Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.009
Filter
1.
Oncol Rep ; 52(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39129321

ABSTRACT

B­cell lymphoma is difficult to cure because of its biological and clinical heterogeneity, and due to native chemoresistance. Immunotherapies that overcome cancer­induced immune evasion have been the center of recent developments in oncology. This is emphasized by the accomplishment of various agents that disrupt programmed cell death protein 1 (PD­1)­mediated immune suppression in diverse tumors. However, while PD­1 blockade has been effective in numerous malignancies, a significant proportion of cancers, including B­cell lymphoma, show certain rates of primary resistance to these therapeutic strategies. Histone deacetylase inhibitors (HDACis) have exhibited anticancer activity though suppressing cell proliferation, inducing differentiation and triggering apoptosis. The present study aimed to explore a therapeutic strategy combining a HDACi (romidepsin) and PD­1 blockade (BMS­1) in B­cell lymphoma, utilizing a constructed mouse model of B­cell lymphoma. The IC50 of the two inhibitors was confirmed by MTT assay, and their inhibitory effects were revealed to be dose­ and time­dependent. The data demonstrated that the combined treatment of romidepsin and BMS­1 synergistically inhibited the growth of B­cell lymphoma. Furthermore, it was revealed that romidepsin and BMS­1 synergistically triggered apoptosis in mouse B­cell lymphoma. The synergistic effect of these agents was capable of activating tumor­infiltrating lymphocytes, particularly CD3+CD4+ and CD3+CD8+ T cells. The results of the present study underscore the potential of HDAC inhibition in conjunction with PD­1 blockade as a novel therapeutic approach for B­cell lymphoma, highlighting the synergistic effects of these two mechanisms in enhancing antitumor immunity.


Subject(s)
Apoptosis , Depsipeptides , Drug Synergism , Histone Deacetylase Inhibitors , Lymphoma, B-Cell , Programmed Cell Death 1 Receptor , Animals , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Apoptosis/drug effects , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Depsipeptides/administration & dosage , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Humans , Cell Line, Tumor , Cell Proliferation/drug effects , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Disease Models, Animal , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Disease Progression , Xenograft Model Antitumor Assays
2.
Biotechnol J ; 19(8): e2400310, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39212193

ABSTRACT

The differentiation of bone marrow mesenchymal stem cells (BMSCs) toward osteogenesis can be induced by low-intensity pulsed ultrasound (LIPUS). However, the molecular mechanisms responsible for LIPUS stimulation are unclear. The possible molecular mechanisms by which LIPUS promotes osteogenic differentiation of BMSCs were investigated in this study. The quantification of alkaline phosphatase (ALP) activity, Alizarin Red S staining, ALP staining, and the establishment of a calvarial defect model were used to evaluate osteogenic effects. Immunofluorescence was performed to observe the expression of microfilaments and transient receptor potential melastatin 7 (TRPM7). The levels of F-actin/G-actin and osteogenesis-related proteins under LIPUS alone or LIPUS combined with cytoskeleton interfering drugs (Cytochalasin D [CytoD] or Jasplakinolide [JA]) were assayed by western blot. Quantitative real-time reverse transcription polymerase chain reaction was utilized to measure the expression of Trpm7 mRNA. Moreover, adenoviral Trpm7 knockdown was verified using western blot. The results demonstrated that LIPUS promoted bone formation in vivo. Under osteogenic induction in vitro, the osteogenesis of BMSCs induced by LIPUS was accompanied by the depolymerization and rearrangement of microfilaments and increased levels of TRPM7. By perturbing intracellular actin dynamics, CytoD enhanced the pro-osteogenicity of LIPUS and increased TRPM7 level, while JA inhibited the pro-osteogenicity of LIPUS and reduced TRPM7 level. Additionally, the knockdown of Trpm7 suppressed the osteogenic promotion of BMSCs induced by LIPUS. The transient depolymerization and rearrangement of the cytoskeleton microfilaments mediated by LIPUS can affect TRPM7 expression and subsequently promote the osteogenesis of BMSCs. This study provides further direction for exploring the molecular mechanism of LIPUS, as a mechanical stress, in facilitating the osteogenic differentiation of BMSCs.


Subject(s)
Actin Cytoskeleton , Actins , Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , TRPM Cation Channels , Animals , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Actin Cytoskeleton/metabolism , Actins/metabolism , Actins/genetics , Rats , Rats, Sprague-Dawley , Ultrasonic Waves , Cells, Cultured , Male , Depsipeptides
3.
Food Res Int ; 192: 114834, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147521

ABSTRACT

Bacillus cereus is a well-known foodborne pathogen that can cause human diseases, including vomiting caused by emetic toxin, cereulide, requiring 105-108 cells per gram to cause the disease. The bacterial cells may be eliminated during processing, but cereulide can survive in most processing techniques due to its resistance to high temperatures, extreme pH and proteolytic enzymes. Herein, we reported dynamic processes of biofilm formation of four different types and cereulide production within the biofilm. Confocal laser scanning microscopy (CLSM) images revealed that biofilms of the four different types reach each stage at different time points. Among the extracellular polymeric substances (EPS) components of the four biofilms formed by the emetic B. cereus F4810/72 strain, proteins account for the majority. In addition, there are significant differences (p < 0.05) in the EPS components at the same stage among biofilms of different types. The time point at which cereulide was first detected in the four types of biofilms was 24 h. In the biofilm of B. cereus formed in ultra-high-temperature (UHT) milk, the first peak of cereulide appeared at 72 h. The cereulide content of the biofilms formed in BHI was mostly higher than that of the biofilms formed in UHT milk. This study contributes to a better understanding of food safety issues in the industry caused by biofilm and cereulide toxin produced by B. cereus.


Subject(s)
Bacillus cereus , Biofilms , Depsipeptides , Food Microbiology , Bacillus cereus/metabolism , Bacillus cereus/physiology , Biofilms/growth & development , Depsipeptides/metabolism , Microscopy, Confocal , Animals , Milk/microbiology , Hot Temperature , Extracellular Polymeric Substance Matrix/metabolism , Foodborne Diseases/microbiology , Food Handling/methods
5.
Lancet ; 404(10453): 683-691, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153818

ABSTRACT

BACKGROUND: Human hookworm is a cause of enormous global morbidity. Current treatments have insufficient efficacy and their extensive and indiscriminate distribution could also result in drug resistance. Therefore, we tested the efficacy and safety of emodepside, a strong anthelmintic candidate that is currently undergoing clinical development for onchocerciasis and soil-transmitted helminth infections. METHODS: We conducted a double-blind, superiority, phase 2b, randomised controlled clinical trial comparing emodepside and albendazole. Participants in the emodepside group received six 5 mg tablets of emodepside (totalling 30 mg) and one placebo; participants in the albendazole group received one 400 mg tablet of albendazole and six placebos. Participants were recruited from four endemic villages and three secondary schools in Pemba Island, Tanzania. Participants aged 12-60 years were eligible for treatment if they were positive for hookworm infection, and they had 48 or more eggs per gram from four Kato-Katz thick smears and at least two slides had more than one hookworm egg present. Participants' treatment allocation was stratified by infection intensity and efficacy was measured by cure rate: participants who were hookworm positive and became hookworm negative after treatment. Adverse events were reported at 3 h, 24 h, 48 h, and 14-21 days post-treatment. The trial is registered at ClinicalTrials.gov, NCT05538767. FINDINGS: From Sept 15 to Nov 8, 2022, and from Feb 15 to March 15, 2023, 1609 individuals were screened for hookworm. Of these, 293 individuals were treated: 147 with albendazole and 146 with emodepside. Emodepside demonstrated superiority, with an observed cure rate against hookworm of 96·6%, which was significantly higher compared with albendazole (cure rate 81·2%, odds ratio 0·14, 95% CI 0·04-0·35; p=0·0001). The most common adverse event in the emodepside treatment group was vision blur at 3 h after treatment (57 [39%] of 146). Other common adverse events were vision blur at 24 h after treatment (55 [38%]), and headache and dizziness at 3 h after treatment (55 [38%] for headache and 43 [30%] for dizziness). In the emodepside treatment group, 298 (93%) of the 319 adverse events were mild. The most commonly reported adverse events in the albendazole treatment group were headache and dizziness at 3 h after treatment (27 [18%] of 147 for headache and 14 [10%] for dizziness). No serious adverse events were reported. INTERPRETATION: This phase 2b clinical trial confirms the high efficacy of emodepside against hookworm infections, solidifying emodepside as a promising anthelmintic candidate. However, although the observed safety events were generally mild in severity, considerations must be made to balance the strong efficacy outcomes with the increased frequency of adverse events compared with albendazole. FUNDING: European Research Council.


Subject(s)
Albendazole , Anthelmintics , Depsipeptides , Hookworm Infections , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Young Adult , Albendazole/therapeutic use , Albendazole/adverse effects , Anthelmintics/adverse effects , Anthelmintics/therapeutic use , Depsipeptides/adverse effects , Depsipeptides/therapeutic use , Double-Blind Method , Hookworm Infections/drug therapy , Tanzania , Treatment Outcome
6.
Proc Natl Acad Sci U S A ; 121(36): e2311711121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39196624

ABSTRACT

Inhibitors of heterotrimeric G proteins are being developed as therapeutic agents. Epitomizing this approach are YM-254890 (YM) and FR900359 (FR), which are efficacious in models of thrombosis, hypertension, obesity, asthma, uveal melanoma, and pain, and under investigation as an FR-antibody conjugate in uveal melanoma clinical trials. YM/FR inhibits the Gq/11/14 subfamily by interfering with GDP (guanosine diphosphate) release, but by an unknown biophysical mechanism. Here, we show that YM inhibits GDP release by stabilizing closure between the Ras-like and α-helical domains of a Gα subunit. Nucleotide-free Gα adopts an ensemble of open and closed configurations, as indicated by single-molecule Förster resonance energy transfer and molecular dynamics simulations, whereas GDP and GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) stabilize distinct closed configurations. YM stabilizes closure in the presence or absence of GDP without requiring an intact interdomain interface. All three classes of mammalian Gα subunits that are insensitive to YM/FR possess homologous but degenerate YM/FR binding sites, yet can be inhibited upon transplantation of the YM/FR binding site of Gq. Novel YM/FR analogs tailored to each class of G protein will provide powerful new tools for therapeutic investigation.


Subject(s)
Guanosine Diphosphate , Guanosine Diphosphate/metabolism , Humans , Molecular Dynamics Simulation , Fluorescence Resonance Energy Transfer , Protein Domains , GTP-Binding Protein alpha Subunits/metabolism , Protein Binding , Peptides, Cyclic , Depsipeptides
7.
Mar Drugs ; 22(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39057411

ABSTRACT

In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound was determined by spectroscopic methods including MS, 1H, 13C and 2D-NMR. To solve the supply problem for 1 and progress pharmaceutical development, the total synthesis of 1 that involves a total of 20 chemical steps in a convergent process was carried out. Its in vitro cytotoxic activity against four human tumor cell lines, as well as the inhibition of the interaction between the programmed cell death protein 1 PD-1 and its ligand PD-L1 were also evaluated.


Subject(s)
Antineoplastic Agents , Cyanobacteria , Depsipeptides , Depsipeptides/pharmacology , Depsipeptides/isolation & purification , Depsipeptides/chemistry , Depsipeptides/chemical synthesis , Humans , Cyanobacteria/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Aquatic Organisms , B7-H1 Antigen/antagonists & inhibitors , Pacific Ocean , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification
8.
Toxins (Basel) ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057930

ABSTRACT

A total of 769 wheat kernels collected from six provinces in China were analyzed for beauvericin (BEA) and four enniatins (ENNs), namely, ENA, ENA1, ENB and ENB1, using a solid phase extraction (SPE) technique with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results show that the predominant toxin was BEA, which had a maximum of 387.67 µg/kg and an average of 37.69 µg/kg. With regard to ENNs, the prevalence and average concentrations of ENB and ENB1 were higher than those of ENA and ENA1. The geographical distribution of BEA and ENNs varied. Hubei and Shandong exhibited the highest and lowest positive rates of BEA and ENNs (13.46% and 87.5%, respectively). However, no significant difference was observed among these six provinces. There was a co-occurrence of BEA and ENNs, and 42.26% of samples were simultaneously detected with two or more toxins. Moreover, a significant linear correlation in concentrations was observed between the four ENN analogs (r range: 0.75~0.96, p < 0.05). This survey reveals that the contamination and co-contamination of BEA and ENNs in Chinese wheat kernels were very common.


Subject(s)
Depsipeptides , Food Contamination , Triticum , Depsipeptides/analysis , Triticum/chemistry , China , Food Contamination/analysis , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Mycotoxins/analysis , Solid Phase Extraction
9.
EMBO Mol Med ; 16(8): 1930-1956, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977926

ABSTRACT

Pulmonary arterial hypertension (PAH) is a life-threatening disease with limited survival. Herein, we propose the pharmacological inhibition of Gq proteins as a novel concept to counteract pulmonary vasoconstriction and proliferation/migration of pulmonary artery smooth muscle cells (PASMCs) in PAH. We demonstrate that the specific pan-Gq inhibitor FR900359 (FR) induced a strong vasorelaxation in large and small pulmonary arteries in mouse, pig, and human subjects ex vivo. Vasorelaxation by FR proved at least as potent as the currently used triple therapy. We also provide in vivo evidence that local pulmonary application of FR prevented right ventricular systolic pressure increase in healthy mice as well as in mice suffering from hypoxia (Hx)-induced pulmonary hypertension (PH). In addition, we demonstrate that chronic application of FR prevented and also reversed Sugen (Su)Hx-induced PH in mice. We also demonstrate that Gq inhibition reduces proliferation and migration of PASMCs in vitro. Thus, our work illustrates a dominant role of Gq proteins for pulmonary vasoconstriction as well as remodeling and proposes direct Gq inhibition as a powerful pharmacological strategy in PH.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , Hypertension, Pulmonary , Pulmonary Artery , Animals , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Humans , Mice , Pulmonary Artery/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Swine , Vasodilation/drug effects , Male , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice, Inbred C57BL , Depsipeptides
10.
J Med Chem ; 67(14): 12205-12220, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38958200

ABSTRACT

Cyclic oligomeric depsipeptides (COD) are a structural class within naturally occurring compounds with a wide range of biological activity. Verticilide is a COD (24-membered ring) that was identified by its inhibition of insect ryanodine receptor (RyR). We have since found that the enantiomer of verticilide (ent-verticilide, 1) is a potent inhibitor of mammalian RyR2, a cardiac calcium channel, and therefore a potential antiarrhythmic agent. Oddly, nat-verticilide does not inhibit RyR2. To further develop ent-verticilide as an antiarrhythmic, we explored potential SAR through systematic modification of the ester's functionality to both N-H and N-Me amides. The syntheses of these ent-verticilide-inspired analogs are detailed using a monomer-based platform enabled by enantioselective catalysis. Two analogs among 23 exhibited measurable reduction of calcium sparks in a functional assay of RyR2 activity. These findings illustrate the value of natural product-inspired therapeutic development, but the less-studied approach where the non-natural enantiomeric series harbors important SAR.


Subject(s)
Anti-Arrhythmia Agents , Biological Products , Depsipeptides , Ryanodine Receptor Calcium Release Channel , Depsipeptides/chemistry , Depsipeptides/pharmacology , Depsipeptides/chemical synthesis , Structure-Activity Relationship , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/chemical synthesis , Humans , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/chemical synthesis , Animals , Stereoisomerism
11.
Chem Commun (Camb) ; 60(63): 8272-8275, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39015034

ABSTRACT

Herein, we describe the total synthesis of the depsipeptide vioprolide B and of an analogue, in which the (E)-dehydrobutyrine amino acid was replaced by glycine. The compounds were studied in biological assays which revealed cytotoxicity solely for vioprolide B presumably by covalent binding to cysteine residues of elongation factor eEF1A1 and of chromatin assembly factor CHAF1A.


Subject(s)
Depsipeptides , Glycine , Humans , Depsipeptides/chemical synthesis , Depsipeptides/chemistry , Depsipeptides/pharmacology , Glycine/analogs & derivatives , Glycine/chemistry , Glycine/chemical synthesis , Glycine/pharmacology , Peptide Elongation Factor 1/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Molecular Structure , Aminobutyrates
12.
Toxicol In Vitro ; 99: 105890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972516

ABSTRACT

Beauvericin (BEA), Enniatin B (ENN B), and Ochratoxin A (OTA) are mycotoxins produced by fungi species. Their main effect on several organs and systems is associated with chronic exposure going from immunotoxicity, estrogenic disorders, and renal failure to cancer (in animals and humans). OTA belongs to Group 1 according to the International Agency for Research in Cancer (IARC) and it has legislated limited values; not happening for BEA nor ENN B. Exposure to mixtures of mycotoxins occurs through food intake in daily consumption. The aim of this study was to evaluate the implication of BEA, ENN B, and OTA individually and combined in producing cytotoxicity in cells for immunological studies and cancer cell lines (human leukemia cells (HL-60), fresh human peripheral blood mononuclear cells (PBMCs), and human breast cancer (MDA-MB-231) cells). Cells were treated for 4 h and 24 h at different concentrations of BEA, ENN B, and OTA, respectively. Viability assays were carried out by flow cytometry using DAPI (4',6-diamindino-2-phenylindole, dihydrochloride) as a viability dye and the potential effects of synergism, addition, and antagonism were assessed through the Chou and Talalay method. Individual OTA treatment exerted the greatest cytotoxicity for PBMC cells (IC50 0.5 µM) while ENN B for HL-60 (IC50 0.25 µM) and MDA-MB-231 (IC50 0.15 µM). In binary combination [ENN B + OTA] resulted in exerting the greatest cytotoxicity for HL-60 and MDA-MB-231 cells; while [BEA + OTA] in PBMC cells. The triple combination resulted in being highly cytotoxic for PBMC cells compared to HL-60 and MDA-MB-231 cells. In summary, PBMC cells were the most sensible cells for all three mycotoxins and the presence of OTA in any of the combinations had the greatest toxicity causing synergism as the most common cytotoxic effect.


Subject(s)
Breast Neoplasms , Cell Survival , Depsipeptides , Leukocytes, Mononuclear , Ochratoxins , Humans , Depsipeptides/toxicity , Ochratoxins/toxicity , Leukocytes, Mononuclear/drug effects , Cell Survival/drug effects , Breast Neoplasms/drug therapy , Cell Line, Tumor , Female , Leukemia/drug therapy
13.
J Nat Prod ; 87(7): 1838-1843, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39021085

ABSTRACT

Here, we report wajeepeptin (1), a new cyclic depsipeptide isolated from a marine Moorena sp. cyanobacterium. The structure was elucidated by a combination of spectroscopic analyses, X-ray diffraction analysis, and degradation reactions. Wajeepeptin (1) showed moderate cytotoxicity (IC50 = 3.7 µM against HeLa cells) and potent antitrypanosomal activity (IC50 = 0.73 ± 0.14 µM against Trypanosoma brucei rhodesiense).


Subject(s)
Cyanobacteria , Depsipeptides , Depsipeptides/pharmacology , Depsipeptides/chemistry , Depsipeptides/isolation & purification , Humans , Molecular Structure , HeLa Cells , Cyanobacteria/chemistry , Trypanosoma brucei rhodesiense/drug effects , Marine Biology , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Drug Screening Assays, Antitumor , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular
14.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892174

ABSTRACT

Foodborne diseases can be attributed not only to contamination with bacterial or fungal pathogens but also their associated toxins. Thus, to maintain food safety, innovative decontamination techniques for toxins are required. We previously demonstrated that an atmospheric-pressure dielectric-barrier discharge (APDBD) plasma generated by a roller conveyer plasma device is effective at inactivating bacteria and fungi in foods. Here, we have further examined whether the roller conveyer plasma device can be used to degrade toxins produced by foodborne bacterial pathogens, including aflatoxin, Shiga toxins (Stx1 and Stx2), enterotoxin B and cereulide. Each toxin was spotted onto an aluminum plate, allowed to dry, and then treated with APDBD plasma applied by the roller conveyer plasma device for different time periods. Assessments were conducted using a competitive enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrate a significant time-dependent decrease in the levels of these toxins. ELISA showed that aflatoxin B1 concentrations were reduced from 308.6 µg/mL to 74.4 µg/mL within 1 min. For Shiga toxins, Stx1 decreased from 913.8 µg/mL to 65.1 µg/mL, and Stx2 from 2309.0 µg/mL to 187.6 µg/mL within the same time frame (1 min). Enterotoxin B levels dropped from 62.67 µg/mL to 1.74 µg/mL at 15 min, and 1.43 µg/mL at 30 min, but did not display a significant decrease within 5 min. LC-MS/MS analysis verified that cereulide was reduced to below the detection limit following 30 min of APDBD plasma treatment. Taken together, these findings highlight that a range of foodborne toxins can be degraded by a relatively short exposure to plasma generated by an APDBD using a roller conveyer device. This technology offers promising advancements in food safety, providing a novel method to alleviate toxin contamination in the food processing industry.


Subject(s)
Atmospheric Pressure , Tandem Mass Spectrometry , Enterotoxins , Depsipeptides/chemistry , Food Microbiology/methods , Chromatography, Liquid/methods , Foodborne Diseases/prevention & control , Foodborne Diseases/microbiology , Enzyme-Linked Immunosorbent Assay , Food Contamination/analysis , Plasma Gases/chemistry , Aflatoxin B1
15.
J Agric Food Chem ; 72(26): 14975-14983, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38898562

ABSTRACT

Enniatins (ENNs) A1 and B1, previously considered ionophores, are emerging mycotoxins with effects on Ca2+ homeostasis. However, their exact mechanism of action remains unclear. This study investigated how these toxins affect Ca2+ flux in SH-SY5Y cells. ENN A1 induced Ca2+ influx through store-operated channels (SOC). The mitochondrial uncoupler FCCP reduced this influx, suggesting that the mitochondrial status influences the toxin effect. Conversely, ENN B1 did not affect SOC but acted on another Ca2+ channel, as shown when nickel, which directly blocks the Ca2+ channel pore, is added. Mitochondrial function also influenced the effects of ENN B1, as treatment with FCCP reduced toxin-induced Ca2+ depletion and uptake. In addition, both ENNs altered mitochondrial function by producing the opening of the mitochondrial permeability transition pore. This study describes for the first time that ENN A1 and B1 are not Ca2+ ionophores and suggests a different mechanism of action for each toxin.


Subject(s)
Calcium , Depsipeptides , Mitochondria , Mitochondria/metabolism , Mitochondria/drug effects , Calcium/metabolism , Humans , Depsipeptides/pharmacology , Mycotoxins/metabolism , Mitochondrial Permeability Transition Pore/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Cell Line, Tumor
16.
Pestic Biochem Physiol ; 202: 105951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879336

ABSTRACT

The abuse of chemical insecticides has led to strong resistance in cockroaches, and biopesticides with active ingredients based on insect pathogens have good development prospects; however, their slow effect has limited their practical application, and improving their effectiveness has become an urgent problem. In this study, the interaction between Serratia marcescens and Metarhizium anisopliae enhanced their virulence against Blattella germanica and exhibited a synergistic effect. The combination of S. marcescens and M. anisopliae caused more severe tissue damage and accelerated the proliferation of the insect pathogen. The results of high-throughput sequencing demonstrated that the gut microbiota was dysbiotic, the abundance of the opportunistic pathogen Weissella cibaria increased, and entry into the hemocoel accelerated the death of the German cockroaches. In addition, the combination of these two agents strongly downregulated the expression of Imd and Akirin in the IMD pathway and ultimately inhibited the expression of antimicrobial peptides (AMPs). S. marcescens released prodigiosin to disrupted the gut homeostasis and structure, M. anisopliae released destruxin to damaged crucial organs, opportunistic pathogen Weissella cibaria overproliferated, broke the gut epithelium and entered the hemocoel, leading to the death of pests. These findings will allow us to optimize the use of insect pathogens for the management of pests and produce more effective biopesticides.


Subject(s)
Cockroaches , Gastrointestinal Microbiome , Metarhizium , Serratia marcescens , Animals , Serratia marcescens/pathogenicity , Serratia marcescens/physiology , Metarhizium/pathogenicity , Metarhizium/physiology , Gastrointestinal Microbiome/drug effects , Cockroaches/microbiology , Prodigiosin/pharmacology , Mycotoxins/metabolism , Blattellidae/microbiology , Pest Control, Biological/methods , Virulence , Depsipeptides
17.
Nat Commun ; 15(1): 5209, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890388

ABSTRACT

Despite the importance of spliceosome core components in cellular processes, their roles in cancer development, including hepatocellular carcinoma (HCC), remain poorly understood. In this study, we uncover a critical role for SmD2, a core component of the spliceosome machinery, in modulating DNA damage in HCC through its impact on BRCA1/FANC cassette exons and expression. Our findings reveal that SmD2 depletion sensitizes HCC cells to PARP inhibitors, expanding the potential therapeutic targets. We also demonstrate that SmD2 acetylation by p300 leads to its degradation, while HDAC2-mediated deacetylation stabilizes SmD2. Importantly, we show that the combination of Romidepsin and Olaparib exhibits significant therapeutic potential in multiple HCC models, highlighting the promise of targeting SmD2 acetylation and HDAC2 inhibition alongside PARP inhibitors for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Exons , Liver Neoplasms , Phthalazines , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Spliceosomes , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Acetylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Spliceosomes/metabolism , Spliceosomes/drug effects , Cell Line, Tumor , Phthalazines/pharmacology , Exons/genetics , Piperazines/pharmacology , Animals , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Mice , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects
18.
Environ Health ; 23(1): 52, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835048

ABSTRACT

Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).


Subject(s)
European Union , Risk Assessment , Secondary Metabolism , Depsipeptides/toxicity , Depsipeptides/metabolism , Humans
19.
J Nat Prod ; 87(6): 1601-1610, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38832890

ABSTRACT

Kavaratamide A (1), a new linear lipodepsipeptide possessing an unusual isopropyl-O-methylpyrrolinone moiety, was discovered from the tropical marine filamentous cyanobacterium Moorena bouillonii collected from Kavaratti, India. A comparative chemogeographic analysis of M. bouillonii collected from six different geographical regions led to the prioritized isolation of this metabolite from India as distinctive among our data sets. AI-based structure annotation tools, including SMART 2.1 and DeepSAT, accelerated the structure elucidation by providing useful structural clues, and the full planar structure was elucidated based on comprehensive HRMS, MS/MS fragmentation, and NMR data interpretation. Subsequently, the absolute configuration of 1 was determined using advanced Marfey's analysis, modified Mosher's ester derivatization, and chiral-phase HPLC. The structures of kavaratamides B (2) and C (3) are proposed based on a detailed analysis of their MS/MS fragmentations. The biological activity of kavaratamide A was also investigated and found to show moderate cytotoxicity to the D283-medullablastoma cell line.


Subject(s)
Cyanobacteria , Depsipeptides , Cyanobacteria/chemistry , Depsipeptides/chemistry , Depsipeptides/pharmacology , Depsipeptides/isolation & purification , Molecular Structure , India , Nuclear Magnetic Resonance, Biomolecular , Marine Biology , Humans , Drug Screening Assays, Antitumor , Chromatography, High Pressure Liquid
20.
Bioorg Med Chem ; 109: 117794, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38875875

ABSTRACT

Dolastatin 10 (Dol-10), a natural marine-source pentapeptide, is a powerful antimitotic agent regarded as one of the most potent anticancer compounds found to date. Dol-10 however, lacks chemical conjugation capabilities, which restricts the feasibility of its application in targeted drug therapy. This limitation has spurred the prospect that chemical structure of the parent molecule might allow conjugation of the derivatives to drug carriers such as antibodies. By first employing docking studies, we designed and prepared a series of novel Dol-10 analogs with a modified C-terminus, preserving high potency of the parent compound while enhancing conjugation capability. The modifications involved the introduction of a methyleneamine functionality at position 4 of the 1,3-thiazole ring, along with the substitution of the thiazole ring with a 1,2,3-triazole moiety, furnished with methylenehydroxy, carboxy, methyleneamine, and N(Me)-methyleneamine tethering functionalities at position 4. Among the synthesized pentapeptides, DA-1 exhibited the highest potency in prostate cancer (PC-3) cells, eliciting apoptosis (IC50 0.2 ± 0.1 nm) and cell cycle arrest at the mitotic stage after at least 6 days of culture. This delayed response suggests the accumulation of cellular stress or significant physiological alterations that profoundly impact the cell cycle. We believe that these novel Dol-10 derivates represent a new and straightforward route for the development of C-terminus modified Dol-10-based microtubule inhibitors, thereby advancing targeted anticancer therapy.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Depsipeptides , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Depsipeptides/chemistry , Depsipeptides/pharmacology , Depsipeptides/chemical synthesis , Cell Proliferation/drug effects , Cell Line, Tumor , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Apoptosis/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL