Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.822
Filter
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38975896

ABSTRACT

Mechanisms of protein-DNA interactions are involved in a wide range of biological activities and processes. Accurately identifying binding sites between proteins and DNA is crucial for analyzing genetic material, exploring protein functions, and designing novel drugs. In recent years, several computational methods have been proposed as alternatives to time-consuming and expensive traditional experiments. However, accurately predicting protein-DNA binding sites still remains a challenge. Existing computational methods often rely on handcrafted features and a single-model architecture, leaving room for improvement. We propose a novel computational method, called EGPDI, based on multi-view graph embedding fusion. This approach involves the integration of Equivariant Graph Neural Networks (EGNN) and Graph Convolutional Networks II (GCNII), independently configured to profoundly mine the global and local node embedding representations. An advanced gated multi-head attention mechanism is subsequently employed to capture the attention weights of the dual embedding representations, thereby facilitating the integration of node features. Besides, extra node features from protein language models are introduced to provide more structural information. To our knowledge, this is the first time that multi-view graph embedding fusion has been applied to the task of protein-DNA binding site prediction. The results of five-fold cross-validation and independent testing demonstrate that EGPDI outperforms state-of-the-art methods. Further comparative experiments and case studies also verify the superiority and generalization ability of EGPDI.


Subject(s)
Computational Biology , DNA-Binding Proteins , DNA , Neural Networks, Computer , Binding Sites , DNA/metabolism , DNA/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Computational Biology/methods , Algorithms , Protein Binding
2.
Nat Commun ; 15(1): 5446, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937458

ABSTRACT

Mitochondrial transcription factor A (TFAM) employs DNA bending to package mitochondrial DNA (mtDNA) into nucleoids and recruit mitochondrial RNA polymerase (POLRMT) at specific promoter sites, light strand promoter (LSP) and heavy strand promoter (HSP). Herein, we characterize the conformational dynamics of TFAM on promoter and non-promoter sequences using single-molecule fluorescence resonance energy transfer (smFRET) and single-molecule protein-induced fluorescence enhancement (smPIFE) methods. The DNA-TFAM complexes dynamically transition between partially and fully bent DNA conformational states. The bending/unbending transition rates and bending stability are DNA sequence-dependent-LSP forms the most stable fully bent complex and the non-specific sequence the least, which correlates with the lifetimes and affinities of TFAM with these DNA sequences. By quantifying the dynamic nature of the DNA-TFAM complexes, our study provides insights into how TFAM acts as a multifunctional protein through the DNA bending states to achieve sequence specificity and fidelity in mitochondrial transcription while performing mtDNA packaging.


Subject(s)
DNA Packaging , DNA, Mitochondrial , DNA-Binding Proteins , Fluorescence Resonance Energy Transfer , Mitochondrial Proteins , Nucleic Acid Conformation , Promoter Regions, Genetic , Transcription Factors , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Transcription Initiation, Genetic , Mitochondria/metabolism , Mitochondria/genetics , Single Molecule Imaging , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Base Sequence , Protein Binding
3.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927611

ABSTRACT

Protein-DNA complex interactivity plays a crucial role in biological activities such as gene expression, modification, replication and transcription. Understanding the physiological significance of protein-DNA binding interfacial hot spots, as well as the development of computational biology, depends on the precise identification of these regions. In this paper, a hot spot prediction method called EC-PDH is proposed. First, we extracted features of these hot spots' solid solvent-accessible surface area (ASA) and secondary structure, and then the mean, variance, energy and autocorrelation function values of the first three intrinsic modal components (IMFs) of these conventional features were extracted as new features via the empirical modal decomposition algorithm (EMD). A total of 218 dimensional features were obtained. For feature selection, we used the maximum correlation minimum redundancy sequence forward selection method (mRMR-SFS) to obtain an optimal 11-dimensional-feature subset. To address the issue of data imbalance, we used the SMOTE-Tomek algorithm to balance positive and negative samples and finally used cat gradient boosting (CatBoost) to construct our hot spot prediction model for protein-DNA binding interfaces. Our method performs well on the test set, with AUC, MCC and F1 score values of 0.847, 0.543 and 0.772, respectively. After a comparative evaluation, EC-PDH outperforms the existing state-of-the-art methods in identifying hot spots.


Subject(s)
Algorithms , DNA , Machine Learning , DNA/genetics , DNA/chemistry , DNA/metabolism , Protein Binding , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Computational Biology/methods , Binding Sites
4.
Nucleic Acids Res ; 52(12): 7337-7353, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38828772

ABSTRACT

In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.


Subject(s)
Amino Acid Motifs , BRCA2 Protein , Cell Cycle Proteins , DNA-Binding Proteins , Protein Binding , Rad51 Recombinase , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Rad51 Recombinase/chemistry , BRCA2 Protein/metabolism , BRCA2 Protein/chemistry , BRCA2 Protein/genetics , Animals , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Mice , Humans , Binding Sites , Models, Molecular , Crystallography, X-Ray , Homologous Recombination , Phosphate-Binding Proteins
5.
Nucleic Acids Res ; 52(12): 7354-7366, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38832628

ABSTRACT

Nucleoid-associated proteins (NAPs) play central roles in bacterial chromosome organization and DNA processes. The Escherichia coli YejK protein is a highly abundant, yet poorly understood NAP. YejK proteins are conserved among Gram-negative bacteria but show no homology to any previously characterized DNA-binding protein. Hence, how YejK binds DNA is unknown. To gain insight into YejK structure and its DNA binding mechanism we performed biochemical and structural analyses on the E. coli YejK protein. Biochemical assays demonstrate that, unlike many NAPs, YejK does not show a preference for AT-rich DNA and binds non-sequence specifically. A crystal structure revealed YejK adopts a novel fold comprised of two domains. Strikingly, each of the domains harbors an extended arm that mediates dimerization, creating an asymmetric clamp with a 30 Å diameter pore. The lining of the pore is electropositive and mutagenesis combined with fluorescence polarization assays support DNA binding within the pore. Finally, our biochemical analyses on truncated YejK proteins suggest a mechanism for YejK clamp loading. Thus, these data reveal YejK contains a newly described DNA-binding motif that functions as a novel clamp.


Subject(s)
DNA-Binding Proteins , Escherichia coli Proteins , Escherichia coli , Models, Molecular , Protein Binding , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Crystallography, X-Ray , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , Binding Sites , Protein Domains , Protein Multimerization , DNA/metabolism , DNA/chemistry , Amino Acid Sequence
6.
Nucleic Acids Res ; 52(12): 7305-7320, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38842936

ABSTRACT

The SorC family of transcriptional regulators plays a crucial role in controlling the carbohydrate metabolism and quorum sensing. We employed an integrative approach combining X-ray crystallography and cryo-electron microscopy to investigate architecture and functional mechanism of two prototypical representatives of two sub-classes of the SorC family: DeoR and CggR from Bacillus subtilis. Despite possessing distinct DNA-binding domains, both proteins form similar tetrameric assemblies when bound to their respective DNA operators. Structural analysis elucidates the process by which the CggR-regulated gapA operon is derepressed through the action of two effectors: fructose-1,6-bisphosphate and newly confirmed dihydroxyacetone phosphate. Our findings provide the first comprehensive understanding of the DNA binding mechanism of the SorC-family proteins, shedding new light on their functional characteristics.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Cryoelectron Microscopy , Models, Molecular , Repressor Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Repressor Proteins/genetics , Protein Binding , Protein Multimerization , DNA/chemistry , DNA/metabolism , Binding Sites , Gene Expression Regulation, Bacterial , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Operon/genetics , Fructosediphosphates
7.
Nucleic Acids Res ; 52(12): 7321-7336, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38842933

ABSTRACT

The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.


Subject(s)
Bacterial Proteins , Chromosomes, Bacterial , DNA-Binding Proteins , Helicobacter pylori , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/genetics , Models, Molecular , Crystallography, X-Ray , Protein Binding , DNA, Bacterial/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Chromosome Segregation , Adenosine Triphosphate/metabolism , Binding Sites
8.
Biochemistry (Mosc) ; 89(4): 663-673, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38831503

ABSTRACT

Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Protein Domains , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/chemistry , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Male , Female , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , Ubiquitination , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry
9.
Nat Commun ; 15(1): 5275, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902227

ABSTRACT

DNA binding transcription factors possess the ability to interact with lipid membranes to construct ion-permeable pathways. Herein, we present a thiazole-based DNA binding peptide mimic TBP2, which forms transmembrane ion channels, impacting cellular ion concentration and consequently stabilizing G-quadruplex DNA structures. TBP2 self-assembles into nanostructures, e.g., vesicles and nanofibers and facilitates the transportation of Na+ and K+ across lipid membranes with high conductance (~0.6 nS). Moreover, TBP2 exhibits increased fluorescence when incorporated into the membrane or in cellular nuclei. Monomeric TBP2 can enter the lipid membrane and localize to the nuclei of cancer cells. The coordinated process of time-dependent membrane or nuclear localization of TBP2, combined with elevated intracellular cation levels and direct G-quadruplex (G4) interaction, synergistically promotes formation and stability of G4 structures, triggering cancer cell death. This study introduces a platform to mimic and control intricate biological functions, leading to the discovery of innovative therapeutic approaches.


Subject(s)
DNA , G-Quadruplexes , Peptidomimetics , Humans , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Peptidomimetics/metabolism , DNA/metabolism , DNA/chemistry , Potassium/metabolism , Potassium/chemistry , Cell Line, Tumor , Sodium/metabolism , Cell Nucleus/metabolism , Ion Channels/metabolism , Ion Channels/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry
10.
Commun Biol ; 7(1): 743, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902525

ABSTRACT

Carboxy terminal fragments (CTFs) of TDP-43 contain an intrinsically disordered region (IDR) and form cytoplasmic condensates containing amyloid fibrils. Such condensates are toxic and associated with pathogenicity in amyotrophic lateral sclerosis. However, the molecular details of how the domain of TDP-43 CTFs leads to condensation and cytotoxicity remain elusive. Here, we show that truncated RNA/DNA-recognition motif (RRM) at the N-terminus of TDP-43 CTFs leads to the structural transition of the IDR, whereas the IDR itself of TDP-43 CTFs is difficult to assemble even if they are proximate intermolecularly. Hetero-oligomers of TDP-43 CTFs that have recruited other proteins are more toxic than homo-oligomers, implicating loss-of-function of the endogenous proteins by such oligomers is associated with cytotoxicity. Furthermore, such toxicity of TDP-43 CTFs was cell-nonautonomously affected in the nematodes. Therefore, misfolding and oligomeric characteristics of the truncated RRM at the N-terminus of TDP-43 CTFs define their condensation properties and toxicity.


Subject(s)
DNA-Binding Proteins , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Humans , Animals , Protein Multimerization , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics
11.
Nat Commun ; 15(1): 5241, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898011

ABSTRACT

While the elucidation of regulatory mechanisms of folded proteins is facilitated due to their amenability to high-resolution structural characterization, investigation of these mechanisms in disordered proteins is more challenging due to their structural heterogeneity, which can be captured by a variety of biophysical approaches. Here, we used the transcriptional master corepressor CtBP, which binds the putative metastasis suppressor RAI2 through repetitive SLiMs, as a model system. Using cryo-electron microscopy embedded in an integrative structural biology approach, we show that RAI2 unexpectedly induces CtBP polymerization through filaments of stacked tetrameric CtBP layers. These filaments lead to RAI2-mediated CtBP nuclear foci and relieve its corepressor function in RAI2-expressing cancer cells. The impact of RAI2-mediated CtBP loss-of-function is illustrated by the analysis of a diverse cohort of prostate cancer patients, which reveals a substantial decrease in RAI2 in advanced treatment-resistant cancer subtypes. As RAI2-like SLiM motifs are found in a wide range of organisms, including pathogenic viruses, our findings serve as a paradigm for diverse functional effects through multivalent interaction-mediated polymerization by disordered proteins in healthy and diseased conditions.


Subject(s)
Alcohol Oxidoreductases , Polymerization , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/chemistry , Cryoelectron Microscopy , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Protein Binding , HEK293 Cells , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Motifs , Co-Repressor Proteins/metabolism , Co-Repressor Proteins/genetics
12.
Crit Rev Biochem Mol Biol ; 59(1-2): 99-127, 2024.
Article in English | MEDLINE | ID: mdl-38770626

ABSTRACT

The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.


Subject(s)
DNA, Single-Stranded , DNA-Binding Proteins , Escherichia coli Proteins , Escherichia coli , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Protein Binding , DNA, Bacterial/metabolism , DNA, Bacterial/genetics
13.
Nucleic Acids Res ; 52(12): 6763-6776, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38721783

ABSTRACT

The kinetics of protein-DNA recognition, along with its thermodynamic properties, including affinity and specificity, play a central role in shaping biological function. Protein-DNA recognition kinetics are characterized by two key elements: the time taken to locate the target site amid various nonspecific alternatives; and the kinetics involved in the recognition process, which may necessitate overcoming an energetic barrier. In this study, we developed a coarse-grained (CG) model to investigate interactions between a transcription factor called the sex-determining region Y (SRY) protein and DNA, in order to probe how DNA conformational changes affect SRY-DNA recognition and binding kinetics. We find that, not only does a requirement for such a conformational DNA transition correspond to a higher energetic barrier for binding and therefore slower kinetics, it may further impede the recognition kinetics by increasing unsuccessful binding events (skipping events) where the protein partially binds its DNA target site but fails to form the specific protein-DNA complex. Such skipping events impose the need for additional cycles protein search of nonspecific DNA sites, thus significantly extending the overall recognition time. Our results highlight a trade-off between the speed with which the protein scans nonspecific DNA and the rate at which the protein recognizes its specific target site. Finally, we examine molecular approaches potentially adopted by natural systems to enhance protein-DNA recognition despite its intrinsically slow kinetics.


Subject(s)
DNA , Nucleic Acid Conformation , Protein Binding , Thermodynamics , Kinetics , DNA/metabolism , DNA/chemistry , Sex-Determining Region Y Protein/metabolism , Sex-Determining Region Y Protein/chemistry , Sex-Determining Region Y Protein/genetics , Binding Sites , Models, Molecular , Protein Conformation , Molecular Dynamics Simulation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry
14.
Protein Sci ; 33(6): e5015, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747369

ABSTRACT

Prokaryotic DNA binding proteins (DBPs) play pivotal roles in governing gene regulation, DNA replication, and various cellular functions. Accurate computational models for predicting prokaryotic DBPs hold immense promise in accelerating the discovery of novel proteins, fostering a deeper understanding of prokaryotic biology, and facilitating the development of therapeutics targeting for potential disease interventions. However, existing generic prediction models often exhibit lower accuracy in predicting prokaryotic DBPs. To address this gap, we introduce ProkDBP, a novel machine learning-driven computational model for prediction of prokaryotic DBPs. For prediction, a total of nine shallow learning algorithms and five deep learning models were utilized, with the shallow learning models demonstrating higher performance metrics compared to their deep learning counterparts. The light gradient boosting machine (LGBM), coupled with evolutionarily significant features selected via random forest variable importance measure (RF-VIM) yielded the highest five-fold cross-validation accuracy. The model achieved the highest auROC (0.9534) and auPRC (0.9575) among the 14 machine learning models evaluated. Additionally, ProkDBP demonstrated substantial performance with an independent dataset, exhibiting higher values of auROC (0.9332) and auPRC (0.9371). Notably, when benchmarked against several cutting-edge existing models, ProkDBP showcased superior predictive accuracy. Furthermore, to promote accessibility and usability, ProkDBP (https://iasri-sg.icar.gov.in/prokdbp/) is available as an online prediction tool, enabling free access to interested users. This tool stands as a significant contribution, enhancing the repertoire of resources for accurate and efficient prediction of prokaryotic DBPs.


Subject(s)
Bacterial Proteins , DNA-Binding Proteins , Machine Learning , Algorithms , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Computational Biology/methods , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism
15.
Nucleic Acids Res ; 52(10): 5912-5927, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38742632

ABSTRACT

Mitochondrial single-stranded DNA-binding protein (mtSSB) is essential for mitochondrial DNA (mtDNA) replication. Recently, several mtSSB variants have been associated with autosomal dominant mitochondrial optic atrophy and retinal dystrophy. Here, we have studied at the molecular level the functional consequences of one of the most severe mtSSB variants, R107Q. We first studied the oligomeric state of this variant and observed that the mtSSBR107Q mutant forms stable tetramers in vitro. On the other hand, we showed, using complementary single-molecule approaches, that mtSSBR107Q displays a lower intramolecular ssDNA compaction ability and a higher ssDNA dissociation rate than the WT protein. Real-time competition experiments for ssDNA-binding showed a marked advantage of mtSSBWT over mtSSBR107Q. Combined, these results show that the R107Q mutation significantly impaired the ssDNA-binding and compacting ability of mtSSB, likely by weakening mtSSB ssDNA wrapping efficiency. These features are in line with our molecular modeling of ssDNA on mtSSB showing that the R107Q mutation may destabilize local interactions and results in an electronegative spot that interrupts an ssDNA-interacting-electropositive patch, thus reducing the potential mtSSB-ssDNA interaction sites.


Subject(s)
DNA, Single-Stranded , DNA-Binding Proteins , Mutation , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry , Models, Molecular , Protein Binding , Protein Structure, Quaternary
16.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38733345

ABSTRACT

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Subject(s)
ATPases Associated with Diverse Cellular Activities , DNA-Binding Proteins , Histones , Lysine , Histones/metabolism , Histones/chemistry , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/chemistry , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Lysine/metabolism , Lysine/chemistry , Acetylation , Protein Processing, Post-Translational , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/chemistry , Protein Binding , Protein Domains , Models, Molecular , Binding Sites
17.
Biochem Biophys Res Commun ; 722: 150150, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38805787

ABSTRACT

Two component system bacterial response regulators are typically DNA-binding proteins which enable the genetic regulation of many adaptive bacterial behaviors. Despite structural similarity across response regulator families, there is a diverse array of DNA-binding mechanisms. Bacteria usually encode several dozen two-component system response regulators, but Francisella tularensis only encodes three. Due to their simplified response regulatory network, Francisella species are a model for studying the role of response regulator proteins in virulence. Here, we show that Francisella response regulators QseB, KdpE, and BfpR all utilize different DNA-binding mechanisms. Our evidence suggests that QseB follows a simple mechanism whereby it binds a single inverted repeat sequence with a higher affinity upon phosphorylation. This behavior is independent of whether QseB is a positive or negative regulator of the gene as demonstrated by qseB and priM promoter sequences, respectively. Similarly, KdpE binds DNA more tightly upon phosphorylation, but also exhibits a cooperative binding isotherm. While we propose a KdpE binding site, it is possible that KdpE has a complex DNA-binding mechanism potentially involving multiple copies of KdpE being recruited to a promoter region. Finally, we show that BfpR appears to bind a region of its own promoter sequence with a lower affinity upon phosphorylation. Further structural and enzymatic work will need to be performed to deconvolute the KdpE and BfpR binding mechanisms.


Subject(s)
Bacterial Proteins , DNA-Binding Proteins , Protein Binding , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Phosphorylation , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Gene Expression Regulation, Bacterial , DNA, Bacterial/metabolism , DNA, Bacterial/genetics , Francisella tularensis/metabolism , Francisella tularensis/genetics , Binding Sites , Promoter Regions, Genetic , Francisella
18.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 6): 125-134, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38818823

ABSTRACT

The RSF complex belongs to the ISWI chromatin-remodeling family and is composed of two subunits: RSF1 (remodeling and spacing factor 1) and SNF2h (sucrose nonfermenting protein 2 homolog). The RSF complex participates in nucleosome spacing and assembly, and subsequently promotes nucleosome maturation. Although SNF2h has been extensively studied in the last few years, the structural and functional properties of the remodeler RSF1 still remain vague. Here, a cryo-EM structure of the RSF-nucleosome complex is reported. The 3D model shows a two-lobe architecture of RSF, and the structure of the RSF-nucleosome (flanked with linker DNA) complex shows that the RSF complex moves the DNA away from the histone octamer surface at the DNA-entry point. Additionally, a nucleosome-sliding assay and a restriction-enzyme accessibility assay show that the RSF1 subunit may cause changes in the chromatin-remodeling properties of SNF2h. As a `nucleosome ruler', the results of an RSF-dinucleosome binding affinity test led to the proposal that the critical distance that RSF `measures' between two nucleosomes is about 24 base pairs.


Subject(s)
Chromatin Assembly and Disassembly , Cryoelectron Microscopy , DNA-Binding Proteins , Nucleosomes , Cryoelectron Microscopy/methods , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Models, Molecular , Protein Binding , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA/chemistry , DNA/metabolism , Histones/chemistry , Histones/metabolism , Histones/genetics , Humans , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors/genetics , Adenosine Triphosphatases , Chromosomal Proteins, Non-Histone , Trans-Activators
19.
Biochemistry ; 63(12): 1553-1568, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38820318

ABSTRACT

TDP-43 is a ubiquitously expressed, multidomain functional protein that is distinctively known to form aggregates in many fatal neurodegenerative disorders. However, the information for arresting TDP-43 aggregation is missing due to a lack of understanding of the molecular mechanism of the aggregation and structural properties of TDP-43. TDP-43 is inherently prone to aggregation and has minimal protein solubility. Multiple studies have been performed on the smaller parts of TDP-43 or the full-length protein attached to a large solubilization tag. However, the presence of co-solutes or solubilization tags is observed to interfere with the molecular properties and aggregation mechanism of full-length TDP-43. Notably, this study populated and characterized the native, dimeric state of TDP-43 without the interference of co-solutes or protein modifications. We observed that the electrostatics of the local environment is capable of the partial unfolding and monomerization of the native dimeric state of TDP-43 into an amyloidogenic molten globule. By employing the tools of thermodynamics and kinetics, we reveal the structural characteristics and temporal order of the early intermediates and transition states during the transition of the molten globule to ß-rich, amyloid-like aggregates of TDP-43, which is governed by the electrostatics of the environment. The current advanced understanding of the nature of native and early aggregation-prone intermediates, early steps, and the influence of electrostatics in TDP-43 aggregation is essential for drug design.


Subject(s)
DNA-Binding Proteins , Protein Aggregates , Static Electricity , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Kinetics , Thermodynamics , Protein Multimerization , Amyloid/chemistry , Amyloid/metabolism , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism
20.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38811160

ABSTRACT

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.


Subject(s)
Bacterial Proteins , DNA, Single-Stranded , DNA-Binding Proteins , Enterococcus faecalis , Plasmids , Plasmids/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Protein Binding , Conjugation, Genetic/genetics , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Models, Molecular , Gene Transfer, Horizontal , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...