Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.504
Filter
1.
Transl Psychiatry ; 14(1): 425, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375329

ABSTRACT

IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.


Subject(s)
Dentate Gyrus , Homeodomain Proteins , Mice, Knockout , Receptors, Corticotropin-Releasing Hormone , Animals , Dentate Gyrus/metabolism , Mice , Homeodomain Proteins/genetics , Receptors, Corticotropin-Releasing Hormone/genetics , Receptors, Corticotropin-Releasing Hormone/metabolism , Male , Transcription Factors/genetics , Disease Models, Animal , Social Behavior , Behavior, Animal
2.
Proc Natl Acad Sci U S A ; 121(40): e2405117121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39312657

ABSTRACT

Cholinergic neurons in the basal forebrain play a crucial role in regulating adult hippocampal neurogenesis (AHN). However, the circuit and molecular mechanisms underlying cholinergic modulation of AHN, especially the initial stages of this process related to the generation of newborn progeny from quiescent radial neural stem cells (rNSCs), remain unclear. Here, we report that stimulation of the cholinergic circuits projected from the diagonal band of Broca (DB) to the dentate gyrus (DG) neurogenic niche promotes proliferation and morphological development of rNSCs, resulting in increased neural stem/progenitor pool and rNSCs with longer radial processes and larger busy heads. Interestingly, DG granule cells (GCs) are required for DB-DG cholinergic circuit-dependent modulation of proliferation and morphogenesis of rNSCs. Furthermore, single-nucleus RNA sequencing of DG reveals cell type-specific transcriptional changes in response to cholinergic circuit stimulation, with GCs (among all the DG niche cells) exhibiting the most extensive transcriptional changes. Our findings shed light on how the DB-DG cholinergic circuits orchestrate the key niche components to support neurogenic function and morphogenesis of rNSCs at the circuit and molecular levels.


Subject(s)
Cholinergic Neurons , Dentate Gyrus , Neural Stem Cells , Neurogenesis , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Neurogenesis/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Mice , Cell Proliferation , Adult Stem Cells/metabolism , Adult Stem Cells/physiology , Adult Stem Cells/cytology , Morphogenesis , Stem Cell Niche/physiology , Male
3.
BMC Neurosci ; 25(1): 45, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333878

ABSTRACT

BACKGROUND: Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study examined the neuroprotective of thymoquinone on the cypermethrin's harmful effects on the histoarchitecture of the dentate gyrus and motor deficit in the dentate gyrus. METHODS: Forty adult male rats (180-200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone (10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone (10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2). RESULT: The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity. CONCLUSION: thymoquinone could be a therapeutic agent against cypermethrin poisoning.


Subject(s)
Benzoquinones , Dentate Gyrus , GABAergic Neurons , Memory Disorders , NF-E2-Related Factor 2 , Oxidative Stress , Pyrethrins , Signal Transduction , Animals , Pyrethrins/toxicity , Male , Oxidative Stress/drug effects , Benzoquinones/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Signal Transduction/drug effects , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Rats , NF-E2-Related Factor 2/metabolism , Insecticides/toxicity , Neuroprotective Agents/pharmacology , Rats, Wistar
4.
Neuropharmacology ; 259: 110118, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39153731

ABSTRACT

The decline of microglia in the dentate gyrus is a new phenomenon that may explain the pathogenesis of depression, and reversing this decline has an antidepressant effect. The development of strategies that restore the function of dentate gyrus microglia in under stressful conditions is becoming a new focus. Lymphocyte-activating gene-3 (LAG3) is an immune checkpoint expressed by immune cells including microglia. One of its functions is to suppress the expansion of immune cells. In a recent study, chronic systemic administration of a LAG3 antibody that readily penetrates the brain was reported to reverse chronic stress-induced hippocampal microglia decline and depression-like behaviors. We showed here that a single intranasal infusion of a LAG3 antibody (In-LAG3 Ab) reversed chronic unpredictable stress (CUS)-induced depression-like behaviors in a dose-dependent manner, which was accompanied by an increase in brain-derived neurotrophic factor (BDNF) in the dentate gyrus. Infusion of an anti-BDNF antibody into the dentate gyrus, construction of knock-in mice with the BDNF Val68Met allele, or treatment with the BDNF receptor antagonist K252a abolished the antidepressant effect of In-LAG3 Ab. Activation of extracellular signal-regulated kinase1/2 (ERK1/2) is required for the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and BDNF decrease in the dentate gyrus. Moreover, both inhibition and depletion of microglia prevented the reversal effect of In-LAG3 Ab on CUS-induced depression-like behaviors and impairment of ERK1/2-BDNF signaling in the dentate gyrus. These results suggest that In-LAG3 Ab exhibits an antidepressant effect through microglia-mediated activation of ERK1/2 and synthesis of BDNF in the dentate gyrus.


Subject(s)
Administration, Intranasal , Antidepressive Agents , Antigens, CD , Brain-Derived Neurotrophic Factor , Depression , Hippocampus , Lymphocyte Activation Gene 3 Protein , MAP Kinase Signaling System , Stress, Psychological , Animals , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Male , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Hippocampus/drug effects , Hippocampus/metabolism , Mice , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Depression/drug therapy , Antigens, CD/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Antibodies/pharmacology , Carbazoles/pharmacology , Carbazoles/administration & dosage , Signal Transduction/drug effects , Indole Alkaloids
5.
Proc Natl Acad Sci U S A ; 121(36): e2410564121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39190359

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a critical neurological complication of sepsis and represents a crucial factor contributing to high mortality and adverse prognosis in septic patients. This study explored the contribution of NAT10-mediated messenger RNA (mRNA) acetylation in cognitive dysfunction associated with SAE, utilizing a cecal ligation and puncture (CLP)-induced SAE mouse model. Our findings demonstrate that CLP significantly upregulates NAT10 expression and mRNA acetylation in the excitatory neurons of the hippocampal dentate gyrus (DG). Notably, neuronal-specific Nat10 knockdown improved cognitive function in septic mice, highlighting its critical role in SAE. Proteomic analysis, RNA immunoprecipitation, and real-time qPCR identified GABABR1 as a key downstream target of NAT10. Nat10 deletion reduced GABABR1 expression, and subsequently weakened inhibitory postsynaptic currents in hippocampal DG neurons. Further analysis revealed that microglia activation and the release of inflammatory mediators lead to the increased NAT10 expression in neurons. Microglia depletion with PLX3397 effectively reduced NAT10 and GABABR1 expression in neurons, and ameliorated cognitive dysfunction induced by SAE. In summary, our findings revealed that after CLP, NAT10 in hippocampal DG neurons promotes GABABR1 expression through mRNA acetylation, leading to cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , RNA, Messenger , Sepsis-Associated Encephalopathy , Animals , Male , Mice , Acetylation , Acetyltransferases/metabolism , Acetyltransferases/genetics , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Dentate Gyrus/metabolism , Disease Models, Animal , Hippocampus/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Neurons/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Sepsis/metabolism , Sepsis/complications , Sepsis/genetics , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/genetics , Receptors, GABA-B
6.
Sci Rep ; 14(1): 18586, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127716

ABSTRACT

Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.


Subject(s)
Astrocytes , DNA Damage , DNA, Mitochondrial , Mitochondria , Astrocytes/metabolism , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Mice , Mitochondria/metabolism , Dependovirus/genetics , Calcium/metabolism , Brain/metabolism , Male , Calcium Signaling , Mice, Inbred C57BL , Mitochondrial Dynamics , Dentate Gyrus/metabolism
7.
STAR Protoc ; 5(3): 103255, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39146190

ABSTRACT

Many types of neurons exhibit a daily rhythm of intrinsic excitability. Here, we present a protocol for assessing circadian regulation of dentate granule cell excitability using a mouse model for conditional knockout of the molecular clock protein BMAL1. We describe steps for obtaining healthy oblique horizontal slices that contain the hippocampus and measuring intrinsic excitability and synaptic potentials by combining whole-cell patch-clamp recordings and perforant-path electric stimulation. We then detail procedures for validating single-cell genetic deletion of Bmal1 by immunohistochemistry. For complete details on the use and execution of this protocol, please refer to Gonzalez et al.1.


Subject(s)
Circadian Rhythm , Dentate Gyrus , Animals , Mice , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , Circadian Rhythm/physiology , Patch-Clamp Techniques/methods , Neurons/metabolism , Neurons/physiology , Neurons/cytology , ARNTL Transcription Factors/metabolism , ARNTL Transcription Factors/genetics , Mice, Knockout , Male
8.
Radiat Res ; 202(4): 677-684, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39164012

ABSTRACT

The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.


Subject(s)
Dentate Gyrus , MicroRNAs , Neurons , Radiation Tolerance , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Dentate Gyrus/radiation effects , Dentate Gyrus/metabolism , Mice , Radiation Tolerance/genetics , Neurons/radiation effects , Neurons/metabolism , Apoptosis/radiation effects , Male , Mice, Inbred C57BL
9.
Chem Biol Interact ; 401: 111187, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39111523

ABSTRACT

Developmental exposure to nonylphenol (NP) results in irreversible impairments of the central nervous system (CNS). The neural precursor cell (NPC) pool located in the subgranular zone (SGZ), a substructure of the hippocampal dentate gyrus, is critical for the development of hippocampal circuits and some hippocampal functions such as learning and memory. However, the effects of developmental exposure to NP on this pool remain unclear. Thus, our aim was to clarify the impacts of developmental exposure to NP on this pool and to explore the potential mechanisms. Animal models of developmental exposure to NP were created by treating Wistar rats with NP during pregnancy and lactation. Our data showed that developmental exposure to NP decreased Sox2-and Ki67-positive cells in the SGZ of offspring. Inhibited activation of Shh signaling and decreased levels of its downstream mediators, E2F1 and cyclins, were also observed in pups developmentally exposed to NP. Moreover, we established the in vitro model in the NE-4C cells, a neural precursor cell line, to further investigate the effect of NP exposure on NPCs and the underlying mechanisms. Purmorphamine, a small purine-derived hedgehog agonist, was used to specifically modulate the Shh signaling. Consistent with the in vivo results, exposure to NP reduced cell proliferation by inhibiting the Shh signaling in NE-4C cells, and purmorphamine alleviated this reduction in cell proliferation by restoring this signaling. Altogether, our findings support the idea that developmental exposure to NP leads to inhibition of the NPC proliferation and the NPC pool depletion in the SGZ located in the dentate gyrus. Furthermore, we also provided the evidence that suppressed activation of Shh signaling may contribute to the effects of developmental exposure to NP on the NPC pool.


Subject(s)
Cell Proliferation , Dentate Gyrus , Hedgehog Proteins , Neural Stem Cells , Phenols , Rats, Wistar , Signal Transduction , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Hedgehog Proteins/metabolism , Phenols/pharmacology , Phenols/toxicity , Female , Pregnancy , Rats , Signal Transduction/drug effects , Cell Proliferation/drug effects , Purines/pharmacology , Morpholines/pharmacology , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Male , SOXB1 Transcription Factors/metabolism , Cell Line
10.
Behav Brain Res ; 472: 115157, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39047873

ABSTRACT

Exposure to light has been demonstrated to stimulate brain regions associated with cognition; however, investigations into its cognitive-enhancing effects have primarily focused on wild-type rodents. This study seeks to elucidate how bright light exposure mitigates cognitive deficits associated with schizophrenia by examining its impact on hippocampal neurogenesis and its potential to alleviate sub-chronic MK-801-induced cognitive impairments in mice. Following three weeks of juvenile bright light exposure (5-8 weeks old), significant increases in proliferating neurons (BrdU+) and immature neurons (DCX+ cells) were observed in the dentate gyrus (DG) and lateral ventricle of MK-801-treated mice. Long-term bright light treatment further promoted the differentiation of BrdU+ cells into immature neurons (BrdU+ DCX+ cells), mature neurons (BrdU+ NeuN+ cells), or astrocytes (BrdU+ GFAP+ cells) in the hippocampal DG. This augmented neurogenesis correlated with the attenuation of sub-chronic MK- 801-induced cognitive deficits, as evidenced by enhancements in Y-maze, novel object recognition (NOR), novel location recognition (NLR), and Morris water maze (MWM) test performances. These findings suggest a promising noninvasive clinical approach for alleviating cognitive impairments associated with neuropsychiatric disorders.


Subject(s)
Cognitive Dysfunction , Disease Models, Animal , Doublecortin Protein , Neurogenesis , Schizophrenia , Animals , Neurogenesis/physiology , Schizophrenia/therapy , Schizophrenia/physiopathology , Schizophrenia/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Mice , Male , Hippocampus/metabolism , Dizocilpine Maleate/pharmacology , Behavior, Animal/physiology , Dentate Gyrus/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Mice, Inbred C57BL , Light
11.
Mol Cell Proteomics ; 23(8): 100811, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38996918

ABSTRACT

Highly specialized cells are fundamental for the proper functioning of complex organs. Variations in cell-type-specific gene expression and protein composition have been linked to a variety of diseases. Investigation of the distinctive molecular makeup of these cells within tissues is therefore critical in biomedical research. Although several technologies have emerged as valuable tools to address this cellular heterogeneity, most workflows lack sufficient in situ resolution and are associated with high costs and extremely long analysis times. Here, we present a combination of experimental and computational approaches that allows a more comprehensive investigation of molecular heterogeneity within tissues than by either shotgun LC-MS/MS or MALDI imaging alone. We applied our pipeline to the mouse brain, which contains a wide variety of cell types that not only perform unique functions but also exhibit varying sensitivities to insults. We explored the distinct neuronal populations within the hippocampus, a brain region crucial for learning and memory that is involved in various neurological disorders. As an example, we identified the groups of proteins distinguishing the neuronal populations of the dentate gyrus (DG) and the cornu ammonis (CA) in the same brain section. Most of the annotated proteins matched the regional enrichment of their transcripts, thereby validating the method. As the method is highly reproducible, the identification of individual masses through the combination of MALDI-IMS and LC-MS/MS methods can be used for the much faster and more precise interpretation of MALDI-IMS measurements only. This greatly speeds up spatial proteomic analyses and allows the detection of local protein variations within the same population of cells. The method's general applicability has the potential to be used to investigate different biological conditions and tissues and a much higher throughput than other techniques making it a promising approach for clinical routine applications.


Subject(s)
Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry , Animals , Proteomics/methods , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Mice , Mice, Inbred C57BL , Hippocampus/metabolism , Male , Neurons/metabolism , Brain/metabolism , Dentate Gyrus/metabolism , Liquid Chromatography-Mass Spectrometry
12.
Neuroscience ; 552: 142-151, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38960088

ABSTRACT

Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.


Subject(s)
Cell Movement , Dentate Gyrus , Mice, Knockout , Neural Stem Cells , Serine-Arginine Splicing Factors , Animals , Mice , Cell Differentiation/physiology , Cell Movement/physiology , Dentate Gyrus/metabolism , Hippocampus/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neural Stem Cells/metabolism , Neurogenesis/physiology , Neurons/metabolism , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics
13.
Neurobiol Dis ; 199: 106591, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969233

ABSTRACT

Gain-of-function mutations in SCN8A cause developmental and epileptic encephalopathy (DEE), a disorder characterized by early-onset refractory seizures, deficits in motor and intellectual functions, and increased risk of sudden unexpected death in epilepsy. Altered activity of neurons in the corticohippocampal circuit has been reported in mouse models of DEE. We examined the effect of chronic seizures on gene expression in the hippocampus by single-nucleus RNA sequencing in mice expressing the patient mutation SCN8A-p.Asn1768Asp (N1768D). One hundred and eighty four differentially expressed genes were identified in dentate gyrus granule cells, many more than in other cell types. Electrophysiological recording from dentate gyrus granule cells demonstrated an elevated firing rate. Targeted reduction of Scn8a expression in the dentate gyrus by viral delivery of an shRNA resulted in doubling of median survival time from 4 months to 8 months, whereas delivery of shRNA to the CA1 and CA3 regions did not result in lengthened survival. These data indicate that granule cells of the dentate gyrus are a specific locus of pathology in SCN8A-DEE.


Subject(s)
Dentate Gyrus , NAV1.6 Voltage-Gated Sodium Channel , Neurons , Animals , NAV1.6 Voltage-Gated Sodium Channel/genetics , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/metabolism , Mice , Neurons/metabolism , Neurons/pathology , Mice, Transgenic , Male , Mutation
14.
EMBO Rep ; 25(8): 3678-3706, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39080439

ABSTRACT

Adult neural stem cells (NSCs) in the hippocampal dentate gyrus continuously proliferate and generate new neurons throughout life. Although various functions of organelles are closely related to the regulation of adult neurogenesis, the role of endoplasmic reticulum (ER)-related molecules in this process remains largely unexplored. Here we show that Derlin-1, an ER-associated degradation component, spatiotemporally maintains adult hippocampal neurogenesis through a mechanism distinct from its established role as an ER quality controller. Derlin-1 deficiency in the mouse central nervous system leads to the ectopic localization of newborn neurons and impairs NSC transition from active to quiescent states, resulting in early depletion of hippocampal NSCs. As a result, Derlin-1-deficient mice exhibit phenotypes of increased seizure susceptibility and cognitive dysfunction. Reduced Stat5b expression is responsible for adult neurogenesis defects in Derlin-1-deficient NSCs. Inhibition of histone deacetylase activity effectively induces Stat5b expression and restores abnormal adult neurogenesis, resulting in improved seizure susceptibility and cognitive dysfunction in Derlin-1-deficient mice. Our findings indicate that the Derlin-1-Stat5b axis is indispensable for the homeostasis of adult hippocampal neurogenesis.


Subject(s)
Hippocampus , Membrane Proteins , Neural Stem Cells , Neurogenesis , STAT5 Transcription Factor , Animals , Mice , Cell Proliferation , Dentate Gyrus/metabolism , Dentate Gyrus/cytology , Hippocampus/metabolism , Hippocampus/cytology , Homeostasis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Knockout , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Seizures/metabolism , Seizures/genetics , Signal Transduction , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics
15.
eNeuro ; 11(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39084907

ABSTRACT

The integration of spatial information in the mammalian dentate gyrus (DG) is critical to navigation. Indeed, DG granule cells (DGCs) rely upon finely balanced inhibitory neurotransmission in order to respond appropriately to specific spatial inputs. This inhibition arises from a heterogeneous population of local GABAergic interneurons (INs) that activate both fast, ionotropic GABAA receptors (GABAAR) and slow, metabotropic GABAB receptors (GABABR), respectively. GABABRs in turn inhibit pre- and postsynaptic neuronal compartments via temporally long-lasting G-protein-dependent mechanisms. The relative contribution of each IN subtype to network level GABABR signal setting remains unknown. However, within the DG, the somatostatin (SSt) expressing IN subtype is considered crucial in coordinating appropriate feedback inhibition on to DGCs. Therefore, we virally delivered channelrhodopsin 2 to the DG in order to obtain control of this specific SSt IN subpopulation in male and female adult mice. Using a combination of optogenetic activation and pharmacology, we show that SSt INs strongly recruit postsynaptic GABABRs to drive greater inhibition in DGCs than GABAARs at physiological membrane potentials. Furthermore, we show that in the adult mouse DG, postsynaptic GABABR signaling is predominantly regulated by neuronal GABA uptake and less so by astrocytic mechanisms. Finally, we confirm that activation of SSt INs can also recruit presynaptic GABABRs, as has been shown in neocortical circuits. Together, these data reveal that GABABR signaling allows SSt INs to control DG activity and may constitute a key mechanism for gating spatial information flow within hippocampal circuits.


Subject(s)
Dentate Gyrus , Interneurons , Receptors, GABA-B , Somatostatin , Animals , Somatostatin/metabolism , Interneurons/metabolism , Interneurons/physiology , Dentate Gyrus/metabolism , Receptors, GABA-B/metabolism , Male , Female , Optogenetics , Mice, Inbred C57BL , Mice , Mice, Transgenic , gamma-Aminobutyric Acid/metabolism , Synapses/metabolism
16.
J Mol Histol ; 55(5): 721-740, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39083161

ABSTRACT

L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.


Subject(s)
Apoptosis , Dentate Gyrus , Mice, Inbred C57BL , Neuroinflammatory Diseases , Neurons , Nimodipine , Trimethyltin Compounds , Animals , Nimodipine/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Trimethyltin Compounds/toxicity , Male , Mice , Apoptosis/drug effects , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Astrocytes/metabolism , Astrocytes/drug effects , Astrocytes/pathology , Calcium Channels, L-Type/metabolism
17.
Sci Adv ; 10(27): eadj4433, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38959322

ABSTRACT

Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCß1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCß1 in memory function has not been elucidated. Here, we demonstrate that PLCß1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCß1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCß1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCß1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCß1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.


Subject(s)
Dentate Gyrus , Fear , Memory , Neurons , Phospholipase C beta , Animals , Phospholipase C beta/metabolism , Phospholipase C beta/genetics , Fear/physiology , Dentate Gyrus/metabolism , Dentate Gyrus/physiology , Memory/physiology , Mice , Neurons/metabolism , Neurons/physiology , Mice, Knockout , Male , Optogenetics , Mice, Inbred C57BL
18.
Nat Commun ; 15(1): 5805, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987240

ABSTRACT

Fear memory is essential for survival and adaptation, yet excessive fear memories can lead to emotional disabilities and mental disorders. Despite previous researches have indicated that histamine H1 receptor (H1R) exerts critical and intricate effects on fear memory, the role of H1R is still not clarified. Here, we show that deletion of H1R gene in medial septum (MS) but not other cholinergic neurons selectively enhances contextual fear memory without affecting cued memory by differentially activating the dentate gyrus (DG) neurons in mice. H1R in cholinergic neurons mediates the contextual fear retrieval rather than consolidation by decreasing acetylcholine release pattern in DG. Furthermore, selective knockdown of H1R in the MS is sufficient to enhance contextual fear memory by manipulating the retrieval-induced neurons in DG. Our results suggest that H1R in MS cholinergic neurons is critical for contextual fear retrieval, and could be a potential therapeutic target for individuals with fear-related disorders.


Subject(s)
Cholinergic Neurons , Dentate Gyrus , Fear , Receptors, Histamine H1 , Animals , Fear/physiology , Cholinergic Neurons/metabolism , Cholinergic Neurons/physiology , Receptors, Histamine H1/metabolism , Receptors, Histamine H1/genetics , Dentate Gyrus/metabolism , Mice , Male , Mice, Inbred C57BL , Memory/physiology , Mice, Knockout , Acetylcholine/metabolism , Septal Nuclei/metabolism , Septal Nuclei/physiology , Septal Nuclei/cytology
19.
Brain Res ; 1841: 149128, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39053685

ABSTRACT

BACKGROUND: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a successful treatment option in Parkinson's disease (PD) for different motor and non-motor symptoms, but has been linked to postoperative cognitive impairment. AIM: Since both dopaminergic and norepinephrinergic neurotransmissions play important roles in symptom development, we analysed STN-DBS effects on dopamine and norepinephrine availability in different brain regions and morphological alterations of catecholaminergic neurons in the 6-hydroxydopamine PD rat model. METHODS: We applied one week of continuous unilateral STN-DBS or sham stimulation, respectively, in groups of healthy and 6-hydroxydopamine-lesioned rats to quantify dopamine and norepinephrine contents in the striatum, olfactory bulb and dentate gyrus. In addition, we analysed dopaminergic cell counts in the substantia nigra pars compacta and area tegmentalis ventralis and norepinephrinergic neurons in the locus coeruleus after one and six weeks of STN-DBS. RESULTS: In 6-hydroxydopamine-lesioned animals, one week of STN-DBS did not alter dopamine levels, while striatal norepinephrine levels were decreased. However, neither one nor six weeks of STN-DBS altered dopaminergic neuron numbers in the midbrain or norepinephrinergic neuron counts in the locus coeruleus. Dopaminergic fibre density in the dorsal and ventral striatum also remained unchanged after six weeks of STN-DBS. In healthy animals, one week of STN-DBS resulted in increased dopamine levels in the olfactory bulb and decreased contents in the dentate gyrus, but had no effects on norepinephrine availability. CONCLUSIONS: STN-DBS modulates striatal norepinephrinergic neurotransmission in a PD rat model. Additional behavioural studies are required to investigate the functional impact of this finding.


Subject(s)
Deep Brain Stimulation , Disease Models, Animal , Dopamine , Norepinephrine , Oxidopamine , Subthalamic Nucleus , Synaptic Transmission , Animals , Subthalamic Nucleus/metabolism , Deep Brain Stimulation/methods , Male , Oxidopamine/toxicity , Synaptic Transmission/physiology , Dopamine/metabolism , Norepinephrine/metabolism , Rats , Parkinson Disease/metabolism , Parkinson Disease/therapy , Dopaminergic Neurons/metabolism , Olfactory Bulb/metabolism , Rats, Sprague-Dawley , Corpus Striatum/metabolism , Dentate Gyrus/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/therapy , Parkinsonian Disorders/physiopathology
20.
Nat Commun ; 15(1): 5674, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971831

ABSTRACT

Quiescence, a hallmark of adult neural stem cells (NSCs), is required for maintaining the NSC pool to support life-long continuous neurogenesis in the adult dentate gyrus (DG). Whether long-lasting epigenetic modifications maintain NSC quiescence over the long term in the adult DG is not well-understood. Here we show that mice with haploinsufficiency of Setd1a, a schizophrenia risk gene encoding a histone H3K4 methyltransferase, develop an enlarged DG with more dentate granule cells after young adulthood. Deletion of Setd1a specifically in quiescent NSCs in the adult DG promotes their activation and neurogenesis, which is countered by inhibition of the histone demethylase LSD1. Mechanistically, RNA-sequencing and CUT & RUN analyses of cultured quiescent adult NSCs reveal Setd1a deletion-induced transcriptional changes and many Setd1a targets, among which down-regulation of Bhlhe40 promotes quiescent NSC activation in the adult DG in vivo. Together, our study reveals a Setd1a-dependent epigenetic mechanism that sustains NSC quiescence in the adult DG.


Subject(s)
Dentate Gyrus , Epigenesis, Genetic , Hippocampus , Histone-Lysine N-Methyltransferase , Neural Stem Cells , Neurogenesis , Animals , Female , Male , Mice , Adult Stem Cells/metabolism , Adult Stem Cells/cytology , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Histone Demethylases/metabolism , Histone Demethylases/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL