Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.975
Filter
1.
Skin Res Technol ; 30(7): e13833, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961692

ABSTRACT

BACKGROUND: Inflammatory skin diseases, such as psoriasis, atopic eczema, and contact dermatitis pose diagnostic challenges due to their diverse clinical presentations and the need for rapid and precise diagnostic assessment. OBJECTIVE: While recent studies described non-invasive imaging devices such as Optical coherence tomography and Line-field confocal OCT (LC-OCT) as possible techniques to enable real-time visualization of pathological features, a standardized analysis and validation has not yet been performed. METHODS: One hundred forty lesions from patients diagnosed with atopic eczema (57), psoriasis (50), and contact dermatitis (33) were imaged using OCT and LC-OCT. Statistical analysis was employed to assess the significance of their characteristic morphologic features. Additionally, a decision tree algorithm based on Gini's coefficient calculations was developed to identify key attributes and criteria for accurately classifying the disease groups. RESULTS: Descriptive statistics revealed distinct morphologic features in eczema, psoriasis, and contact dermatitis lesions. Multivariate logistic regression demonstrated the significance of these features, providing a robust differentiation between the three inflammatory conditions. The decision tree algorithm further enhanced classification accuracy by identifying optimal attributes for disease discrimination, highlighting specific morphologic criteria as crucial for rapid diagnosis in the clinical setting. CONCLUSION: The combined approach of descriptive statistics, multivariate logistic regression, and a decision tree algorithm provides a thorough understanding of the unique aspects associated with each inflammatory skin disease. This research offers a practical framework for lesion classification, enhancing the interpretability of imaging results for clinicians.


Subject(s)
Dermatitis, Atopic , Psoriasis , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Psoriasis/diagnostic imaging , Psoriasis/pathology , Dermatitis, Atopic/diagnostic imaging , Dermatitis, Atopic/pathology , Algorithms , Female , Male , Dermatitis, Contact/diagnostic imaging , Dermatitis, Contact/pathology , Adult , Skin/diagnostic imaging , Skin/pathology , Middle Aged , Diagnosis, Differential , Reproducibility of Results
2.
ACS Appl Mater Interfaces ; 16(25): 32128-32146, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38872576

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a "green" cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core-shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches' exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches' moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.


Subject(s)
Anti-Bacterial Agents , Dermatitis, Atopic , Staphylococcus aureus , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Staphylococcus aureus/drug effects , Nanofibers/chemistry , Transdermal Patch , Adhesives/chemistry , Adhesives/pharmacology , Nanostructures/chemistry , Animals , Skin/drug effects , Skin/pathology
3.
ACS Appl Mater Interfaces ; 16(26): 33135-33148, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900923

ABSTRACT

Atopic dermatitis (AD), a chronic skin condition characterized by itching, redness, and inflammation, is closely associated with heightened levels of endogenous reactive oxygen species (ROS) in the skin. ROS can contribute to the onset and progression of AD through oxidative stress, which leads to the release of proinflammatory cytokines, T-cell differentiation, and the exacerbation of skin symptoms. In this study, we aim to develop a therapeutic antioxidant hydrogel patch for the potential treatment of AD using lignin, a biomass waste material. Lignin contains polyphenol groups that enable it to scavenge ROS and exhibit antioxidant properties. The lignin hydrogel patches, possessing optimized mechanical properties through the control of the lignin and cross-linker ratio, demonstrated high ROS-scavenging capabilities. Furthermore, the lignin hydrogel demonstrated excellent biocompatibility with the skin, exhibiting beneficial properties in protecting human keratinocytes under high oxidative conditions. When applied to an AD mouse model, the hydrogel patch effectively reduced epidermal thickness in inflamed regions, decreased mast cell infiltration, and regulated inflammatory cytokine levels. These findings collectively suggest that lignin serves as a therapeutic hydrogel patch for managing AD by modulating oxidative stress through its ROS-scavenging ability.


Subject(s)
Antioxidants , Dermatitis, Atopic , Hydrogels , Lignin , Oxidative Stress , Skin , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Lignin/chemistry , Lignin/pharmacology , Oxidative Stress/drug effects , Animals , Mice , Humans , Hydrogels/chemistry , Hydrogels/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Skin/drug effects , Skin/pathology , Skin/metabolism , Reactive Oxygen Species/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism
4.
Int J Biol Macromol ; 273(Pt 1): 133005, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866268

ABSTRACT

Atopic dermatitis (AD) is a chronic cutaneous disease with a complex underlying mechanism, and it cannot be completely cured. Thus, most treatment strategies for AD aim at relieving the symptoms. Although corticosteroids are topically applied to alleviate AD, adverse side effects frequently lead to the withdrawal of AD therapy. Tacrolimus (TAC), a calcineurin inhibitor, has been used to treat AD, but its high molecular weight and insolubility in water hinder its skin permeability. Herein, we developed and optimized TAC-loaded chitosan-based nanoparticles (TAC@CNPs) to improve the skin permeability of TAC by breaking the tight junctions in the skin. The prepared nanoparticles were highly loadable and efficient and exhibited appropriate characteristics for percutaneous drug delivery. TAC@CNP was stable for 4 weeks under physiological conditions. CNP released TAC in a controlled manner, with enhanced skin penetration observed. In vitro experiments showed that CNP was non-toxic to keratinocyte (HaCaT) cells, and TAC@CNP dispersed in an aqueous solution was as anti-proliferative as TAC solubilized in a good organic solvent. Importantly, an in vivo AD mouse model revealed that topical TAC@CNP containing ~1/10 of the dose of TAC found in commercially used Protopic® Ointment exhibited similar anti-inflammatory activity to that of the commercial product. TAC@CNP represents a potential therapeutic strategy for the management of AD.


Subject(s)
Chitosan , Dermatitis, Atopic , Nanoparticles , Tacrolimus , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Tacrolimus/chemistry , Tacrolimus/pharmacology , Tacrolimus/administration & dosage , Tacrolimus/pharmacokinetics , Tacrolimus/therapeutic use , Chitosan/chemistry , Animals , Nanoparticles/chemistry , Mice , Humans , Drug Carriers/chemistry , Skin/drug effects , Skin/pathology , Skin/metabolism , Administration, Topical , Skin Absorption/drug effects , Drug Liberation , Disease Models, Animal , HaCaT Cells
5.
Biomed Pharmacother ; 176: 116911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861857

ABSTRACT

Atopic dermatitis (AD) is a globally increasing chronic inflammatory skin disease with limited and potentially side-effect-prone treatment options. Monotropein is the predominant iridoid glycoside in Morinda officinalis How roots, which has previously shown promise in alleviating AD symptoms. This study aimed to systematically investigate the pharmacological effects of monotropein on AD using a 2, 4-dinitrochlorobenzene (DNCB)/Dermatophagoides farinae extract (DFE)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes. Oral administration of monotropein demonstrated a significant reduction in AD phenotypes, including scaling, erythema, and increased skin thickness in AD-induced mice. Histological analysis revealed a marked decrease in immune cell infiltration in skin lesions. Additionally, monotropein effectively downregulated inflammatory markers, encompassing pro-inflammatory cytokines, T helper (Th)1 and Th2 cytokines, and pro-inflammatory chemokines in skin tissues. Notably, monotropein also led to a considerable decrease in serum immunoglobulin (Ig)E and IgG2a levels. At a mechanistic level, monotropein exerted its anti-inflammatory effects by suppressing the phosphorylation of Janus kinase / signal transducer and activator of transcription proteins in both skin tissues of AD-induced mice and TNF-α/IFN-γ-stimulated keratinocytes. In conclusion, monotropein exhibited a pronounced alleviation of AD symptoms in the experimental models used. These findings underscore the potential application of monotropein as a therapeutic agent in the context of AD, providing a scientific basis for further exploration and development.


Subject(s)
Dermatitis, Atopic , Janus Kinases , Keratinocytes , Signal Transduction , Skin , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction/drug effects , Mice , Janus Kinases/metabolism , Skin/drug effects , Skin/pathology , Skin/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Cytokines/metabolism , Mice, Inbred BALB C , STAT Transcription Factors/metabolism , Humans , Dinitrochlorobenzene , Anti-Inflammatory Agents/pharmacology , Female , Disease Models, Animal , Inflammation/drug therapy , Inflammation/pathology , Immunoglobulin E/blood , Dermatophagoides farinae/immunology , Iridoids/pharmacology
6.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891925

ABSTRACT

Stress exposure worsens allergic inflammatory diseases substantially. Mast cells (MCs) play a key role in peripheral immune responses to neuroendocrine stress mediators such as nerve growth factor (NGF) and substance P (SP). Mast cell proteases (MCPs) and cholinergic factors (Chrna7, SLURP1) were recently described to modulate MC stress response. We studied MCPs and Chrna7/SLURP1 and their interplay in a mouse model for noise induced stress (NiS) and atopic dermatitis-like allergic inflammation (AlD) and in cultured MC lacking Chrna7. We found that the cholinergic stress axis interacts with neuroendocrine stress mediators and stress-mediator cleaving enzymes in AlD. SP-cleaving mMCP4+ MC were upregulated in AlD and further upregulated by stress in NiS+AlD. Anti-NGF neutralizing antibody treatment blocked the stress-induced upregulation in vivo, and mMCP4+ MCs correlated with measures of AlD disease activity. Finally, high mMCP4 production in response to SP depended on Chrna7/SLURP1 in cultured MCs. In conclusion, mMCP4 and its upstream regulation by Chrna7/SLURP1 are interesting novel targets for the treatment of allergic inflammation and its aggravation by stress.


Subject(s)
Dermatitis, Atopic , Disease Models, Animal , Mast Cells , Skin , alpha7 Nicotinic Acetylcholine Receptor , Animals , Mast Cells/metabolism , Mast Cells/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , Dermatitis, Atopic/immunology , Mice , Skin/metabolism , Skin/pathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Inflammation/metabolism , Inflammation/pathology , Peptide Hydrolases/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Substance P/metabolism , Stress, Physiological , Mice, Inbred C57BL , Nerve Growth Factor/metabolism
7.
J Dermatolog Treat ; 35(1): 2333016, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38839072

ABSTRACT

Dupilumab is a novel treatment agent for moderate to severe atopic dermatitis (AD) with few adverse effects. Drug-induced psoriasiform lesions are rare.We report a 4-year-old boy with AD who developed pustular psoriasis during treatment with dupilumab.Pustular psoriasis appeared within 1 week of treatment and worsened in the second week. After stopping dupilumab administration, topical corticosteroids (desonide and mometasone furoate creams) and oral desloratadine without relief. Pustular psoriasis was confirmed by pathological examination, and thiamphenicol was administered. After 2 weeks of treatment, the lesions nearly resolved without recurrence in 1-year follow-up.Dupilumab-induced pustular psoriasis is rare in children.


Subject(s)
Antibodies, Monoclonal, Humanized , Dermatitis, Atopic , Psoriasis , Humans , Male , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Antibodies, Monoclonal, Humanized/adverse effects , Child, Preschool , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Mometasone Furoate , Dermatologic Agents/adverse effects
8.
Sci Rep ; 14(1): 12874, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38834629

ABSTRACT

Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dinitrochlorobenzene , Disease Models, Animal , Mice, Inbred BALB C , Sargassum , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/pathology , Sargassum/chemistry , Mice , RAW 264.7 Cells , Humans , Ethanol/chemistry , Plant Extracts/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Skin/drug effects , Skin/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Immunoglobulin E/blood , Cytokines/metabolism
9.
Front Immunol ; 15: 1365544, 2024.
Article in English | MEDLINE | ID: mdl-38745653

ABSTRACT

Background: Atopic dermatitis (AD) is a chronic skin disease characterized by type 2-skewed immune responses, and significantly influenced by cytokines dependent on Janus kinases (JAKs). Upadacitinib, a JAK1 inhibitor, is effective for moderate-to-severe AD. This study aims to identify biomarkers that reflect long-term therapeutic effects of upadacitinib 15 mg or 30 mg. Methods: A retrospective study from August 2021 to July 2023 included 213 AD patients treated with upadacitinib 15 mg and 70 AD patients with 30 mg. We analyzed eczema area and severity index (EASI), peak pruritus-numerical rating scale (PP-NRS), serum immunoglobulin E (IgE), thymus and activation-regulated chemokine (TARC), lactate dehydrogenase (LDH), and total eosinophil count (TEC) at weeks 0, 4, 12, 24, 36, and 48 of treatment. Results: Both treatments with upadacitinib 15 mg and 30 mg significantly reduced EASI and PP-NRS scores over week 4 to 48 compared to baseline. Upadacitinib 15 mg or 30 mg treatment significantly decreased TEC compared to baseline through week 4 to 36 or week 4 to 48, respectively. The percent reduction of TEC correlated with those of EASI and PP-NRS through week 4 to 48 of treatment with upadacitinib 15 mg, or through week 12 to 48 with 30 mg, respectively. After adjusting for % reductions of other laboratory markers, the significance of correlations was preserved at weeks 36 and 48 of 15 mg treatment, while at weeks 4 and 36 of 30 mg treatment. Conclusion: The % reduction of TEC correlated with those of EASI and PP-NRS during upadacitinib treatment, indicating its potential as a biomarker reflecting treatment responses to upadacitinib in AD patients. However, the variability of significant correlation during treatment indicates that further inspection is needed for its usefulness in monitoring responses to upadacitinib treatment for AD.


Subject(s)
Biomarkers , Dermatitis, Atopic , Eosinophils , Heterocyclic Compounds, 3-Ring , Humans , Adolescent , Adult , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Male , Female , Heterocyclic Compounds, 3-Ring/administration & dosage , Retrospective Studies , Biomarkers/analysis , Eosinophils/cytology , Blood Cell Count , Multivariate Analysis
10.
Arch Dermatol Res ; 316(5): 156, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734816

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disease with intense pruritus, and chronic skin colonization by Staphylococcus aureus. To understand the inflammatory status in AD, we investigated the inflammasome complex, that activates ASC (Apoptosis-associated speck-like protein containing a CARD), caspase-1 and GSDMD (gasdermin-D), and production of IL-1ß and IL-18. We aimed to evaluate the expression of the inflammasome pathway in the skin of adults with AD. Thirty patients with moderate to severe AD and 20 healthy controls were enrolled in the study. We performed the analysis of the inflammasome components NLRP1, NLRP3, AIM-2, IL-1ß, IL-18, Caspase-1, ASC, GSDMD, and CD68 expression (macrophage marker) by immunohistochemistry and immunofluorescence. The main findings included increased expression of NLRP3, NLRP1 and AIM-2 at dermal level of severe AD; augmented IL-18 and IL-1ß expression at epidermis of moderate and severe patients, and in the dermis of severe AD; augmented expression of ASC, caspase-1 and GSDMD in both epidermis and dermis of moderate and severe AD. We detected positive correlation between caspase-1, GSDMD and IL-1ß (epidermis) and caspase-1 (dermis) and AD severity; NLRP3, AIM-2 and IL-1ß, and NLRP3 with IL-18 in the epidermis; ASC, GSDMD and IL-1ß, and NLRP3, AIM-2, caspase-1, and IL-18 in the dermis. We also evidenced the presence of CD68+ macrophages secreting GSDMD, ASC and IL-1ß in moderate and severe AD. Cutaneous macrophages, early detected in moderate AD, have its role in the disease inflammatory mechanisms. Our study indicates a canonical activation pathway of inflammasomes, reinforced by the chronic status of inflammation in AD. The analysis of the inflammasome complex evidenced an imbalance in its regulation, with increased expression of the evaluated components, which is remarkably in severe AD, emphasizing its relevance as potential disease biomarkers and targets for immunomodulatory interventions.


Subject(s)
CARD Signaling Adaptor Proteins , Caspase 1 , Dermatitis, Atopic , Inflammasomes , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Adult , Female , Humans , Male , Middle Aged , Young Adult , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Apoptosis Regulatory Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Case-Control Studies , Caspase 1/metabolism , CD68 Molecule , Dermatitis, Atopic/immunology , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/pathology , DNA-Binding Proteins , Epidermis/immunology , Epidermis/metabolism , Epidermis/pathology , Gasdermins , Inflammasomes/metabolism , Inflammasomes/immunology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophages/metabolism , Macrophages/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism , Phosphate-Binding Proteins/metabolism , Severity of Illness Index , Skin/pathology , Skin/immunology , Skin/metabolism
11.
Arch Dermatol Res ; 316(6): 254, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795229

ABSTRACT

BACKGROUND: Asthma is one of the most well-recognized comorbidities of atopic dermatitis (AD). However, the relationship of AD severity and morphology with asthma characteristics in adults is not well defined. OBJECTIVES: To understand associations of AD severity and morphology with comorbid asthma age-of-onset and control in adults with AD. METHODS: A cross-sectional, dermatology practice-based study was performed in adults (≥ 18 years) with AD and history of asthma (N = 252). Self-administered electronic questionnaires were completed by patients, including demographics, patient-reported outcomes measures of AD severity, history of asthma, age-of-onset, and Asthma Control Test (ACT). Multivariable logistic regression models were constructed to examine relationships between AD severity and morphology with asthma age-of-onset and control. RESULTS: The mean ± standard deviation ACT score was 21.7 ± 4.3 (range 5-25), with 55 (21.8%) having ACT scores ≤ 19 indicating poorly controlled asthma. AD severity and morphology were not associated with adult-onset asthma or poor asthma control. CONCLUSIONS: AD severity and morphology were not consistently associated with comorbid asthma age-of-onset or control in adults with AD.


Subject(s)
Age of Onset , Asthma , Comorbidity , Dermatitis, Atopic , Severity of Illness Index , Humans , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Asthma/epidemiology , Asthma/diagnosis , Male , Female , Adult , Cross-Sectional Studies , Middle Aged , Young Adult , Surveys and Questionnaires , Adolescent , Aged , Patient Reported Outcome Measures
12.
J Dermatol Sci ; 114(3): 94-103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806324

ABSTRACT

BACKGROUND: Elderly atopic dermatitis (AD) is a subtype of AD defined by age (≥ 60 years). The molecular characteristics of elderly AD remain to be clarified. OBJECTIVE: We sought to characterize the molecular features of skin lesions and peripheral blood mononuclear cells (PBMCs) in patients with AD across different age, focusing on elderly AD. METHODS: Skin and PBMCs samples were used for RNA sequencing. Analysis of differentially expressed genes and gene set variation analysis were performed. Immunofluorescence staining, quantitative real-time PCR (qRT-PCR), flow cytometry and transwell assay were used for validation. RESULTS: Compared with healthy controls, the skin transcriptome of AD patients showed common signatures of AD, like barrier dysfunction and enhanced Th1/Th2/Th17 immune pathways. In PBMCs, the expression of Th1/Th2 response genes was more remarkable in adult AD, while expression of Th17-related genes was significantly higher in childhood AD. The gene modules associated with natural killer (NK) cells were downregulated in elderly AD. In skin lesions, elderly AD exhibited enrichment of macrophages, fibroblasts and senescence-associated secretory phenotype (SASP) related genes. The correlation among fibroblasts, SASP and innate immune cells were revealed by the co-localization of fibroblasts, macrophages and NK cells in the lesions across different age groups. Fibroblasts under inflammation or senescence could induce stronger chemotaxis of macrophages and NK cells. CONCLUSION: We identified the molecular phenotypes of skin lesions and PBMCs in elderly AD individuals. Fibroblasts, innate immune cells, and SASP might play important roles in the pathogenesis of elderly AD.


Subject(s)
Cellular Senescence , Dermatitis, Atopic , Fibroblasts , Immunity, Innate , Killer Cells, Natural , Skin , Humans , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Dermatitis, Atopic/genetics , Fibroblasts/immunology , Fibroblasts/metabolism , Aged , Middle Aged , Male , Female , Skin/immunology , Skin/pathology , Killer Cells, Natural/immunology , Cellular Senescence/immunology , Adult , Case-Control Studies , Transcriptome/immunology , Young Adult , Adolescent , Child , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macrophages/immunology , Macrophages/metabolism , Age Factors , Gene Expression Profiling , Th17 Cells/immunology
13.
Bioorg Chem ; 148: 107481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795583

ABSTRACT

Atopic dermatitis is a chronic inflammatory skin disease characterized by intense itching and frequent skin barrier dysfunctions. EGR-1 is a transcription factor that aggravates the pathogenesis of atopic dermatitis by promoting the production of various inflammatory cytokines. Three 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamides (IT21, IT23, and IT25) were identified as novel inhibitors of EGR-1 DNA-binding activity. In silico docking experiments were performed to elucidate the binding conditions of the EGR-1 zinc-finger (ZnF) DNA-binding domain. Electrophoretic mobility shift assays confirmed the targeted binding effect on the EGR-1 ZnF DNA-binding domain, leading to dose-dependent dissociation of the EGR-1-DNA complex. At the functional cellular level, IT21, IT23, and IT25 effectively reduced mRNA expression of TNFα-induced EGR-1-regulated inflammatory genes, particularly in HaCaT keratinocytes inflamed by TNFα. In the in vivo efficacy study, IT21, IT23, and IT25 demonstrated the potential to alleviate atopic dermatitis-like skin lesions in the ear skin of BALB/c mice. These findings suggest that targeting the EGR-1 ZnF DNA-binding domain with 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide derivatives (IT21, IT23, and IT25) could serve as lead compounds for the development of potential therapeutic agents against inflammatory skin disorders, including atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Drug Design , Early Growth Response Protein 1 , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Humans , Animals , Mice , Structure-Activity Relationship , Early Growth Response Protein 1/antagonists & inhibitors , Early Growth Response Protein 1/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Mice, Inbred BALB C , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis
14.
J Dermatolog Treat ; 35(1): 2351489, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38724042

ABSTRACT

BACKGROUND: Genital involvement in atopic dermatitis(AD) can have a significant impact on the patient's quality of life. However, inspection of genital areas is not usually conducted during routine examination and patients may be reluctant to inform the clinician or show this area. OBJECTIVE: to evaluate the efficacy of tralokinumab in AD patients with genital involvement. METHODS: Adult patients with moderate/severe AD and genital involvement receiving tralokinumab have been analyzed. Primary endpoints were EASI, DLQI, PP-NRS, genital-IGA (g-IGA) and genital itching (GI) at week 16. RESULTS: out of 48 patients with moderate/severe AD under treatment with tralokinumab, 12 patients (25%) showed a genital involvement. Seven patients reported itching in the genital area (58%), while none reported a positive history of genital infections. Median scores at T0 were EASI 17.5, PP-NRS 8 and DLQI 14. After 16 weeks of treatment, we observed a median EASI of 3, a median PP-NRS of 1 and a median DLQI of 1. Finally, concerning the genital response, after 16 weeks of treatment, we observed a statistically significant decrease in mean GI and g-IGA scores. CONCLUSION: despite the small size of our sample, tralokinumab can be considered as a valid treatment option for AD with genital involvement.


Subject(s)
Antibodies, Monoclonal , Dermatitis, Atopic , Severity of Illness Index , Humans , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Male , Female , Adult , Antibodies, Monoclonal/therapeutic use , Middle Aged , Treatment Outcome , Pruritus/drug therapy , Pruritus/etiology , Quality of Life , Young Adult , Genital Diseases, Female/drug therapy , Genital Diseases, Male/drug therapy
15.
Adv Exp Med Biol ; 1447: 37-44, 2024.
Article in English | MEDLINE | ID: mdl-38724782

ABSTRACT

Atopic dermatitis, commonly known as eczema, is a chronic inflammatory dermatosis that can affect individuals from infancy to adulthood. Also referred to as "the itch that rashes," atopic dermatitis is classically associated with significant pruritus that is accompanied by characteristic cutaneous and other clinical findings. The diagnosis of atopic dermatitis can be challenging due to the wide range of clinical presentations based on patient factors such as age, skin type, ethnicity, and other comorbid conditions. This chapter reviews the classical findings as well as the less common manifestations of atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Dermatitis, Atopic/diagnosis , Dermatitis, Atopic/pathology , Humans , Pruritus/etiology , Pruritus/diagnosis , Skin/pathology , Infant
17.
PLoS One ; 19(5): e0302781, 2024.
Article in English | MEDLINE | ID: mdl-38713650

ABSTRACT

Atopic dermatitis is a multi-pathogenic disease characterized by chronic skin inflammation and barrier dysfunction. Therefore, improving the skin's ability to form an epidermal barrier and suppressing the production of cytokines that induce type 2 inflammatory responses are important for controlling atopic dermatitis symptoms. (-)-Blebbistatin, a non-muscle myosin II inhibitor, has been suggested to improve pulmonary endothelial barrier function and control inflammation by suppressing immune cell migration; however, its efficacy in atopic dermatitis is unknown. In this study, we investigated whether (S)-(-)-blebbistatin O-benzoate, a derivative of (-)-blebbistatin, improves dermatitis symptoms in a mite antigen-induced atopic dermatitis model using NC/Nga mice. The efficacy of the compound was confirmed using dermatitis scores, ear thickness measurements, serum IgE levels, histological analysis of lesions, and filaggrin expression analysis, which is important for barrier function. (S)-(-)-Blebbistatin O-benzoate treatment significantly reduced the dermatitis score and serum IgE levels compared to those in the vehicle group (p < 0.05). Furthermore, the histological analysis revealed enhanced filaggrin production and a decreased number of mast cells (p < 0.05), indicating that (S)-(-)-blebbistatin O-benzoate improved atopic dermatitis symptoms in a pathological model. In vitro analysis using cultured keratinocytes revealed increased expression of filaggrin, loricrin, involucrin, and ceramide production pathway-related genes, suggesting that (S)-(-)-blebbistatin O-benzoate promotes epidermal barrier formation. Furthermore, the effect of (S)-(-)-blebbistatin O-benzoate on type 2 alarmin cytokines, which are secreted from epidermal cells upon scratching or allergen stimulation and are involved in the pathogenesis of atopic dermatitis, was evaluated using antigens derived from mite feces. The results showed that (S)-(-)-blebbistatin O-benzoate inhibited the upregulation of these cytokines. Based on the above, (S)-(-)-blebbistatin O-benzoate has the potential to be developed as an atopic dermatitis treatment option that controls dermatitis symptoms by suppressing inflammation and improving barrier function by acting on multiple aspects of the pathogenesis of atopic dermatitis.


Subject(s)
Benzoates , Cytokines , Dermatitis, Atopic , Epidermis , Filaggrin Proteins , Heterocyclic Compounds, 4 or More Rings , Animals , Humans , Male , Mice , Antigens, Dermatophagoides/immunology , Benzoates/pharmacology , Benzoates/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/metabolism , Disease Models, Animal , Epidermis/drug effects , Epidermis/metabolism , Epidermis/pathology , Filaggrin Proteins/drug effects , Heterocyclic Compounds, 4 or More Rings/pharmacology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Immunoglobulin E/blood , Intermediate Filament Proteins/metabolism , Intermediate Filament Proteins/genetics , Keratinocytes/drug effects , Keratinocytes/metabolism , Alarmins/drug effects
18.
Biomed Pharmacother ; 176: 116765, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788600

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin barrier dysfunction and chronic inflammatory responses. Reynoutria japonica, known as Huzhang in traditional Chinese Medicine, can enhance blood circulation to eliminate wind pathogens and terminate coughing. Despite pharmacological evidence supporting the efficacy of R. japonica in suppressing edema-induced skin inflammation or connective tissue diseases, its pharmaceutical potential for treating AD-like skin inflammation remains unexplored. This study investigated the possible effects of R. japonica ethanol extract (RJE) on Dermatophagoides farinae extract (DfE)-induced AD-like skin inflammation in NC/Nga mice. To elucidate the underlying mechanisms by which RJE inhibits skin inflammation, we examined the effect of RJE on IFN-γ/TNF-α-induced signal transducer and activator of transcription (STAT) signaling in human epidermal keratinocytes (HEKs) and human dermal fibroblasts (HDFs). Our findings revealed that RJE mitigates DfE-induced AD-like symptoms and skin barrier disruptions in mouse skin lesions. Moreover, RJE attenuated DfE-induced mast cell infiltration and serum levels of inflammatory cytokines (IL-1α, IL-1ß, IL-6, IL-23, IFN-γ, TNF-α, and GM-CSF). RJE also inhibited IFN-γ/TNF-α-induced chemokine levels and STAT3 phosphorylation in HEKs and HDFs. Virtual binding analysis of the RJE components suggested that emodin-8-ß-D-glucoside binds to Janus kinase (JAK) 1/2, thereby suppressing STAT signaling, which was confirmed by Western blot analysis. In conclusion, our results suggest that RJE may alleviate DfE-induced skin barrier dysfunction by inhibiting JAK/STAT signaling and the proinflammatory immune response through the suppression of inflammatory mediators in AD-like skin disease. These findings suggest that RJE has potential as an effective therapy for AD management.


Subject(s)
Dermatitis, Atopic , Dermatophagoides farinae , Janus Kinases , STAT Transcription Factors , Signal Transduction , Animals , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction/drug effects , Mice , STAT Transcription Factors/metabolism , Janus Kinases/metabolism , Humans , Glucosides/pharmacology , Cytokines/metabolism , Male , Skin/drug effects , Skin/pathology , Skin/metabolism , Emodin/pharmacology , Emodin/analogs & derivatives , Keratinocytes/drug effects , Keratinocytes/metabolism , Plant Extracts/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology
19.
Genomics ; 116(4): 110870, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38821220

ABSTRACT

The pathophysiology of atopic dermatitis (AD) is complex. CD4+ T cells play an essential role in the development of lesions in AD. However, the underlying mechanism remains unclear. In the present study, we investigated the differentially expressed genes (DEGs) between adult AD lesioned and non-lesioned skin using two datasets from the Gene Expression Omnibus (GEO) database. 62 DEGs were shown to be related to cytokine response. Compared to non-lesioned skin, lesioned skin showed immune infiltration with increased numbers of activated natural killer (NK) cells and CD4+ T memory cells (p < 0.01). We then identified 13 hub genes with a strong association with CD4+ T cells using weighted correlation network analysis. Single-cell analysis of AD detected a novel CD4+ T subcluster, CD4+ tissue residency memory cells (TRMs), which were verified through immunohistochemistry (IHC) to be increased in the dermal area of AD. The significant relationship between CD4+ TRM and AD was assessed through further analyses. FOXO1 and SBNO2, two of the 13 hub genes, were characteristically expressed in the CD4+ TRM, but down-regulated in IFN-γ/TNF-α-induced HaCaT cells, as shown using quantitative polymerase chain reaction (qPCR). Moreover, SBNO2 expression was associated with increased Th1 infiltration in AD (p < 0.05). In addition, genes filtered using Mendelian randomization were positively correlated with CD4+ TRM and were highly expressed in IFN-γ/TNF-α-induced HaCaT cells, as determined using qPCR and western blotting. Collectively, our results revealed that the newly identified CD4+ TRM may be involved in the pathogenesis of adult AD.


Subject(s)
CD4-Positive T-Lymphocytes , Dermatitis, Atopic , Single-Cell Analysis , Dermatitis, Atopic/genetics , Dermatitis, Atopic/metabolism , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Humans , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Adult , Memory T Cells/metabolism , Memory T Cells/immunology , Skin/metabolism , HaCaT Cells , Immunologic Memory , Male , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
20.
Int J Mol Sci ; 25(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38791412

ABSTRACT

Eczema (atopic dermatitis, AD) is a skin disease characterized by skin barrier dysfunction due to various factors, including genetics, immune system abnormalities, and environmental triggers. Application of emollients and topical drugs such as corticosteroids and calcineurin inhibitors form the mainstay of treatments for this challenging condition. This review aims to summarize the recent advances made in phytochemical-based topical applications to treat AD and the different carriers that are being used. In this review, the clinical efficacy of several plant extracts and bioactive phytochemical compounds in treating AD are discussed. The anti-atopic effects of the herbs are evident through improvements in the Scoring Atopic Dermatitis (SCORAD) index, reduced epidermal thickness, decreased transepidermal water loss, and alleviated itching and dryness in individuals affected by AD as well as in AD mouse models. Histopathological studies and serum analyses conducted in AD mouse models demonstrated a reduction in key inflammatory factors, including thymic stromal lymphopoietin (TSLP), serum immunoglobulin E (IgE), and interleukins (IL). Additionally, there was an observed upregulation of the filaggrin (FLG) gene, which regulates the proteins constituting the stratum corneum, the outermost layer of the epidermis. Carriers play a crucial role in topical drug applications, influencing dose delivery, retention, and bioavailability. This discussion delves into the efficacy of various nanocarriers, including liposomes, ethosomes, nanoemulsions, micelles, nanocrystals, solid-lipid nanoparticles, and polymeric nanoparticles. Consequently, the potential long-term side effects such as atrophy, eruptions, lymphoma, pain, and allergic reactions that are associated with current topical treatments, including emollients, topical corticosteroids, topical calcineurin inhibitors, and crisaborole, can potentially be mitigated through the use of phytochemical-based natural topical treatments.


Subject(s)
Eczema , Filaggrin Proteins , Phytochemicals , Humans , Animals , Phytochemicals/administration & dosage , Phytochemicals/therapeutic use , Phytochemicals/pharmacology , Eczema/drug therapy , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Administration, Topical , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...