapeutic human gene editing technologies continue to advance, with the endonuclease, clustered regularly interspaced short palindromic repeats (CRISPR) being one of the most rapidly developing technologies. Recently, in 2024, a method of RNA editing called 'bridge editing' has been described in bacteria, which is more powerful and has broader applications than CRISPR to reshape the genome. The term 'bridge editing' is used because the method physically links, or bridges, two sections of DNA and can alter large sections of a genome. 'Bridge editing' relies on insertion sequence (IS) elements, the simplest autonomous transposable elements in prokaryotic genomes. This method provides a unified mechanism for the three fundamental types of DNA rearrangement required for genome design: inversion, insertion, and excision. The 'bridge' recombination system could expand the range and diversity of nucleic acid-guided therapeutic systems beyond RNA interference and CRISPR. This editorial aims to introduce new developments in 'bridge' RNA editing that have the increased potential to reshape the genome.


Subject(s)
CRISPR-Cas Systems , Gene Editing , RNA Editing , Gene Editing/methods , RNA Editing/genetics , Humans , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome/genetics , DNA Transposable Elements/genetics
3.
Nat Commun ; 15(1): 5728, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977688

ABSTRACT

Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.


Subject(s)
Ascomycota , DNA Copy Number Variations , Genome, Fungal , Triticum , Triticum/genetics , Triticum/microbiology , DNA Copy Number Variations/genetics , Ascomycota/genetics , Genome, Fungal/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Adaptation, Physiological/genetics , Interspersed Repetitive Sequences/genetics , DNA Transposable Elements/genetics
4.
BMC Genomics ; 25(1): 678, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977960

ABSTRACT

BACKGROUND: The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Gene Silencing , Germ Cells , Promoter Regions, Genetic , RNA, Small Interfering , Animals , DNA Transposable Elements/genetics , Germ Cells/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Drosophila Proteins/genetics , Drosophila/genetics , Argonaute Proteins/genetics
5.
Ann Clin Microbiol Antimicrob ; 23(1): 62, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978096

ABSTRACT

BACKGROUND: This study analyzed the genetic traits and fitness costs of vancomycin-resistant Enterococcus faecium (VREfm) blood isolates carrying Tn1546-type transposons harboring the vanA operon. METHODS: All E. faecium blood isolates were collected from eight general hospitals in South Korea during one-year study period. Antimicrobial susceptibility testing and vanA and vanB PCR were performed. Growth rates of E. faecium isolates were determined. The vanA-positive isolates were subjected to whole genome sequencing and conjugation experiments. RESULTS: Among 308 E. faecium isolates, 132 (42.9%) were positive for vanA. All Tn1546-type transposons harboring the vanA operon located on the plasmids, but on the chromosome in seven isolates. The plasmids harboring the vanA operon were grouped into four types; two types of circular, nonconjugative plasmids (Type A, n = 50; Type B, n = 46), and two types of putative linear, conjugative plasmids (Type C, n = 16; Type D, n = 5). Growth rates of vanA-positive E. faecium isolates were significantly lower than those of vanA-negative isolates (P < 0.001), and reduction in growth rate under vancomycin pressure was significantly larger in isolates harboring putative linear plasmids than in those harboring circular plasmids (P = 0.020). CONCLUSIONS: The possession of vanA operon was costly to bacterial hosts in antimicrobial-free environment, which provide evidence for the importance of reducing vancomycin pressure for prevention of VREfm dissemination. Fitness burden to bacterial hosts was varied by type and size of the vanA operon-harboring plasmid.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbon-Oxygen Ligases , DNA Transposable Elements , Enterococcus faecium , Microbial Sensitivity Tests , Operon , Plasmids , Plasmids/genetics , Enterococcus faecium/genetics , Humans , Bacterial Proteins/genetics , Republic of Korea , Carbon-Oxygen Ligases/genetics , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/genetics , Vancomycin Resistance/genetics , Genetic Fitness , Vancomycin/pharmacology , Conjugation, Genetic
6.
PLoS One ; 19(7): e0306442, 2024.
Article in English | MEDLINE | ID: mdl-38980842

ABSTRACT

We aimed to determine the molecular characteristics of carbapenem-resistant Pseudomonas aeruginosa strains 18081308 and 18083286, which were isolated from the urine and the sputum of two Chinese patients, respectively. Additionally, we conducted a comparative analysis between Tn6411 carrying blaIMP-1 in strain 18083286 and transposons from the same family available in GenBank. Bacterial genome sequencing was carried out on strains 18081308 and 18083286 to obtain their whole genome sequence. Average nucleotide identity (ANI) was used for their precise species identification. Serotyping and multilocus sequence typing were performed. Furthermore, the acquired drug resistance genes of these strains were identified. The carbapenem-resistant P. aeruginosa strains isolated in the present study were of sequence type ST865 and serotype O6. They all carried the same resistance genes (aacC2, tmrB, and blaIMP-1). Tn6411, a Tn7-like transposon carrying blaIMP-1, was found in strain 18083286 by single molecule real time (SMRT) sequencing. We also identified the presence of this transposon sequence in other chromosomes of P. aeruginosa and plasmids carried by Acinetobacter spp. in GenBank, indicating the necessity for heightening attention to the potential transferability of this transposon.


Subject(s)
DNA Transposable Elements , Genomics , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/genetics , DNA Transposable Elements/genetics , beta-Lactamases/genetics , Humans , Genomics/methods , Genome, Bacterial , Pseudomonas Infections/microbiology , Carbapenems/pharmacology , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics
7.
Nat Commun ; 15(1): 5631, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965210

ABSTRACT

Transposable elements (TEs) contribute to gene expression regulation by acting as cis-regulatory elements that attract transcription factors and epigenetic regulators. This research aims to explore the functional and clinical implications of transposable element-related molecular events in hepatocellular carcinoma, focusing on the mechanism through which liver-specific accessible TEs (liver-TEs) regulate adjacent gene expression. Our findings reveal that the expression of HNF4A is inversely regulated by proximate liver-TEs, which facilitates liver cancer cell proliferation. Mechanistically, liver-TEs are predominantly occupied by the histone demethylase, KDM1A. KDM1A negatively influences the methylation of histone H3 Lys4 (H3K4) of liver-TEs, resulting in the epigenetic silencing of HNF4A expression. The suppression of HNF4A mediated by KDM1A promotes liver cancer cell proliferation. In conclusion, this study uncovers a liver-TE/KDM1A/HNF4A regulatory axis that promotes liver cancer growth and highlights KDM1A as a promising therapeutic target. Our findings provide insight into the transposable element-related molecular mechanisms underlying liver cancer progression.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , DNA Transposable Elements , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 4 , Histone Demethylases , Liver Neoplasms , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Humans , Cell Proliferation/genetics , Histone Demethylases/genetics , Histone Demethylases/metabolism , DNA Transposable Elements/genetics , Animals , Cell Line, Tumor , Mice , Histones/metabolism , Histones/genetics , Gene Silencing , Male , Mice, Nude
8.
Nat Commun ; 15(1): 5573, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956036

ABSTRACT

Recent advancements in genome assembly have greatly improved the prospects for comprehensive annotation of Transposable Elements (TEs). However, existing methods for TE annotation using genome assemblies suffer from limited accuracy and robustness, requiring extensive manual editing. In addition, the currently available gold-standard TE databases are not comprehensive, even for extensively studied species, highlighting the critical need for an automated TE detection method to supplement existing repositories. In this study, we introduce HiTE, a fast and accurate dynamic boundary adjustment approach designed to detect full-length TEs. The experimental results demonstrate that HiTE outperforms RepeatModeler2, the state-of-the-art tool, across various species. Furthermore, HiTE has identified numerous novel transposons with well-defined structures containing protein-coding domains, some of which are directly inserted within crucial genes, leading to direct alterations in gene expression. A Nextflow version of HiTE is also available, with enhanced parallelism, reproducibility, and portability.


Subject(s)
DNA Transposable Elements , Molecular Sequence Annotation , DNA Transposable Elements/genetics , Molecular Sequence Annotation/methods , Animals , Software , Humans , Reproducibility of Results , Computational Biology/methods , Databases, Genetic , Algorithms , Genome/genetics
9.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000118

ABSTRACT

Multidrug-resistant P. aeruginosa infections pose a serious public health threat due to the rise in antimicrobial resistance. Phage therapy has emerged as a promising alternative. However, P. aeruginosa has evolved various mechanisms to thwart phage attacks, making it crucial to decipher these resistance mechanisms to develop effective therapeutic strategies. In this study, we conducted a forward-genetic screen of the P. aeruginosa PA14 non-redundant transposon library (PA14NR) to identify dominant-negative mutants displaying phage-resistant phenotypes. Our screening process revealed 78 mutants capable of thriving in the presence of phages, with 23 of them carrying insertions in genes associated with membrane composition. Six mutants exhibited total resistance to phage infection. Transposon insertions were found in genes known to be linked to phage-resistance such as galU and a glycosyl transferase gene, as well as novel genes such as mexB, lasB, and two hypothetical proteins. Functional experiments demonstrated that these genes played pivotal roles in phage adsorption and biofilm formation, indicating that altering the bacterial membrane composition commonly leads to phage resistance in P. aeruginosa. Importantly, these mutants displayed phenotypic trade-offs, as their resistance to phages inversely affected antibiotic resistance and hindered biofilm formation, shedding light on the complex interplay between phage susceptibility and bacterial fitness. This study highlights the potential of transposon mutant libraries and forward-genetic screens in identifying key genes involved in phage-host interactions and resistance mechanisms. These findings support the development of innovative strategies for combating antibiotic-resistant pathogens.


Subject(s)
DNA Transposable Elements , Gene Library , Mutation , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virology , Pseudomonas aeruginosa/genetics , DNA Transposable Elements/genetics , Biofilms/growth & development , Bacteriophages/genetics , Bacteriophages/physiology
10.
Genome Res ; 34(6): 937-951, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38986578

ABSTRACT

Transposable elements (TEs) and other repetitive regions have been shown to contain gene regulatory elements, including transcription factor binding sites. However, regulatory elements harbored by repeats have proven difficult to characterize using short-read sequencing assays such as ChIP-seq or ATAC-seq. Most regulatory genomics analysis pipelines discard "multimapped" reads that align equally well to multiple genomic locations. Because multimapped reads arise predominantly from repeats, current analysis pipelines fail to detect a substantial portion of regulatory events that occur in repetitive regions. To address this shortcoming, we developed Allo, a new approach to allocate multimapped reads in an efficient, accurate, and user-friendly manner. Allo combines probabilistic mapping of multimapped reads with a convolutional neural network that recognizes the read distribution features of potential peaks, offering enhanced accuracy in multimapping read assignment. Allo also provides read-level output in the form of a corrected alignment file, making it compatible with existing regulatory genomics analysis pipelines and downstream peak-finders. In a demonstration application on CTCF ChIP-seq data, we show that Allo results in the discovery of thousands of new CTCF peaks. Many of these peaks contain the expected cognate motif and/or serve as TAD boundaries. We additionally apply Allo to a diverse collection of ENCODE ChIP-seq data sets, resulting in multiple previously unidentified interactions between transcription factors and repetitive element families. Finally, we show that Allo may be particularly beneficial in identifying ChIP-seq peaks at centromeres, near segmentally duplicated genes, and in younger TEs, enabling new regulatory analyses in these regions.


Subject(s)
Chromatin Immunoprecipitation Sequencing , Humans , Chromatin Immunoprecipitation Sequencing/methods , Regulatory Sequences, Nucleic Acid , Repetitive Sequences, Nucleic Acid , Genomics/methods , Binding Sites , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Regulatory Elements, Transcriptional , DNA Transposable Elements , Sequence Analysis, DNA/methods , Neural Networks, Computer
11.
Science ; 385(6705): eadl6173, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991060

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is the most commonly mutated metabolic gene across human cancers. Mutant IDH1 (mIDH1) generates the oncometabolite (R)-2-hydroxyglutarate, disrupting enzymes involved in epigenetics and other processes. A hallmark of IDH1-mutant solid tumors is T cell exclusion, whereas mIDH1 inhibition in preclinical models restores antitumor immunity. Here, we define a cell-autonomous mechanism of mIDH1-driven immune evasion. IDH1-mutant solid tumors show selective hypermethylation and silencing of the cytoplasmic double-stranded DNA (dsDNA) sensor CGAS, compromising innate immune signaling. mIDH1 inhibition restores DNA demethylation, derepressing CGAS and transposable element (TE) subclasses. dsDNA produced by TE-reverse transcriptase (TE-RT) activates cGAS, triggering viral mimicry and stimulating antitumor immunity. In summary, we demonstrate that mIDH1 epigenetically suppresses innate immunity and link endogenous RT activity to the mechanism of action of a US Food and Drug Administration-approved oncology drug.


Subject(s)
Immune Evasion , Immunity, Innate , Isocitrate Dehydrogenase , Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , DNA/metabolism , DNA Demethylation , DNA Methylation , DNA Transposable Elements , Epigenesis, Genetic , Glutarates/metabolism , Immunity, Innate/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mutation , Neoplasms/immunology , Neoplasms/genetics , Nucleotidyltransferases/genetics , Tumor Escape , Immune Evasion/genetics
12.
Microbiologyopen ; 13(4): e1425, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987999

ABSTRACT

Pigments provide a simple means to rapidly visually ascertain the quantities or presence of specific microbes in a complex community. The selection of pigment-producing colonies that are simple to differentiate from common colony phenotypes provides a high degree of certainty for the identity of pigment-tagged strains. Successful employment of pigment production is dependent on various intrinsic factors related to proper levels of gene expression and pigment production that are not always easy to predict and vary within each microbe. We have constructed a simple transposon system that incorporates the genes for the production of deoxyviolacein, a pigment produced from intracellular reserves of the amino acid tryptophan, to randomly insert these genes throughout the genome. This tool allows the user to select from many thousands of potential sites throughout a bacterial genome for an ideal location to generate the desired amount of pigment. We have applied this system to a small selection of endophytes and other model bacteria to differentiate these strains from complex communities and confirm their presence after several weeks in natural environments. We provide two examples of applications using the pigments to trace strains following introduction into plant tissues or to produce a reporter strain for extracellular nitrogen compound sensing. We recognize that this tool could have far broader utility in other applications and microbes, and describe the methodology for use by the greater scientific community.


Subject(s)
DNA Transposable Elements , Pigments, Biological , DNA Transposable Elements/genetics , Pigments, Biological/metabolism , Mutagenesis, Insertional/methods , Genetic Vectors/genetics , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Tryptophan/metabolism , Endophytes/genetics , Endophytes/metabolism
13.
BMC Genomics ; 25(1): 687, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997681

ABSTRACT

Transposable elements (TEs) are DNA sequences that can move or replicate within a genome, and their study has become increasingly important in understanding genome evolution and function. The Tridactylidae family, including Xya riparia (pygmy mole cricket), harbors a variety of transposable elements (TEs) that have been insufficiently investigated. Further research is required to fully understand their diversity and evolutionary characteristics. Hence, we conducted a comprehensive repeatome analysis of X. riparia species using the chromosome-level assembled genome. The study aimed to comprehensively analyze the abundance, distribution, and age of transposable elements (TEs) in the genome. The results indicated that the genome was 1.67 Gb, with 731.63 Mb of repetitive sequences, comprising 27% of Class II (443.25 Mb), 16% of Class I (268.45 Mb), and 1% of unknown TEs (19.92 Mb). The study found that DNA transposons dominate the genome, accounting for approximately 60% of the total repeat size, with retrotransposons and unknown elements accounting for 37% and 3% of the genome, respectively. The members of the Gypsy superfamily were the most abundant amongst retrotransposons, accounting for 63% of them. The transposable superfamilies (LTR/Gypsy, DNA/nMITE, DNA/hAT, and DNA/Helitron) collectively constituted almost 70% of the total repeat size of all six chromosomes. The study further unveiled a significant linear correlation (Pearson correlation: r = 0.99, p-value = 0.00003) between the size of the chromosomes and the repetitive sequences. The average age of DNA transposon and retrotransposon insertions ranges from 25 My (million years) to 5 My. The satellitome analysis discovered 13 satellite DNA families that comprise about 0.15% of the entire genome. In addition, the transcriptional analysis of TEs found that DNA transposons were more transcriptionally active than retrotransposons. Overall, the study suggests that the genome of X. riparia is complex, characterized by a substantial portion of repetitive elements. These findings not only enhance our understanding of TE evolution within the Tridactylidae family but also provide a foundation for future investigations into the genomic intricacies of related species.


Subject(s)
DNA Transposable Elements , Evolution, Molecular , Genome, Insect , Retroelements , Terminal Repeat Sequences , Animals , DNA Transposable Elements/genetics , Terminal Repeat Sequences/genetics , Gryllidae/genetics , Phylogeny , Genomics
14.
Nat Commun ; 15(1): 5644, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969648

ABSTRACT

Long-read sequencing, exemplified by PacBio, revolutionizes genomics, overcoming challenges like repetitive sequences. However, the high DNA requirement ( > 1 µg) is prohibitive for small organisms. We develop a low-input (100 ng), low-cost, and amplification-free library-generation method for PacBio sequencing (LILAP) using Tn5-based tagmentation and DNA circularization within one tube. We test LILAP with two Drosophila melanogaster individuals, and generate near-complete genomes, surpassing preexisting single-fly genomes. By analyzing variations in these two genomes, we characterize mutational processes: complex transpositions (transposon insertions together with extra duplications and/or deletions) prefer regions characterized by non-B DNA structures, and gene conversion of transposons occurs on both DNA and RNA levels. Concurrently, we generate two complete assemblies for the endosymbiotic bacterium Wolbachia in these flies and similarly detect transposon conversion. Thus, LILAP promises a broad PacBio sequencing adoption for not only mutational studies of flies and their symbionts but also explorations of other small organisms or precious samples.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster , Genome, Insect , Mutation , Wolbachia , Animals , Drosophila melanogaster/genetics , DNA Transposable Elements/genetics , Wolbachia/genetics , Genome, Insect/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Genomics/methods , Gene Conversion
15.
Methods Mol Biol ; 2819: 125-146, 2024.
Article in English | MEDLINE | ID: mdl-39028505

ABSTRACT

Many approaches for measuring three-dimensional chromosomal conformations rely upon formaldehyde crosslinking followed by subsequent proximity ligation, a family of methods exemplified by 3C, Hi-C, etc. Here we provide an alternative crosslinking-free procedure for high-throughput identification of long-range contacts in the chromosomes of enterobacteria, making use of contact-dependent transposition of phage Mu to identify distant loci in close contact. The procedure described here will suffice to provide a comprehensive map of transposition frequencies between tens of thousands of loci in a bacterial genome, with the resolution limited by the diversity of the insertion site library used and the sequencing depth applied.


Subject(s)
Chromosome Mapping , Chromosomes, Bacterial , Escherichia coli , Escherichia coli/genetics , Chromosomes, Bacterial/genetics , Chromosome Mapping/methods , Bacteriophage mu/genetics , High-Throughput Nucleotide Sequencing/methods , DNA Transposable Elements/genetics
16.
Sci Adv ; 10(28): eado6406, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996012

ABSTRACT

5-Methylcytosine (5mC) is a widespread silencing mechanism that controls genomic parasites. In eukaryotes, 5mC has gained complex roles in gene regulation beyond parasite control, yet 5mC has also been lost in many lineages. The causes for 5mC retention and its genomic consequences are still poorly understood. Here, we show that the protist closely related to animals Amoebidium appalachense features both transposon and gene body methylation, a pattern reminiscent of invertebrates and plants. Unexpectedly, hypermethylated genomic regions in Amoebidium derive from viral insertions, including hundreds of endogenized giant viruses, contributing 14% of the proteome. Using a combination of inhibitors and genomic assays, we demonstrate that 5mC silences these giant virus insertions. Moreover, alternative Amoebidium isolates show polymorphic giant virus insertions, highlighting a dynamic process of infection, endogenization, and purging. Our results indicate that 5mC is critical for the controlled coexistence of newly acquired viral DNA into eukaryotic genomes, making Amoebidium a unique model to understand the hybrid origins of eukaryotic DNA.


Subject(s)
DNA Methylation , Giant Viruses , Animals , Giant Viruses/genetics , 5-Methylcytosine/metabolism , DNA Transposable Elements/genetics , DNA, Viral/genetics
17.
Science ; 385(6705): eadm8189, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38991068

ABSTRACT

TnpB nucleases represent the evolutionary precursors to CRISPR-Cas12 and are widespread in all domains of life. IS605-family TnpB homologs function as programmable RNA-guided homing endonucleases in bacteria, driving transposon maintenance through DNA double-strand break-stimulated homologous recombination. In this work, we uncovered molecular mechanisms of the transposition life cycle of IS607-family elements that, notably, also encode group I introns. We identified specific features for a candidate "IStron" from Clostridium botulinum that allow the element to carefully control the relative levels of spliced products versus functional guide RNAs. Our results suggest that IStron transcripts evolved an ability to balance competing and mutually exclusive activities that promote selfish transposon spread while limiting adverse fitness costs on the host. Collectively, this work highlights molecular innovation in the multifunctional utility of transposon-encoded noncoding RNAs.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , Clostridium botulinum , DNA Transposable Elements , Endodeoxyribonucleases , Introns , RNA, Guide, CRISPR-Cas Systems , CRISPR-Cas Systems , Homologous Recombination , RNA Splicing , RNA, Guide, CRISPR-Cas Systems/genetics , Transposases/metabolism , Transposases/genetics , Clostridium botulinum/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism
18.
Genes (Basel) ; 15(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39062626

ABSTRACT

The bacterium Deinococcus radiodurans is known to efficiently and accurately reassemble its genome after hundreds of DNA double-strand breaks (DSBs). Only at very large amounts of radiation-induced DSBs is this accuracy affected in the wild-type D. radiodurans, causing rearrangements in its genome structure. However, changes in its genome structure may also be possible during the propagation and storage of cell cultures. We investigate this possibility by listing structural differences between three completely sequenced genomes of D. radiodurans strains with a recent common ancestor-the type strain stored and sequenced in two different laboratories (of the ATCC 13939 lineage) and the first sequenced strain historically used as the reference (ATCC BAA-816). We detected a number of structural differences and found the most likely mechanisms behind them: (i) transposition/copy number change in mobile interspersed repeats-insertion sequences and small non-coding repeats, (ii) variable number of monomers within tandem repeats, (iii) deletions between long direct DNA repeats, and (iv) deletions between short (4-10 bp) direct DNA repeats. The most surprising finding was the deletions between short repeats because it indicates the utilization of a less accurate DSB repair mechanism in conditions in which a more accurate one should be both available and preferred. The detected structural differences, as well as SNPs and short indels, while being important footprints of deinococcal DNA metabolism and repair, are also a valuable resource for researchers using these D. radiodurans strains.


Subject(s)
Deinococcus , Genome, Bacterial , Deinococcus/genetics , DNA Breaks, Double-Stranded , DNA Transposable Elements/genetics
19.
Nat Commun ; 15(1): 6308, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060266

ABSTRACT

Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.


Subject(s)
Orchidaceae , Pollination , Spiders , Animals , Orchidaceae/genetics , Orchidaceae/physiology , Pollination/genetics , Spiders/genetics , Spiders/physiology , Genome, Plant , Phylogeny , Flowers/genetics , Flowers/physiology , Adaptation, Physiological/genetics , DNA Transposable Elements/genetics , Male , Female , Evolution, Molecular , Gene Duplication , Reproductive Isolation , Biological Evolution
20.
PLoS Pathog ; 20(6): e1012235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843111

ABSTRACT

Amikacin and piperacillin/tazobactam are frequent antibiotic choices to treat bloodstream infection, which is commonly fatal and most often caused by bacteria from the family Enterobacterales. Here we show that two gene cassettes located side-by-side in and ancestral integron similar to In37 have been "harvested" by insertion sequence IS26 as a transposon that is widely disseminated among the Enterobacterales. This transposon encodes the enzymes AAC(6')-Ib-cr and OXA-1, reported, respectively, as amikacin and piperacillin/tazobactam resistance mechanisms. However, by studying bloodstream infection isolates from 769 patients from three hospitals serving a population of 1.2 million people in South West England, we show that increased enzyme production due to mutation in an IS26/In37-derived hybrid promoter or, more commonly, increased transposon copy number is required to simultaneously remove these two key therapeutic options; in many cases leaving only the last-resort antibiotic, meropenem. These findings may help improve the accuracy of predicting piperacillin/tazobactam treatment failure, allowing stratification of patients to receive meropenem or piperacillin/tazobactam, which may improve outcome and slow the emergence of meropenem resistance.


Subject(s)
Anti-Bacterial Agents , DNA Transposable Elements , Humans , Anti-Bacterial Agents/pharmacology , DNA Transposable Elements/genetics , Drug Resistance, Multiple, Bacterial/genetics , Piperacillin/pharmacology , Amikacin/pharmacology , Microbial Sensitivity Tests , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Integrons/genetics , Bacteremia/microbiology , Bacteremia/drug therapy , Bacteremia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL