Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.015
Filter
1.
J Clin Invest ; 134(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38950317

ABSTRACT

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Insulin-Secreting Cells , Insulin , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Mice , Humans , Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Insulin/metabolism , Insulin Secretion , Mice, Knockout , Male , Adaptation, Physiological
2.
Cells ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38994965

ABSTRACT

High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.


Subject(s)
Diabetes Mellitus, Type 2 , Lipoproteins, HDL , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Lipoproteins, HDL/metabolism , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Protein Processing, Post-Translational
3.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000309

ABSTRACT

Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Disease Models, Animal , Inflammation , Mannose-Binding Lectin , Animals , Mannose-Binding Lectin/metabolism , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/blood , Mice , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Inflammation/metabolism , Inflammation/pathology , Female , Humans , Kidney/metabolism , Kidney/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology
4.
Front Endocrinol (Lausanne) ; 15: 1386471, 2024.
Article in English | MEDLINE | ID: mdl-38966213

ABSTRACT

Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic ß-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic ß-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, ß-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal ß-cell function. However, excessive or prolonged increased influx of nascent proinsulin into the ER lumen can exceed the ER capacity leading to pancreatic ß-cells ER stress and subsequently to ß-cell dysfunction. In mammalian cells, such as ß-cells, the ER stress response is primarily regulated by three canonical ER-resident transmembrane proteins: ATF6, IRE1, and PERK/PEK. Each of these proteins generates a transcription factor (ATF4, XBP1s, and ATF6, respectively), which in turn activates the transcription of ER stress-inducible genes. An increasing number of evidence suggests that unresolved or dysregulated ER stress signaling pathways play a pivotal role in ß-cell failure leading to insulin secretion defect and diabetes. In this article we first highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on ß-cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic ß-cells to faithfully phenocopy all features of bona fide human ß-cells for diabetes therapy or drug screening.


Subject(s)
Endoplasmic Reticulum Stress , Insulin-Secreting Cells , Unfolded Protein Response , Insulin-Secreting Cells/metabolism , Endoplasmic Reticulum Stress/physiology , Humans , Animals , Unfolded Protein Response/physiology , Diabetes Mellitus/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology
5.
Front Endocrinol (Lausanne) ; 15: 1346094, 2024.
Article in English | MEDLINE | ID: mdl-39022341

ABSTRACT

Background: The revolution of orthopedic implant manufacturing is being driven by 3D printing of titanium implants for large bony defects such as those caused by diabetic Charcot arthropathy. Unlike traditional subtractive manufacturing of orthopedic implants, 3D printing fuses titanium powder layer-by-layer, creating a unique surface roughness that could potentially enhance osseointegration. However, the metabolic impairments caused by diabetes, including negative alterations of bone metabolism, can lead to nonunion and decreased osseointegration with traditionally manufactured orthopedic implants. This study aimed to characterize the response of both healthy and diabetic primary human osteoblasts cultured on a medical-grade 3D-printed titanium surface under high and low glucose conditions. Methods: Bone samples were obtained from six patients, three with Type 2 Diabetes Mellitus and three without. Primary osteoblasts were isolated and cultured on 3D-printed titanium discs in high (4.5 g/L D-glucose) and low glucose (1 g/L D-Glucose) media. Cellular morphology, matrix deposition, and mineralization were assessed using scanning electron microscopy and alizarin red staining. Alkaline phosphatase activity and L-lactate concentration was measured in vitro to assess functional osteoblastic activity and cellular metabolism. Osteogenic gene expression of BGLAP, COL1A1, and BMP7 was analyzed using reverse-transcription quantitative polymerase chain reaction. Results: Diabetic osteoblasts were nonresponsive to variations in glucose levels compared to their healthy counterparts. Alkaline phosphatase activity, L-lactate production, mineral deposition, and osteogenic gene expression remained unchanged in diabetic osteoblasts under both glucose conditions. In contrast, healthy osteoblasts exhibited enhanced functional responsiveness in a high glucose environment and showed a significant increase in osteogenic gene expression of BGLAP, COL1A1, and BMP7 (p<.05). Conclusion: Our findings suggest that diabetic osteoblasts exhibit impaired responsiveness to variations in glucose concentrations, emphasizing potential osteoblast dysfunction in diabetes. This could have implications for post-surgery glucose management strategies in patients with diabetes. Despite the potential benefits of 3D printing for orthopedic implants, particularly for diabetic Charcot collapse, our results call for further research to optimize these interventions for improved patient outcomes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Osteoblasts , Printing, Three-Dimensional , Titanium , Humans , Titanium/pharmacology , Osteoblasts/metabolism , Glucose/metabolism , Glucose/pharmacology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Cells, Cultured , Male , Phenotype , Surface Properties , Female , Middle Aged , Bone Morphogenetic Protein 7/metabolism , Osteogenesis/drug effects , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain/metabolism , Collagen Type I, alpha 1 Chain/genetics , Aged
6.
Front Endocrinol (Lausanne) ; 15: 1375610, 2024.
Article in English | MEDLINE | ID: mdl-38854688

ABSTRACT

Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.


Subject(s)
Diabetes Mellitus, Type 2 , Sarcopenia , Humans , Sarcopenia/pathology , Sarcopenia/etiology , Sarcopenia/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/epidemiology , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/complications , Aging/pathology
7.
PLoS One ; 19(6): e0304870, 2024.
Article in English | MEDLINE | ID: mdl-38900754

ABSTRACT

The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.


Subject(s)
Blood Platelets , Cell-Derived Microparticles , Diabetes Mellitus, Type 2 , MicroRNAs , Neoplasm Invasiveness , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Blood Platelets/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell-Derived Microparticles/metabolism , Cell Line, Tumor , Middle Aged , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
8.
Hum Genomics ; 18(1): 70, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909264

ABSTRACT

INTRODUCTION: We previously identified a genetic subtype (C4) of type 2 diabetes (T2D), benefitting from intensive glycemia treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Here, we characterized the population of patients that met the C4 criteria in the UKBiobank cohort. RESEARCH DESIGN AND METHODS: Using our polygenic score (PS), we identified C4 individuals in the UKBiobank and tested C4 status with risk of developing T2D, cardiovascular disease (CVD) outcomes, and differences in T2D medications. RESULTS: C4 individuals were less likely to develop T2D, were slightly older at T2D diagnosis, had lower HbA1c values, and were less likely to be prescribed T2D medications (P < .05). Genetic variants in MAS1 and IGF2R, major components of the C4 PS, were associated with fewer overall T2D prescriptions. CONCLUSION: We have confirmed C4 individuals are a lower risk subpopulation of patients with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Multifactorial Inheritance , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , United Kingdom/epidemiology , Multifactorial Inheritance/genetics , Aged , Phenotype , Cardiovascular Diseases/genetics , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Genetic Predisposition to Disease , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/genetics , Biological Specimen Banks , Polymorphism, Single Nucleotide/genetics
9.
Front Endocrinol (Lausanne) ; 15: 1414447, 2024.
Article in English | MEDLINE | ID: mdl-38915897

ABSTRACT

Type 2 diabetes (T2D) is a polygenic metabolic disorder characterized by insulin resistance in peripheral tissues and impaired insulin secretion by the pancreas. While the decline in insulin production and secretion was previously attributed to apoptosis of insulin-producing ß-cells, recent studies indicate that ß-cell apoptosis rates are relatively low in diabetes. Instead, ß-cells primarily undergo dedifferentiation, a process where they lose their specialized identity and transition into non-functional endocrine progenitor-like cells, ultimately leading to ß-cell failure. The underlying mechanisms driving ß-cell dedifferentiation remain elusive due to the intricate interplay of genetic factors and cellular stress. Understanding these mechanisms holds the potential to inform innovative therapeutic approaches aimed at reversing ß-cell dedifferentiation in T2D. This review explores the proposed drivers of ß-cell dedifferentiation leading to ß-cell failure, and discusses current interventions capable of reversing this process, thus restoring ß-cell identity and function.


Subject(s)
Cell Dedifferentiation , Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin-Secreting Cells/cytology , Cell Dedifferentiation/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Animals , Cell Differentiation/physiology , Apoptosis/physiology , Insulin Secretion/physiology
10.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928386

ABSTRACT

Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.


Subject(s)
Diabetes Mellitus, Type 2 , Energy Metabolism , Mitochondria , Obesity , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Humans , Obesity/metabolism , Obesity/pathology , Mitochondria/metabolism , Animals , Adipocytes/metabolism , Adipose Tissue/metabolism , Oxidative Stress , Thermogenesis
11.
Biochem Biophys Res Commun ; 725: 150254, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38901223

ABSTRACT

Decreased pancreatic ß-cell volume is a serious problem in patients with type 2 diabetes mellitus, and there is a need to establish appropriate treatments. Increasingly, sodium/glucose cotransporter 2 (SGLT2) inhibitors, which have a protective effect on pancreatic ß-cells, are being prescribed to treat diabetes; however, the underlying mechanism is not well understood. We previously administered SGLT2 inhibitor dapagliflozin to a mouse model of type 2 diabetes and found significant changes in gene expression in the early-treated group, which led us to hypothesize that epigenetic regulation was a possible mechanism of these changes. Therefore, we performed comprehensive DNA methylation analysis by methylated DNA immunoprecipitation using isolated pancreatic islets after dapagliflozin administration to diabetic model mice. As a result, we identified 31 genes with changes in expression due to DNA methylation changes. Upon immunostaining, cystic fibrosis transmembrane conductance regulator and cadherin 24 were found to be upregulated in islets in the dapagliflozin-treated group. These molecules may contribute to the maintenance of islet morphology and insulin secretory capacity, suggesting that SGLT2 inhibitors' protective effect on pancreatic ß-cells is accompanied by DNA methylation changes, and that the effect is long-term and not temporary. In future diabetes care, SGLT2 inhibitors may be expected to have positive therapeutic effects, including pancreatic ß-cell protection.


Subject(s)
Benzhydryl Compounds , DNA Methylation , Diabetes Mellitus, Type 2 , Glucosides , Islets of Langerhans , Sodium-Glucose Transporter 2 Inhibitors , Animals , Benzhydryl Compounds/pharmacology , Benzhydryl Compounds/therapeutic use , DNA Methylation/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Mice , Islets of Langerhans/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/pathology , Male , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Epigenesis, Genetic/drug effects , Gene Expression Regulation/drug effects , Cadherins/metabolism , Cadherins/genetics
12.
Diabetes Metab ; 50(4): 101547, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852840

ABSTRACT

AIMS: Podocyte injury plays an essential role in the progression of diabetic nephropathy (DN). The associations between the ultrastructural changes of podocyte with proteinuria and the pathological classification of DN proposed by Renal Pathology Society (RPS) have not been clarified in patients with type 2 diabetic nephropathy (T2DN). METHODS: We collected 110 patients with kidney biopsy-confirmed T2DN at Peking University First Hospital from 2017 to 2022. The morphometric analysis on the podocyte foot process width (FPW) and podocyte detachment (PD) as markers of podocyte injury was performed, and the correlations between the ultrastructural changes of podocytes with severity of proteinuria and the RPS pathological classification of DN were analyzed. RESULTS: Mean FPW was significantly broader in the group of T2DN patients with nephrotic proteinuria (565.1 nm) than those with microalbuminuria (437.4 nm) or overt proteinuria (494.6 nm). The cut-off value of FPW (> 506 nm) could differentiate nephrotic proteinuria from non-nephrotic proteinuria with a sensitivity of 75.3% and a specificity of 75.8%. Percentage of PD was significantly higher in group of nephrotic proteinuria (3.2%) than that in microalbuminuria (0%) or overt proteinuria (0.2%). FPW and PD significantly correlated with proteinuria in T2DN (r = 0.473, p < 0.001 and r = 0.656, P < 0.001). FPW and PD correlated with RPS pathological classification of T2DN (r = 0.179, P = 0.014 and r = 0.250, P = 0.001). FPW value was increased significantly with more severe DN classification (P for trend =0.007). The percentage of PD tended to increase with more severe DN classification (P for trend = 0.017). CONCLUSIONS: Podocyte injury, characterized by FPW broadening and PD, was associated with the severity of proteinuria and the pathological classification of DN.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Podocytes , Proteinuria , Humans , Podocytes/pathology , Podocytes/ultrastructure , Diabetic Nephropathies/pathology , Diabetic Nephropathies/classification , Proteinuria/pathology , Male , Female , Middle Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Aged , Adult
13.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892122

ABSTRACT

Pancreatic islet isolation is critical for type 2 diabetes research. Although -omics approaches have shed light on islet molecular profiles, inconsistencies persist; on the other hand, functional studies are essential, but they require reliable and standardized isolation methods. Here, we propose a simplified protocol applied to very small-sized samples collected from partially pancreatectomized living donors. Islet isolation was performed by digesting tissue specimens collected during surgery within a collagenase P solution, followed by a Lympholyte density gradient separation; finally, functional assays and staining with dithizone were carried out. Isolated pancreatic islets exhibited functional responses to glucose and arginine stimulation mirroring donors' metabolic profiles, with insulin secretion significantly decreasing in diabetic islets compared to non-diabetic islets; conversely, proinsulin secretion showed an increasing trend from non-diabetic to diabetic islets. This novel islet isolation method from living patients undergoing partial pancreatectomy offers a valuable opportunity for targeted study of islet physiology, with the primary advantage of being time-effective and successfully preserving islet viability and functionality. It enables the generation of islet preparations that closely reflect donors' clinical profiles, simplifying the isolation process and eliminating the need for a Ricordi chamber. Thus, this method holds promises for advancing our understanding of diabetes and for new personalized pharmacological approaches.


Subject(s)
Cell Separation , Islets of Langerhans , Humans , Islets of Langerhans/metabolism , Islets of Langerhans/cytology , Cell Separation/methods , Living Donors , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Male , Female , Middle Aged , Adult , Insulin/metabolism , Glucose/metabolism , Insulin Secretion
14.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892134

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a risk factor for male infertility, but the underlying molecular mechanisms remain unclear. Advanced glycation end products (AGEs) are pathogenic molecules for diabetic vascular complications. Here, we investigated the effects of the DNA aptamer raised against AGEs (AGE-Apt) on testicular and sperm abnormalities in a T2DM mouse model. KK-Ay (DM) and wild-type (non-DM) 4- and 7-week-old male mice were sacrificed to collect the testes and spermatozoa for immunofluorescence, RT-PCR, and histological analyses. DM and non-DM 7-week-old mice were subcutaneously infused with the AGE-Apt or control-aptamer for 6 weeks and were then sacrificed. Plasma glucose, testicular AGEs, and Rage gene expression in 4-week-old DM mice and plasma glucose, testicular AGEs, oxidative stress, and pro-inflammatory gene expressions in 7-week-old DM mice were higher than those in age-matched non-DM mice, the latter of which was associated with seminiferous tubular dilation. AGE-Apt did not affect glycemic parameters, but it inhibited seminiferous tubular dilation, reduced the number of testicular macrophages and apoptotic cells, and restored the decrease in sperm concentration, motility, and viability of 13-week-old DM mice. Our findings suggest that AGEs-Apt may improve sperm abnormality by suppressing AGE-RAGE-induced oxidative stress and inflammation in the testes of DM mice.


Subject(s)
Aptamers, Nucleotide , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Glycation End Products, Advanced , Inflammation , Oxidative Stress , Receptor for Advanced Glycation End Products , Sperm Motility , Testis , Animals , Male , Oxidative Stress/drug effects , Glycation End Products, Advanced/metabolism , Mice , Aptamers, Nucleotide/pharmacology , Testis/metabolism , Testis/drug effects , Testis/pathology , Receptor for Advanced Glycation End Products/metabolism , Diabetes Mellitus, Experimental/metabolism , Sperm Motility/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Inflammation/metabolism , Inflammation/pathology , Spermatozoa/metabolism , Spermatozoa/drug effects , Sperm Count
15.
Diabetes Metab Res Rev ; 40(5): e3829, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850100

ABSTRACT

AIMS: Pancreatic polypeptide (PP) is elevated in people with vascular risk factors such as type 2 diabetes or increased visceral fat. We investigated potential relationships between PP and microvascular and macrovascular complications of diabetes. MATERIALS AND METHODS: Animal study: Subcutaneous PP infusion for 4 weeks in high fat diet mouse model. Retinal mRNA submitted for Ingenuity Pathway Analysis. Human study: fasting PP measured in 1478 participants and vascular complications recorded over median 5.5 (IQR 4.9-5.8) years follow-up. RESULTS: Animal study: The retinal transcriptional response to PP was indicative of cellular stress and damage, and this footprint matched responses described in previously published studies of retinal disease. Of mechanistic importance the transcriptional landscape was consistent with upregulation of folliculin, a recently identified susceptibility gene for diabetic retinopathy. Human study: Adjusting for established risk factors, PP was associated with prevalent and incident clinically significant retinopathy (odds ratio (OR) 1.289 (1.107-1.501) p = 0.001; hazard ratio (HR) 1.259 (1.035-1.531) p = 0.0213), albuminuria (OR 1.277 (1.124-1.454), p = 0.0002; HR 1.608 (1.208-2.141) p = 0.0011), and macrovascular disease (OR 1.021 (1.006-1.037) p = 0.0068; HR 1.324 (1.089-1.61), p = 0.0049), in individuals with type 2 diabetes, and progression to diabetes in non-diabetic individuals (HR 1.402 (1.081-1.818), p = 0.0109). CONCLUSIONS: Elevated fasting PP is independently associated with vascular complications of diabetes and affects retinal pathways potentially influencing retinal neuronal survival. Our results suggest possible new roles for PP-fold peptides in the pathophysiology of diabetes complications and vascular risk stratification.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Angiopathies , Diabetic Retinopathy , Fasting , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Humans , Male , Female , Middle Aged , Diabetic Angiopathies/etiology , Diabetic Angiopathies/epidemiology , Animals , Mice , Follow-Up Studies , Diabetic Retinopathy/etiology , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/pathology , Prognosis , Incidence , Biomarkers/analysis , Risk Factors , Aged
16.
ACS Nano ; 18(24): 15452-15467, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830624

ABSTRACT

Type 2 diabetes (T2D), a prevalent metabolic disorder lacking effective treatments, is associated with lysosomal acidification dysfunction, as well as autophagic and mitochondrial impairments. Here, we report a series of biodegradable poly(butylene tetrafluorosuccinate-co-succinate) polyesters, comprising a 1,4-butanediol linker and varying ratios of tetrafluorosuccinic acid (TFSA) and succinic acid as components, to engineer lysosome-acidifying nanoparticles (NPs). The synthesized NPs are spherical with diameters of ≈100 nm and have low polydispersity and good stability. Notably, TFSA NPs, which are composed entirely of TFSA, exhibit the strongest degradation capability and superior acidifying properties. We further reveal significant downregulation of lysosomal vacuolar (H+)-ATPase subunits, which are responsible for maintaining lysosomal acidification, in human T2D pancreatic islets, INS-1 ß-cells under chronic lipotoxic conditions, and pancreatic tissues of high-fat-diet (HFD) mice. Treatment with TFSA NPs restores lysosomal acidification, autophagic function, and mitochondrial activity, thereby improving the pancreatic function in INS-1 cells and HFD mice with lipid overload. Importantly, the administration of TFSA NPs to HFD mice reduces insulin resistance and improves glucose clearance. These findings highlight the therapeutic potential of lysosome-acidifying TFSA NPs for T2D.


Subject(s)
Insulin-Secreting Cells , Lysosomes , Nanoparticles , Lysosomes/metabolism , Lysosomes/drug effects , Animals , Nanoparticles/chemistry , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Mice , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Male , Diet, High-Fat , Mice, Inbred C57BL , Hydrogen-Ion Concentration
17.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928163

ABSTRACT

Obesity is a risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Adipose tissue (AT) extracellular vesicles (EVs) could play a role in obesity and T2DM associated CVD progression via the influence of their specific cargo on gene expression in recipient cells. The aim of this work was to evaluate the effects of AT EVs of patients with obesity with/without T2DM on reverse cholesterol transport (RCT)-related gene expression in human monocyte-derived macrophages (MDMs) from healthy donors. AT EVs were obtained after ex vivo cultivation of visceral and subcutaneous AT (VAT and SAT, respectively). ABCA1, ABCG1, PPARG, LXRß (NR1H2), and LXRα (NR1H3) mRNA levels in MDMs as well as in origine AT were determined by a real-time PCR. T2DM VAT and SAT EVs induced ABCG1 gene expression whereas LXRα and PPARG mRNA levels were simultaneously downregulated. PPARG mRNA levels also decreased in the presence of VAT EVs of obese patients without T2DM. In contrast ABCA1 and LXRß mRNA levels tended to increase with the addition of obese AT EVs. Thus, AT EVs can influence RCT gene expression in MDMs during obesity, and the effects are dependent on T2DM status.


Subject(s)
ATP Binding Cassette Transporter 1 , ATP Binding Cassette Transporter, Subfamily G, Member 1 , Adipose Tissue , Cholesterol , Diabetes Mellitus, Type 2 , Extracellular Vesicles , Liver X Receptors , Macrophages , Obesity , PPAR gamma , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Obesity/metabolism , Obesity/genetics , Liver X Receptors/metabolism , Liver X Receptors/genetics , Macrophages/metabolism , Cholesterol/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , Adipose Tissue/metabolism , PPAR gamma/metabolism , PPAR gamma/genetics , Female , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Male , Middle Aged , Biological Transport , Gene Expression Regulation , Adult , RNA, Messenger/metabolism , RNA, Messenger/genetics
18.
Int J Biochem Cell Biol ; 173: 106613, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909746

ABSTRACT

Vascular calcification in diabetes patients is a major independent risk factor for developing diabetic cardiovascular complications. However, the mechanisms by which diabetes leads to vascular calcification are complex and not yet fully understood. Our previous study revealed that miR-32-5p is a potential new diagnostic marker for coronary artery calcification. In this study, we found that miR-32-5p levels were significantly greater in the plasma of type 2 diabetes patients with coronary artery calcification and were positively correlated with the coronary artery calcification score. In type 2 diabetic mice, miR-32-5p levels were also elevated in the aorta, and knockout of miR-32-5p inhibited the osteogenic differentiation of vascular smooth muscle cells in vivo. Furthermore, overexpression of miR-32-5p promoted vascular smooth muscle cell calcification, while antagonism of miR-32-5p inhibited vascular smooth muscle cell calcification under high-glucose conditions. GATA binding protein 6 (GATA6) was identified as the key target gene through which miR-32-5p promotes vascular smooth muscle cell calcification. Overexpression of GATA6 antagonized the effects of miR-32-5p on vascular calcification. Additionally, high glucose levels were shown to induce the upregulation of miR-32-5p by activating CCAAT/enhancer binding protein beta (CEBPB). These results suggest that miR-32-5p is an important procalcification factor in vascular calcification associated with type 2 diabetes and identify the CEBPB/miR-32-5p/GATA6 axis as a potential biomarker and therapeutic target for preventing and treating vascular calcification in type 2 diabetes.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Diabetes Mellitus, Type 2 , GATA6 Transcription Factor , MicroRNAs , Vascular Calcification , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Vascular Calcification/metabolism , Vascular Calcification/pathology , Vascular Calcification/genetics , Animals , Humans , Mice , Male , GATA6 Transcription Factor/metabolism , GATA6 Transcription Factor/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice, Inbred C57BL , Middle Aged , Female , Mice, Knockout
19.
Diabetes Res Clin Pract ; 213: 111731, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851538

ABSTRACT

AIMS: To investigate alterations in cerebrum and cerebellum in prediabetes. Cerebellar injury in diabetes is traceable, but it has not been systematically studied, and whether cerebellar injury occurs and the degree of damage in prediabetes are not known. METHODS: The current study investigated cerebral and cerebellar gray matter volume, white matter volume, white matter microstructure and white matter hyperintensity on T1-weighted, T2-weighted fluid-attenuated inversion recovery and diffusion tensor imaging scans in 78 individuals with normal glucose metabolism, 92 with prediabetes, and 108 with type 2 diabetes. RESULTS: Participants with prediabetes showed significant gray matter and white matter atrophy, microstructural damage in the cerebellar and cerebral regions. Additionally, widespread structural alterations were observed in the diabetic stage. The function of the damaged brain area was further decoded in Neurosynth, and the damaged cerebellar area with prediabetic lesions was closely related to motor function, while the area affected by diabetes was related to complex cognitive function in addition to motor function. CONCLUSIONS: Cerebellar injury had already appeared in the prediabetic stage, and cerebellar injury was aggravated in the diabetic stage; therefore, the cerebellum is a key area that is damaged early in the development of diabetes.


Subject(s)
Cerebellum , Diabetes Mellitus, Type 2 , Gray Matter , Prediabetic State , White Matter , Humans , Prediabetic State/pathology , White Matter/diagnostic imaging , White Matter/pathology , Male , Gray Matter/diagnostic imaging , Gray Matter/pathology , Cerebellum/pathology , Cerebellum/diagnostic imaging , Aged , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Middle Aged , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Atrophy/pathology
20.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731945

ABSTRACT

The main hallmark in the development of both type 1 and type 2 diabetes is a decline in functional ß-cell mass. This decline is predominantly attributed to ß-cell death, although recent findings suggest that the loss of ß-cell identity may also contribute to ß-cell dysfunction. This phenomenon is characterized by a reduced expression of key markers associated with ß-cell identity. This review delves into the insights gained from single-cell omics research specifically focused on ß-cell identity. It highlights how single-cell omics based studies have uncovered an unexpected level of heterogeneity among ß-cells and have facilitated the identification of distinct ß-cell subpopulations through the discovery of cell surface markers, transcriptional regulators, the upregulation of stress-related genes, and alterations in chromatin activity. Furthermore, specific subsets of ß-cells have been identified in diabetes, such as displaying an immature, dedifferentiated gene signature, expressing significantly lower insulin mRNA levels, and expressing increased ß-cell precursor markers. Additionally, single-cell omics has increased insight into the detrimental effects of diabetes-associated conditions, including endoplasmic reticulum stress, oxidative stress, and inflammation, on ß-cell identity. Lastly, this review outlines the factors that may influence the identification of ß-cell subpopulations when designing and performing a single-cell omics experiment.


Subject(s)
Insulin-Secreting Cells , Single-Cell Analysis , Insulin-Secreting Cells/metabolism , Humans , Single-Cell Analysis/methods , Animals , Genomics/methods , Endoplasmic Reticulum Stress/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology
SELECTION OF CITATIONS
SEARCH DETAIL