Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 176
1.
Bioorg Chem ; 148: 107478, 2024 Jul.
Article En | MEDLINE | ID: mdl-38788366

The current standard treatment for ovarian cancer consists of surgery to reduce the size of the tumor, followed by treatment with chemotherapeutic drugs, which have major side effects. Therefore, finding a new natural product drug with fewer side effects is a strategy. Delphinium brunonianum (D. brunonianum) is a traditional Tibetan medicine, mainly from southern Tibet, China, whereas the chemical constituents in this plant remain elusive. The major metabolites in the dichloromethane fraction of D. brunonianum were analyzed and purified by HPLC and various column chromatography techniques. Nine diterpenoid alkaloids (1-9) and one amide alkaloid (10) were isolated from D. brunonianum, including three novel C19-type diterpenoid alkaloids (Brunonianines D-F) (1-3). Their structures were elucidated by 1D/2D NMR, HR-ESI-MS and single-crystal X-ray diffraction analyses. All compounds were evaluated for toxicity in four tumor cell lines. Most of the compounds exhibited potent inhibitory effects on Skov-3 cell lines, with IC50 values ranging from 2.57 to 8.05 µM. The western blotting experiment was used to further analyze the expression levels of molecules in the Bax/Bcl-2/Caspase-3 signaling pathway for compound 1. Molecular docking was performed to predict the binding modes of Brunonianine D with target proteins. In vivo experiments were also performed and evaluated in real time by monitoring the size of the Skov-3 tumor. Additionally, tumor H&E staining and the TUNEL assay used to evaluate anti-tumor effects.


Alkaloids , Antineoplastic Agents, Phytogenic , Apoptosis , Cell Proliferation , Delphinium , Diterpenes , Drug Screening Assays, Antitumor , Ovarian Neoplasms , Female , Humans , Delphinium/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Structure-Activity Relationship , Animals , Molecular Structure , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice , Dose-Response Relationship, Drug , Cell Line, Tumor , Molecular Docking Simulation
2.
Daru ; 32(1): 237-251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38498253

BACKGROUND: The cholinergic hypothesis posits a robust correlation between the onset of Alzheimer's disease and a pronounced deficit in acetylcholine, a pivotal neurotransmitter crucial for the central cholinergic nervous system's function, pivotal for memory and learning. Diterpene alkaloids exhibit intricate and distinctive chemical structures that facilitate their passage through the blood-brain barrier. Moreover, their potent pharmacological attributes render them promising candidates for addressing central nervous system disorders. OBJECTIVES: This investigation aims to scrutinize the alkaloidal composition of Delphinium cyphoplectrum (Ranunculaceae) roots, further exploring their anticholinesterase inhibitory activity and mode of inhibition. METHOD: Innovative chromatography techniques were repetitively employed to purify the alkaloids. Acetylcholinesterase (AChE) inhibition assays were conducted using Ellman's tests. The mode of inhibition was meticulously characterized through Michaelis-Menten, and Lineweaver-Burk plots. Conducting molecular docking studies, we employed the AUTO DOCK 4.2 software package. RESULTS: Eight alkaloids were identified including five C19-diterpene alkaloids (6,14,16,18-tetramethoxy-1,7,8-trihydroxy-4-methylaconitane (1), 6,16,18-trimethoxy-1,7,8,14-tetrahydroxy-4-methylaconitane (2), 6,8,16,18-tetramethoxy-1,7,14-trihydroxy-4-methylaconitane (3), 6,14,16-trimethoxy-1,7,8,18-tetrahydroxy-4-methylaconitane (4), and 14-O-acetyl-8,16-dimethoxy-1,6,7,18-tetrahydroxy-4-methylaconitane (5)), an epoxy C18-diterpene alkaloid (6,8,16-trimethoxy-1,7,14-trihydroxy-3,4-epoxyaconitane (6)), a known (pyrrolidin-2-one (7) and an undescribed amide alkaloid (1-(2'-hydroxylethylamine)-3,5,5,-trimethyl-1,5-dihydro-2H-pyrrol-2-one (8). All diterpene alkaloids underwent assessment for acetylcholinesterase (AChE) inhibition assay and displayed noteworthy AChE activity, surpassing that of the reference drug (with IC50 values of 13.7, 21.8, 23.4, 28.2, 40.4, and 23.9 for compounds 1-6, respectively, in comparison to 98.4 for Rivastigmine). Analysis of Michaelis-Menten and Lineweaver-Burk plots represents an uncompetitive mode of inhibition for compound 1 on AChE. Notably, computational docking simulations indicated that all diterpene alkaloids were accommodated within the same enzymatic cleft as the reference ligand, and displaying superior free binding energy values (from - 10.32 to -8.59 Kcal.mol-1) in contrast to Rivastigmine (-6.31 Kcal.mol-1). CONCLUSION: The phytochemical analysis conducted on the roots of Delphinium cyphoplectrum yielded the identification of eight alkaloidal compounds including one C18-diterpene, five C19-diterpene, one pyrrolidine and one amide alkaloids. AChE inhibition assay and molecular simulations unveiled remarkable significant potency attributed to the C19-diterpene alkaloids by the order of 1 > 2 > 3,6 > 4 > 5. Presence of hydroxyl group on C-1, C-7, C-8, C-14, and C-18 increased the effect. The best in vitro activity was recorded for compound 1 able to bind to Asp72 in the narrow region of PAS, while interacting by pi-sigma with Phe330 at the hydrophobic region of the gorge involving the acyl and choline binding site. This observation underscores the substantial promise of this category of natural products in the realm of drug discovery for Alzheimer's Disease, offering a compelling avenue for further research and therapeutic development.


Cholinesterase Inhibitors , Delphinium , Molecular Docking Simulation , Plant Roots , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Delphinium/chemistry , Plant Roots/chemistry , Diterpene Alkaloids/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Animals , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification
3.
Phytochemistry ; 220: 114037, 2024 Apr.
Article En | MEDLINE | ID: mdl-38387725

Five undescribed bisabosqual-type meroterpenoids, bisabosquals E (1) and F (2), stachybisbins J-L (4-6), together with two known ones, were isolated from a novel endophytic fungus KMU22001 within the Stachybotryaceae family. Their structures with absolute configurations were elucidated by detailed interpretation of NMR spectroscopy, mass spectrometry, single-crystal X-ray diffraction and electronic circular dichroism calculations. Compounds 2, 4 and 6 exhibited significant cytotoxicities against five human cancer cell lines with IC50 values ranging from 1.80 ± 0.08 to 17.76 ± 0.97 µM.


Antineoplastic Agents , Delphinium , Humans , Molecular Structure , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Circular Dichroism
4.
Curr Biol ; 34(4): 755-768.e4, 2024 02 26.
Article En | MEDLINE | ID: mdl-38272029

During the process of flower opening, most petals move downward in the direction of the pedicel (i.e., epinastic movement). In most Delphinium flowers, however, their two lateral petals display a very peculiar movement, the mirrored helical rotation, which requires the twist of the petal stalk. However, in some lineages, their lateral petals also exhibit asymmetric bending that increases the degree of mirrored helical rotation, facilitating the formation of a 3D final shape. Notably, petal asymmetric bending is a novel trait that has not been noticed yet, so its morphological nature, developmental process, and molecular mechanisms remain largely unknown. Here, by using D. anthriscifolium as a model, we determined that petal asymmetric bending was caused by the localized expansion of cell width, accompanied by the specialized array of cell wall nano-structure, on the adaxial epidermis. Digital gene analyses, gene expression, and functional studies revealed that a class I homeodomain-leucine zipper family transcription factor gene, DeanLATE MERISTEM IDENTITY1 (DeanLMI1), contributes to petal asymmetric bending; knockdown of it led to the formation of explanate 2D petals. Specifically, DeanLMI1 promotes cell expansion in width and influences the arrangement of cell wall nano-structure on the localized adaxial epidermis. These results not only provide a comprehensive portrait of petal asymmetric bending for the first time but also shed some new insights into the mechanisms of flower opening and helical movement in plants.


Delphinium , Ranunculaceae , Ranunculaceae/metabolism , Delphinium/metabolism , Transcription Factors/metabolism , Flowers/anatomy & histology , Gene Expression Regulation, Plant
5.
Phytochemistry ; 219: 113987, 2024 Mar.
Article En | MEDLINE | ID: mdl-38218306

Cyano tends to have better biological activity, but it is rarely reported in natural products, especially in the C20-diterpene alkaloids. Herein, three unprecedented C20-diterpenoid alkaloids, brunonianines A-C (1-3), possessing rare cyano functional group as well as an atisine backbone constructed from a phenethyl substituent and a tetrahydropyran ring, along with four C19-alkaloids (4-7) and one amide alkaloids (8), were isolated from the whole plant of Delphinium brunonianum Royle. Compounds 1-3 are also the first atisine type diterpenoid alkaloids with cyano group obtained from nature. The structures of the previously undescribed compounds were elucidated by HR-ESI-MS, 1D/2D NMR spectroscopic data and electronic circular dichroism calculations and single-crystal X-ray diffraction. Reasonable speculations have also been made regarding the biogenic synthetic pathways of compounds 1-3. In addition, the inhibitory activity of all compounds was also tested against four tumor lines: A549, Caco-2, H460 and Skov-3, where compound 2 (IC50 2.20 ± 0.21 µM) showed better inhibitory activity against Skov-3 cells than the hydroxycamptothecin. Using flow cytometry, cell staining, migration and invasion analysis, and Western blot, compound 2 was found to arrest cells in the G2/M phase and was able to effectively inhibit cell motility to achieve potent anti-tumor effects. In addition, compound 2 can effectively induce apoptosis by activating the Bax/Bcl-2/Caspase-3 signaling pathway.


Alkaloids , Delphinium , Diterpenes , Humans , Delphinium/chemistry , Molecular Structure , Caco-2 Cells , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
6.
Microsc Res Tech ; 87(3): 446-469, 2024 Mar.
Article En | MEDLINE | ID: mdl-37920931

This is a very first attempt to study various parameters of a medicinal plant, Delphinium suave Huth. The plant is erect, geophytic, herbaceous, with tuberous root, trifid in a palmatipartite, strigose cuneate leaf and white spurred zygomorphic flower. The root was isodiametric phellem with single non-glandular trichomes. The stem revealed single-layered cuticle, multiseriate epidermis, cortex, pith ray and uniserate bowed non-glandular trichomes. The leaf was amphistomatic, showed tapering trichomes, prismatic crystals and ranunculaceous stomata with circumference 144.66-182.67 µm. Pollen grains in Light Microscopy (LM), were prolate, spheroidal trizonocolpate, isopolar, radiosymmetric, scabrate, elliptic and monads. Scanning Electron Microscope (SEM) pollen surface was scabrate, monad, size varied from 18.06 to 16.67 µm, colpus to inaperturate, tricolpate, ornamented, echinus, isopolar, isodiametric and circular. SEM roots showed sclerenchymatic tissues, stellate, glandular, non-glandular trichomes and crystals. The stem showed scalariform, pitted vessels, warty protuberances, unicellular, silicified, non-glandular trichomes. Leaves powder revealed, simple, unicellular, tapered headed, uniseriate, sessile, capitate, unbranched glandular, non-glandular, trichomes with crystals. Capitate, stellate, circular, unicellular, branchy trichomes were observed for the first time through SEM. Powder drug study of root, stem leaves through LM revealed different tissues. Preliminary phytochemical revealed alkaloids, anthocyanins, anthraquinones, coumarins, flavones, mucilages, saponins, steroids, terpenoids, volatile oils and proteins. GC/MS showed 36 compounds in roots, 33 in stem while 40 in leaves. Fluorescence analysis of roots, stem and leaves showed variations in color when treated with chemicals. This study will assist pharmacognostic exploration, authentication from adulterants/allied species for consistent quality, resulting in safe use, preservation and efficacy. RESEARCH HIGHLIGHTS: This was first attempt on pharmacognostic study on D. suave Huth. which could be used as a foundation for identifying and authenticating the specie from other allied species by these morphological, anatomical, GC/MS profiling, phytochemical analysis and fluorescence analysis.


Delphinium , Microscopy, Electron, Scanning , Pakistan , Anthocyanins/analysis , Powders/analysis , Plant Leaves/anatomy & histology , Trichomes/anatomy & histology , Phytochemicals/analysis
7.
Chem Biodivers ; 21(2): e202301958, 2024 Feb.
Article En | MEDLINE | ID: mdl-38130145

Three novel diterpenoid alkaloids, comprising two C19 -diterpenoid alkaloids (1 and 2) and one C20 -diterpenoid alkaloid (3), were isolated from Delphinium ajacis, alongside the six known compounds (4-9). Their structures were elucidated by spectroscopic methods (MS, UV, IR, 1D and 2D NMR) and chemical properties. Simultaneously, the anti-inflammatory properties of all compounds (1-9) was conducted, focusing on nitric oxide (NO) production in LPS-induced BV-2 cells. The results indicated compounds 1-3, 7, and 8 have potential anti-inflammatory activity.


Alkaloids , Delphinium , Diterpenes , Delphinium/chemistry , Magnetic Resonance Spectroscopy , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Anti-Inflammatory Agents/pharmacology , Molecular Structure
8.
Phytochemistry ; 215: 113822, 2023 Nov.
Article En | MEDLINE | ID: mdl-37574118

Delphinium kamaonense Huth is a sort of folkloric plant resource which is cultivated and planted with great ornamental and medicinal values. In this work, seven undescribed lycaconitine-type C19-diterpenoid alkaloids, especially a rare skeleton with -CH=N and N-oxide moieties, along with ten known compounds, were isolated from D. kamaonense, of which the structures were determined by various spectroscopic data, combined with calculated electronic circular dichroism (ECD) and single-crystal X-ray diffraction analysis. In vitro nitric oxide inhibitory activities assay of these compounds indicated that lycaconitine-type C19-diterpenoid alkaloids had significant anti-inflammatory inhibitory activities, with kamaonensine E being the most potent (0.9 ± 0.2 µM) stronger than positive (9.0 ± 1.3 µM). In the network pharmacology studies, binding three key targets mitogen-activated protein kinase 8 (MAPK8), mitogen-activated protein kinase 14 (MAPK14), and heat shock protein HSP 90-alpha (HSP90α), the anti-inflammatory mechanism might be related to MAPK signaling pathways. Furthermore, the molecular docking results revealed that the uncommon amides and methylenedioxy groups might be the most two promising pharmacophores for lycaconitine-type C19-diterpenoid alkaloids.


Alkaloids , Delphinium , Diterpenes , Delphinium/chemistry , Molecular Docking Simulation , Alkaloids/chemistry , Diterpenes/chemistry , Circular Dichroism , Molecular Structure
9.
J Asian Nat Prod Res ; 25(12): 1175-1183, 2023 Dec.
Article En | MEDLINE | ID: mdl-37218665

Three new hetisine type C20-diterpenoid alkaloids, named as trichophorines A-C (1-3), were isolated from Delphinium trichophorum, together with nine known alkaloids (4-12). Their structures were elucidated on the basis of spectroscopic data (1D, 2D NMR, single-crystal X-ray, and HR-ESI-MS). All compounds were evaluated for the inhibitory activities against LPS induced NO production in RAW 264.7 macrophage cells, and none of them showed considerable inhibitory activity.


Alkaloids , Delphinium , Diterpenes , Delphinium/chemistry , Magnetic Resonance Spectroscopy , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Molecular Structure
10.
Chem Biodivers ; 20(3): e202200936, 2023 Mar.
Article En | MEDLINE | ID: mdl-36696143

Shawurenine C (1a) and D (1b), a new pair of regioisomeric C19 -diterpenoid alkaloids, and five known C19 -diterpenoid alkaloids (2-6) were isolated from the aerial part of Delphinium shawurense W. T. Wang. The chemical structures of new compounds were established based on spectroscopic analyses: HR-ESI-MS, and 1D, 2D NMR spectroscopic data. The anti-inflammatory and cytotoxic activities of these diterpenoid alkaloids were also evaluated.


Alkaloids , Delphinium , Diterpenes , Delphinium/chemistry , Molecular Structure , Magnetic Resonance Spectroscopy , Alkaloids/pharmacology , Alkaloids/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry
11.
Nat Prod Res ; 37(1): 130-135, 2023 Jan.
Article En | MEDLINE | ID: mdl-34241556

A new C19-diterpenoid alkaloid named gyalanutine A (1) and fourteen known compounds 2-15 were isolated from the plant of Delphinium gyalanum C. Marquand & Airy Shaw. Compound 1 displayed an unusual lycoctonine-type C19-diterpenoid alkaloid skeleton with the cleavage of N-C19 and C7-C17 bonds, and the construction of the N-C7 bond. Structures were identified by multiple spectroscopic analyses including 1 D, 2 D NMR, IR and HR-ESI-MS. Compounds were tested for acetylcholinesterase inhibitory and anti-inflammatory activity.


Alkaloids , Antineoplastic Agents , Delphinium , Diterpenes , Delphinium/chemistry , Acetylcholinesterase , Molecular Structure , Alkaloids/chemistry , Magnetic Resonance Spectroscopy , Diterpenes/chemistry
12.
Biomed Pharmacother ; 149: 112906, 2022 May.
Article En | MEDLINE | ID: mdl-36068772

Delphinium trichophorum Franch (DTF), a species endemic to China, has been widely used for centuries in Tibet as an indigenous medicine for treating cough, pneumonia, and pulmonary fibrosis. Hetisine-type C20-diterpenoid alkaloids have been reported to be characteristic and active ingredients. Herein, five ones with relatively high contents in D. trichophorum, including 2α,11α,13ß-triacetylhetisine (DTF1), trichodelphinine A (DTF2), trichodelphinine D (DTF3), 2α-acetyl-11α,13ß-dihydroxyhetisine (DTF4), and trichodelphinine C (DTF5), were investigated for anti-fibrosis effects using fibroblasts induced by TGF-ß1 or LPS for the first time. The results showed that all five tested compounds decreased hydroxyproline (HYP) levels and inhibited the abnormal proliferation of 3T6 and HFL-1 cells induced by either TGF-ß1 or LPS. Moreover, DTF1 and DTF2 attenuated the production of collagen (Col-1 and Col-3) at relatively low doses, suggesting their higher efficiency among the five alkaloids. Based on large-scale ligand-based pharmacophore modeling, TGFBR1 was screened as a potential target for these tested alkaloids. The molecular docking results also exhibited high-affinity interactions between TGFBR1 and five alkaloids, especially DTF1 and DTF2. Further experiments revealed that DTF1 and DTF2 could inhibit the expression of TGF-ß1 and α-SMA and the phosphorylation of Smad3 and Smad4 while restoring the expression of Smad7 protein. Overall, DTF1 and DTF2 may reduce collagen generation and delay the development of pulmonary fibrosis by inhibiting the activation of the TGF-ß/Smad signaling pathway. Our results provide experimental and theoretical evidence for DTF1 and DTF2 as superior candidates for further development of anti-fibrotic drugs.


Alkaloids , Delphinium , Diterpenes , Pulmonary Fibrosis , Alkaloids/pharmacology , Alkaloids/therapeutic use , Delphinium/metabolism , Diterpenes/therapeutic use , Fibrosis , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
13.
Fitoterapia ; 162: 105268, 2022 Oct.
Article En | MEDLINE | ID: mdl-35963483

The main objective of our present research work was to explore molecular insight for potentially active new acetylcholinesterase inhibitor from the aerial parts of Delphinium uncinatum. New norditerpenoid alkaloids, uncinatine-A, was isolated from the basic alkaloidal fraction of D. uncinatum, based on bioactivity guided isolation. The structure of uncinatine-A was determined through latest spectroscopic techniques including single X-Ray diffraction technique. The structural data and electronic properties of uncinatine-A was also calculated by Density Functional Theory (DFT) using B3LYP/6-31þ G (p) basis set. The isolated natural product was evaluated for their acetyl cholinesterase inhibitory potential in dose dependent protocol (62.5-1000 µg/mL), followed by molecular docking studies. Significant competitive type inhibition activity (IC50 = 207.73 ± 0.3) was shown by isolated natural norditerpenoid against cholinesterase targets in comparison with standard drugs available in the market such as galanthamine. The molecular docking results showed that isolated natural product was well accommodated by AChE in the active site with docking scores -11.0326. This is the first report indicating uncinatine-A as a potent acetylcholinesterase inhibitor and can be used as a target drug in cerebral dementia and Alzheimer diseases.


Alkaloids , Biological Products , Delphinium , Diterpenes , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors , Delphinium/chemistry , Density Functional Theory , Galantamine , Molecular Docking Simulation , Molecular Structure
14.
Contemp Clin Trials ; 120: 106880, 2022 09.
Article En | MEDLINE | ID: mdl-35964867

BACKGROUND: Fibromyalgia syndrome (FMS) is a leading cause of functional limitations and disability for which there is no cure. Positive psychological interventions for improving health have received increasing attention, but evidence of the feasibility, acceptability, and impact of such interventions in adult populations with FMS is limited. OBJECTIVES: To describe the rationale and design of a 5-week, online positive affect skills intervention, LARKSPUR: Lessons in Affect Regulation to Keep Stress and Pain UndeR control. METHODS: FMS participants (N = 90) will be randomized to one of two conditions: (1) LARKSPUR or (2) emotion reporting/attention control. LARKSPUR is an online multicomponent intervention that targets eight skills to help foster positive affect: (1) noticing positive events, (2) savoring positive events, (3) identifying personal strengths, (4) behavioral activation to set and work toward attainable goals, (5) mindfulness, (6) positive reappraisal, (7) gratitude, and (8) acts of kindness. The primary outcomes include feasibility (i.e., recruitment, retention, adherence) and acceptability (i.e., helpfulness, usability, satisfaction). Secondary outcomes include pain intensity and pain interference. SIGNIFICANCE: If feasibility and acceptability metrics are met and reductions in pain outcomes are achieved, we will undertake future efficacy and effectiveness trials of LARKSPUR among older adults with FMS. TRIAL REGISTRATION: NCT04869345.


Delphinium , Fibromyalgia , Mindfulness , Aged , Fibromyalgia/psychology , Fibromyalgia/therapy , Humans , Middle Aged , Pain , Pain Measurement
15.
Chem Biodivers ; 19(7): e202200463, 2022 Jul.
Article En | MEDLINE | ID: mdl-35785443

A new amide (1), two new phenylpropanoid derivatives (2, 3), along with three new natural products, including three nitrogen chirality compounds, N-(3-methoxy-1,3-dioxopropyl)-D-phenylalanine methyl ester (4), N-(3-methoxy-1,3-dioxopropyl)-L-phenylalanine methyl ester (5), and N-acetyl-L-phenylalanine methyl ester (6), as well as dimethyl (2R,3R)-2-hydroxy-3-(((E)-3-(4-hydroxyphenyl)acryloyl)oxy)succinate (7) and dimethyl (S,E)-2-((3-(4-hydroxy-3-methoxyphenyl)acryloyl)oxy)succinate (8) were isolated from Delphinium kamaonense Hunth. Their structures were elucidated by extensive analysis of 1D and 2D NMR, and HR-ESI-MS experiments, and the absolute configurations were determined by comparative analysis of specific optical rotation. Compound 1 exhibited a moderate cytotoxicity effect against Hep-3B cancer cell lines (IC50 41.39±0.13 µM) and an excellent antioxidant activity (IC50 0.527±0.06 µM in ABTS assay, and 1.235±0.09 µM in DPPH assay, respectively), which was superior to vitamin C in ABTS (IC50 1.670±0.07 µM) and DPPH (IC50 19.10±0.40 µM) methods.


Antineoplastic Agents , Delphinium , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Delphinium/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Succinates
16.
Molecules ; 27(14)2022 Jul 07.
Article En | MEDLINE | ID: mdl-35889221

This study reports the isolation of three new C20 diterpenoid alkaloids, Chitralinine A-C (1-3) from the aerial parts of Delphinium chitralense. Their structures were established on the basis of latest spectral techniques and single crystal X-rays crystallographic studies of chitralinine A described basic skeleton of these compounds. All the isolated Compounds (1-3) showed strong, competitive type inhibition against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in comparison to standard allanzanthane and galanthamine however, chitralinine-C remained the most potent with IC50 value of 11.64 ± 0.08 µM against AChE, and 24.31 ± 0.33 µM against BChE, respectively. The molecular docking reflected a binding free energy of -16.400 K Cal-mol-1 for chitralinine-C, having strong interactions with active site residues, TYR334, ASP72, SER122, and SER200. The overall findings suggest that these new diterpenoid alkaloids could serve as lead drugs against dementia-related diseases including Alzheimer's disease.


Alkaloids , Delphinium , Diterpenes , Acetylcholinesterase/metabolism , Alkaloids/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Delphinium/chemistry , Diterpenes/chemistry , Molecular Docking Simulation
17.
Med Chem ; 18(10): 1109-1121, 2022.
Article En | MEDLINE | ID: mdl-35507782

ETHNOPHARMACOLOGICAL RELEVANCE: The burden of antimicrobial resistance demands a continued search for new antimicrobial drugs. The synthetic drugs used clinically have serious side effects. Natural products or compounds derived from natural sources show diversity in structure and play an essential role in drug discovery and development. OBJECTIVE: Delphinium roylei is an important medicinal herb of Kashmir Himalaya, India. Traditionally this medicinal plant treats liver infections, skin problems, and chronic lower back pain. The current study evaluates the antimicrobial potential of various extracts by in -vitro and in -silico studies. METHODS: Three extracts and 168 bioactive compounds analysed through LC-MS data, with the vast majority of them having therapeutic applications. D. roylei have been screened for the antimicrobial activity against bacteria (Escherichai coli, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungi (Candida albicans, Candida glabrata, Candida paropsilosis) species through molecular docking using autodock Vina, MD simulation and a broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS: The extracts and the compounds analyzed through the LC-MS technique of Delphinium roylie showed significant antimicrobial activity. CONCLUSION: Our study established that the leaf extracts of Delphinium roylei exhibit antimicrobial activity and thus confirm its importance in traditional medicine.


Anti-Infective Agents , Delphinium , Plants, Medicinal , Anti-Bacterial Agents , Candida albicans , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts
18.
J Anim Sci ; 100(5)2022 May 01.
Article En | MEDLINE | ID: mdl-35419604

Larkspurs (Delphinium spp.) are native forbs that are poisonous to cattle and cost livestock producers millions of dollars in losses each year. Macro and micro minerals are required for normal functioning of essentially all metabolic processes in ruminants. The role that mineral status may play in larkspur poisoning in cattle is not clear. In this study, we seek to determine the effects a mineral-salt supplement, commonly used by cattle producers, to potentially reduce cattle losses to larkspur. The ability of mineral-salt supplementation to alter susceptibility to larkspur toxicosis was evaluated in a pen study. Animals supplemented with mineral-salt were found to be less susceptible to larkspur poisoning than the non-supplemented animals. A separate group of animals were then grazed on larkspur infested rangelands. One group was supplemented with a mineral-salt mix and the other group did not receive any mineral-salt. Supplementing cattle with the mineral-salt mix did not alter larkspur consumption (P > 0.05). However, overall larkspur consumption was low and averaged 3 ± 1.0% and 2 ± 1.1% for cattle supplemented with mineral and non-supplemented, respectively. Serum was collected from animals once a week during the grazing study. Average and maximum serum concentrations of toxic larkspur alkaloids were numerically higher in mineral-salt supplemented cattle compared with the non-supplemented animals. Results from the pen study suggest that a good mineral supplementation program will provide a protective effect for animals grazing in larkspur-infested ranges. The mineral-salt supplemented steers, in the grazing study, were not observed to consume less larkspur than the non-supplemented animals; however, the mineral-salt supplemented animals had higher concentrations of larkspur alkaloids in their serum indicating they may be able to tolerate higher larkspur consumption. The data also indicate that mineral-salt supplementation must be continuous throughout the time the animals are grazing these rangelands as the positive effects can be lost within 30 d post supplementation.


Larkspurs (Delphinium spp.) are native forbs poisonous to cattle and cost livestock producers millions of dollars in losses each year. The role mineral status may play in larkspur poisoning in cattle is unclear. The ability of mineral-salt supplementation to alter susceptibility to larkspur toxicosis was evaluated in a pen and grazing study. In the pen study, animals supplemented with mineral-salt were found to be less susceptible to larkspur poisoning than non-supplemented animals. A separate group of animals grazed on larkspur infested rangelands. One group was supplemented with a mineral-salt mix and the other group did not receive any mineral-salt. Supplementing cattle with the mineral-salt mix did not alter larkspur consumption of grazing cattle. However, overall larkspur consumption was low. Results from the pen study suggest that a good mineral supplementation program will provide a protective effect for animals grazing in larkspur-infested ranges. The mineral-salt supplemented steers, in the grazing study, had higher concentrations of larkspur alkaloids in their blood serum indicating they may be able to tolerate higher larkspur consumption. The data also indicate that mineral-salt supplementation must be continuous throughout the time the animals are grazing as the positive effects can be lost within 30 days after supplementation.


Alkaloids , Delphinium , Plant Poisoning , Animals , Cattle , Dietary Supplements , Livestock , Plant Poisoning/veterinary , Sodium Chloride
19.
J Ethnopharmacol ; 293: 115268, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35398502

ETHNOPHARMACOLOGICAL RELEVANCE: Herba Delphinii Brunoniani, a Tibetan Material Medica, derived from the aerial parts of Delphinium brunonianum Royle, possesses efficacy of cooling blood to remove apthogentic heat, and dispelling wind to arrest itching, and has been used for the treatment for liver disease according to Tibetan Medicine Theories in Shel Gong Shel Phreng. However, the mechanisms of action remain unclear. AIM OF THE STUDY: This work aimed to investigate the efficacy mechanism of Delphinium brunonianum extract (DBE) on nonalcoholic steatohepatitis (NASH), a kind of liver disease by integrating serum metabolomics and network pharmacology analysis. MATERIALS AND METHODS: In this study, NASH model mice were established by a high-fat diet. The indexes of lipid accumulation, insulin resistance, and inflammatory reaction were used to evaluate the efficacy of DBE. A combination of UHPLC-QTOF-MS based metabolomics and network pharmacology was established to illustrate the serum biomarkers of NASH mice and to demonstrate the anti-NASH mechanisms of DBE. Serum metabolomics demonstrated potential metabolites and the corresponding metabolic pathways in the efficacy of DBE. Network pharmacology screened the targets of DBE against NASH. Finally, the mechanisms of DBE against NASH were verified by in-vivo pharmacology. RESULTS: Metabolomics revealed that DBE significantly regulated the abnormal levels of twenty-two metabolites, which involved the biosynthesis of unsaturated fatty acids and steroid hormone, linoleic acid metabolism, arachidonic acid metabolism, and alpha-Linolenic acid metabolism pathways. Network pharmacology showed that DBE exhibited anti-NASH effects through regulating the targets of PTGS2, PLA2, ALOX5, ALOX15, FASN, and CYP450. Finally, united pharmacological verification result, we found that the mechanisms of DBE against NASH may be related to the regulation of the unsaturated fatty acids biosynthesis and the arachidonic acid metabolism pathway. CONCLUSIONS: Integrating serum metabolomic and network analysis, we found that DBE might inhibit the pathological process of NASH by regulating the relative targets and the metabolic pathways, which may be a potential mechanism for the anti-NASH efficacy of DBE. This integrated strategy also provided a rational way for revealing the pharmacodynamic mechanisms of multi-components, multi-targets, and multi-pathways in Traditional Chinese Medicine (TCM).


Delphinium , Drugs, Chinese Herbal , Non-alcoholic Fatty Liver Disease , Animals , Arachidonic Acids , Drugs, Chinese Herbal/pharmacology , Metabolomics , Mice , Network Pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy
20.
J Nat Prod ; 85(4): 1157-1166, 2022 04 22.
Article En | MEDLINE | ID: mdl-35385291

Thirteen new benzamide alkaloids, delphiniumines A-M (1-13), together with one known analogue (14), were isolated from Delphinium anthriscifolium Hance. All of the structures were determined by spectroscopic and spectrometric analyses. Absolute configuration for 1 was established using experimental and calculated ECD data, as well as by X-ray crystallography analysis. Compound 1 possesses a previously undescribed polysubstituted cyclopentene carbon framework. Compound 2 was isolated as an artifact from 1 during the extraction process. Compound 7 is glycosylated with a ß-D-glucose unit. Compound 13 bears a chlorine substituent. At a concentration of 10 µM, compounds 6, 8, and 10-12 suppressed LPS-induced NO production in RAW264.7 cells with inhibition rates ranging from 40.3% to 78.8%.


Alkaloids , Delphinium , Diterpenes , Alkaloids/chemistry , Benzamides , Cyclopentanes/pharmacology , Delphinium/chemistry , Diterpenes/chemistry , Molecular Structure
...