Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.392
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928135

ABSTRACT

The exact mechanism by which diabetic neuropathy develops is still not fully known, despite our advances in medical knowledge. Progressing neuropathy may occur with a persistently favorable metabolic status in some patients with diabetes mellitus, while, in others, though seldom, a persistently unfavorable metabolic status is not associated with significant neuropathy. This might be significantly due to genetic differences. While recent years have brought compelling progress in the understanding of the pathogenetic background-in particular, accelerated progress is being made in understanding molecular biological mechanisms-some aspects are still not fully understood. A comparatively small amount of information is accessible on this matter; therefore, by summarizing the available data, in this review, we aim to provide a clearer picture of the current state of knowledge, identify gaps in the previous studies, and possibly suggest directions for future studies. This could help in developing more personalized approaches to the prevention and treatment of diabetic neuropathy, while also taking into account individual genetic profiles.


Subject(s)
Diabetic Neuropathies , Genetic Predisposition to Disease , Genetic Variation , Humans , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Animals
2.
Sci Rep ; 14(1): 14361, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906977

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes mellitus (T2DM) that causes peripheral and autonomic nervous system dysfunction. Dysregulation of miRNAs plays a crucial role in DPN development. However, the role of miR-503-5p in DPN remains unknown. Herein, T2DM mice (db/db) were used as a DPN model in vivo, and astrocytes isolated from db/db mice were induced with high glucose levels as a DPN model in vitro. MiR-503-5p expression was analyzed using qRT-PCR. GFAP, MCP-1, and SEPT9 protein levels were analyzed using western blotting and immunofluorescence. Luciferase assays were performed to investigate the interaction between miR-503-5p and SEPT9. We found that miR-503-5p expression decreased in the spinal cord of DPN model mice and astrocytes treated with high glucose (HG). The db/db mice displayed higher body weight and blood glucose, lower mechanical withdrawal threshold and thermal withdrawal latency, and higher GFAP and MCP-1 protein levels than db/m mice. However, tail vein injection of agomiR-503-5p remarkably reversed these parameters, whereas antigomiR-503-5p enhanced them. HG markedly facilitated GFAP and MCP-1 protein expression in astrocytes, whereas miR-503-5p mimic or inhibitor transfection markedly blocked or elevated GFAP and MCP-1 protein expression, respectively, in astrocytes with HG. SEPT9 was a target of miR-503-5p. In addition, SEPT9 protein levels were found to be elevated in db/db mice and astrocytes treated with HG. Treatment with agomiR-503-5p and miR-503-5p mimic was able to reduce SEPT9 protein levels, whereas treatment with antigomiR-503-5p and miR-503-5p inhibitor led to inhibition of the protein. Furthermore, SEPT9 overexpression suppressed the depressing effect of miR-503-5p overexpression in astrocytes subjected to HG doses. In conclusion, miR-503-5p was found to alleviate peripheral neuropathy-induced neuropathic pain in T2DM mice by regulating SEPT9 expression.


Subject(s)
Astrocytes , Diabetes Mellitus, Type 2 , Diabetic Neuropathies , MicroRNAs , Septins , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Astrocytes/metabolism , Mice , Septins/genetics , Septins/metabolism , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/genetics , Diabetic Neuropathies/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Male , Neuralgia/metabolism , Neuralgia/genetics , Neuralgia/etiology , Disease Models, Animal
3.
Sci Rep ; 14(1): 13435, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862650

ABSTRACT

Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment. At 12 weeks, PPARα expression markedly restored after topical and oral fenofibrate. Topical fenofibrate significantly improved corneal nerve fibre density (CNFD) and tortuosity coefficient. Likewise, oral fenofibrate significantly improved CNFD. Both topical and oral forms significantly improved corneal sensitivity. Additionally, topical and oral fenofibrate significantly alleviated diabetic keratopathy, with fenofibrate eye drops demonstrating earlier therapeutic effects. Both topical and oral fenofibrate significantly increased corneal ß-III tubulin expression. Topical fenofibrate reduced neuroinflammation by significantly increasing the levels of nerve growth factor and substance P. It also significantly increased ß-III-tubulin and reduced CDC42 mRNA expression in trigeminal ganglions. Proteomic analysis showed that neurotrophin signalling and anti-inflammation reactions were significantly up-regulated after fenofibrate treatment, whether applied topically or orally. This study concluded that both topical and oral fenofibrate ameliorate DCN, while topical fenofibrate significantly reduces neuroinflammation.


Subject(s)
Cornea , Diabetes Mellitus, Experimental , Diabetic Neuropathies , Fenofibrate , PPAR alpha , Animals , PPAR alpha/agonists , PPAR alpha/metabolism , Mice , Fenofibrate/pharmacology , Fenofibrate/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Cornea/metabolism , Cornea/drug effects , Cornea/innervation , Cornea/pathology , Male , Administration, Oral , Administration, Topical , Corneal Diseases/drug therapy , Corneal Diseases/etiology , Corneal Diseases/metabolism , Corneal Diseases/pathology , Mice, Inbred C57BL , Proteomics/methods
4.
Biochem Biophys Res Commun ; 724: 150217, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865809

ABSTRACT

Neuropathy is a disturbance of function or a pathological change in nerves causing poor health and quality of life. A proportion of chronic pain patients in the community suffer persistent neuropathic pain symptoms because current drug therapies may be suboptimal so there is a need for new therapeutic modalities. This study investigated the neuroprotective flavonoid, 6-methoxyflavone (6MF), as a potential therapeutic agent and gabapentin as the standard comparator, against neuropathic models. Thus, neuropathic-like states were induced in Sprague-Dawley rats using sciatic nerve chronic constriction injury (CCI) mononeuropathy and systemic administration of streptozotocin (STZ) to induce polyneuropathy. Subsequent behaviors reflecting allodynia, hyperalgesia, and vulvodynia were assessed and any possible motoric side-effects were evaluated including locomotor activity, as well as rotarod discoordination and gait disruption. 6MF (25-75 mg/kg) antagonized neuropathic-like nociceptive behaviors including static- (pressure) and dynamic- (light brushing) hindpaw allodynia plus heat/cold and pressure hyperalgesia in the CCI and STZ models. 6MF also reduced static and dynamic components of vulvodynia in the STZ induced polyneuropathy model. Additionally, 6MF reversed CCI and STZ suppression of locomotor activity and rotarod discoordination, suggesting a beneficial activity on motor side effects, in contrast to gabapentin. Hence, 6MF possesses anti-neuropathic-like activity not only against different nociceptive modalities but also impairment of motoric side effects.


Subject(s)
Flavones , Hyperalgesia , Neuralgia , Rats, Sprague-Dawley , Animals , Rats , Neuralgia/drug therapy , Neuralgia/etiology , Flavones/pharmacology , Flavones/therapeutic use , Hyperalgesia/drug therapy , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Gabapentin/pharmacology , Gabapentin/therapeutic use , Nociception/drug effects , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Female , gamma-Aminobutyric Acid/metabolism , Amines/pharmacology , Amines/therapeutic use , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Vulvodynia/drug therapy , Constriction , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use
5.
Neuroreport ; 35(11): 692-701, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38874969

ABSTRACT

OBJECTIVE: Diabetic neuropathic pain (DNP) is one of the most prevalent symptoms of diabetes. The alteration of proteins in the spinal cord dorsal horn (SCDH) plays a significant role in the genesis and the development of DNP. Our previous study has shown electroacupuncture could effectively relieve DNP. However, the potential mechanism inducing DNP's genesis and development remains unclear and needs further research. METHODS: This study established DNP model rats by intraperitoneally injecting a single high-dose streptozotocin; 2 Hz electroacupuncture was used to stimulate Zusanli (ST36) and Kunlun (BL60) of DNP rats daily from day 15 to day 21 after streptozotocin injection. Behavioral assay, quantitative PCR, immunofluorescence staining, and western blotting were used to study the analgesic mechanism of electroacupuncture. RESULTS: The bradykinin B1 receptor (B1R) mRNA, nuclear factor-κB p65 (p65), substance P, and calcitonin gene-related peptide (CGRP) protein expression were significantly enhanced in SCDH of DNP rats. The paw withdrawal threshold was increased while body weight and fasting blood glucose did not change in DNP rats after the electroacupuncture treatment. The expression of B1R, p65, substance P, and CGRP in SCDH of DNP rats was also inhibited after the electroacupuncture treatment. CONCLUSION: This work suggests that the potential mechanisms inducing the allodynia of DNP rats were possibly related to the increased expression of B1R, p65, substance P, and CGRP in SCDH. Downregulating B1R, p65, substance P, and CGRP expression levels in SCDH may achieve the analgesic effect of 2 Hz electroacupuncture treatment.


Subject(s)
Diabetes Mellitus, Experimental , Down-Regulation , Electroacupuncture , Hyperalgesia , Rats, Sprague-Dawley , Receptor, Bradykinin B1 , Spinal Cord Dorsal Horn , Animals , Electroacupuncture/methods , Male , Spinal Cord Dorsal Horn/metabolism , Hyperalgesia/therapy , Hyperalgesia/metabolism , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Receptor, Bradykinin B1/metabolism , Receptor, Bradykinin B1/genetics , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/therapy , Rats , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/genetics , Substance P/metabolism
6.
Tissue Cell ; 88: 102420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795506

ABSTRACT

Peripheral and central neuropathies frequently complicate worldwide diabetes. Compared to peripheral neuropathy, central neuropathy didn`t gain a major research interest. Angiotensin II is reported to be involved in diabetic neuropathic pain but its role in the central pathological changes in the spinal cord is not clear. Here, we study the role of Losartan; an Angiotensin II receptor 1 (AT1) antagonist in suppression of the diabetes-induced changes in the spinal cord. Three groups of rats were applied; a negative control group, a streptozotocin (STZ) diabetic group, and a group receiving STZ and Losartan. After two months, the pathological alteration in the spinal cord was investigated, and an immunohistochemical study was performed for neuronal, astrocytic, and microglial markers; nuclear protein (NeuN), Glial fibrillary acidic protein (GFAP), and Ionized calcium-binding adaptor molecule 1 (Iba1), respectively, and for an apoptosis marker; caspase-3, and the inflammatory marker; nuclear factor kappa B (NF-kB) signaling, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2); physiological antioxidant system. The results showed that Losartan caused recovery of spinal cord changes, by inhibiting the microglial and astrocytic activation, suppressing neuronal apoptosis and NF-kB expression with activation of Nrf2/HO-1 (P<0.0005). It is suggested, herein, that Losartan can suppress diabetes-induced glial activation, inflammation, neuronal apoptosis, and oxidative stress in the spinal cord; the mechanisms that may underlie the role of AT1 antagonism in suppressing diabetic neuropathic pain.


Subject(s)
Angiotensin II Type 1 Receptor Blockers , Diabetes Mellitus, Experimental , Losartan , NF-E2-Related Factor 2 , Spinal Cord , Animals , Spinal Cord/pathology , Spinal Cord/metabolism , Spinal Cord/drug effects , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , NF-E2-Related Factor 2/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Rats , Male , Losartan/pharmacology , Heme Oxygenase-1/metabolism , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/drug therapy , Signal Transduction/drug effects , Rats, Wistar , Apoptosis/drug effects , NF-kappa B/metabolism , Oxidative Stress/drug effects
7.
Discov Med ; 36(184): 992-1001, 2024 May.
Article in English | MEDLINE | ID: mdl-38798258

ABSTRACT

BACKGROUND: Diabetic neuropathic pain (DNP) is a complication of diabetes mellitus (DM). Hyperbaric lidocaine (HL), a local anesthetics drug, has neurotoxicity. The present study aims to study the effect and molecular mechanisms of HL on spinal nerve injury in DNP. METHODS: The DNP rat model was established through a high-fat-glucose diet in combination with Streptozotocin (STZ) administration. SB203580 and PD98059 were utilized to inhibit p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK). The mechanical paw withdrawal threshold (PWT) and the thermal paw withdrawal latency (PWL) were tested to evaluate rats' mechanical allodynia and thermal hyperalgesia. Hematoxylin-eosin (H&E) and terminal deoxynucleotidyltransferase-mediated dUTP nick-end Labeling (TUNEL) staining were performed to evaluate the pathological changes and neuron apoptosis in spinal cord tissues of L4-5. Western blotting analysis and reverse transcription-polymerase chain reaction (RT-qPCR) assay were used to measure the levels of proteins and mRNAs, respectively. RESULTS: PWT and PWL were decreased in DNP rats with serious spinal nerve injury. HL administration downregulated the PWT and PWL and aggravated spinal nerve injury in DNP rats, but isobaric lidocaine had no effects on these changes. Meanwhile, p38 MAPK/ERK signaling and PTEN-induced kinase 1 (PINK1)-mediated mitophagy were activated in DNP, which was enhanced by HL but not isobaric lidocaine. Blocking p38 MAPK/ERK signaling could effectively attenuate HL-induced spinal nerve injury and inhibit mitophagy. CONCLUSION: In summary, HL can aggravate spinal cord tissue damage in DNP rats by inducing PINK1-mediated mitophagy via activating p38 MAPK/ERK signaling. Our data provide a novel insight that supports the potential role of p38 MAPK/ERK signaling in acting as a therapeutic target for HL-induced neurotoxicity.


Subject(s)
Diabetic Neuropathies , Lidocaine , Mitophagy , Protein Kinases , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases , p38 Mitogen-Activated Protein Kinases , Animals , Lidocaine/pharmacology , Rats , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/etiology , p38 Mitogen-Activated Protein Kinases/metabolism , Mitophagy/drug effects , Male , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects
8.
Brain Nerve ; 76(5): 671-680, 2024 May.
Article in Japanese | MEDLINE | ID: mdl-38741511

ABSTRACT

Diabetes stands as the predominant cause of peripheral neuropathy, and diabetic neuropathy (DN) is an early-onset and most frequent complication of diabetes. Distal symmetric polyneuropathy is the major form of DN; however, various patterns of nerve injury can manifest. Growing evidence suggests that hyperglycemia-related metabolic disorders in neurons, Schwann cells, and vascular endothelial cells play a major role in the development and progression of DN; however, its pathogenesis and development of disease-modifying therapies warrant further investigation. Herein, recent studies regarding the possible pathogenic factors of DN (polyol and other collateral glycolysis pathways, glycation, oxidative stress, Rho/Rho kinase signaling pathways, etc.) and therapeutic strategies targeting these factors are introduced.


Subject(s)
Diabetic Neuropathies , Oxidative Stress , Humans , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/etiology , Animals , Signal Transduction
9.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 119-126, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814227

ABSTRACT

This study aimed to explore the effective substances and mechanism network of Huangqi Guizhi Wuwu Decoction in treating diabetes peripheral neuropathy. Based on the TCM systemic pharmacological analysis platform (TCMP) and UniProt database, the database of active Huqarqu Decoction was constructed, and the related targets of diabetic peripheral neuropathy were collected through the OMIM, CTD, DisGeNET, TTD and GeneCards databases. The intersection targets were obtained to construct the network diagram of Huangqi dis Guizhi Wuwu Decoction-Active Through the String database, the interaction between target proteins was analyzed, and molecular docking between active components and potential targets was carried out. Combined with the DAVID v6.8 database, GO function analysis and KEGG pathway analysis were performed on the targets. Guizhi Wuwu Decoction mainly acts on core targets such as IL6, MAPK3, VE GFA, JUN and ESR1 through quercetin, kaempferol and naringin and regulates the TNF signaling pathway, estrogen signaling pathway and MAPK signaling pathway, thus achieving the effect of treating diabetes peripheral neuropathy. Huangqi Guizhi Wu has multiple targets and regulates multiple signaling pathways in neuropathy, which lays a foundation for future pharmacological research.


Subject(s)
Diabetic Neuropathies , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Humans , Protein Interaction Maps/drug effects , Signal Transduction/drug effects
10.
J Diabetes Complications ; 38(6): 108737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642448

ABSTRACT

PURPOSE: Diabetic neuropathy (DN) is a notable complication of diabetes mellitus. The potential involvement of miR-146a in DN regulation is presently under investigation. Metformin, a commonly prescribed medication for diabetes, is the primary therapeutic intervention. This study aimed to unveil the potential protective effects of metformin on diabetic neuropathy and explore the mechanisms underlying its action. METHOD: Six-weeks male Sprague Dawley rats (n = 40) were randomly divided into 5 groups. The rat model of diabetic neuropathy (DN) was established by administering streptozotocin (STZ). To investigate the effects on the sciatic nerve and resident Schwann cells (RSCs), metformin and miR-146a mimics were administered, and our research explored the potential underlying mechanism. RESULT: The sciatic nerve samples obtained from diabetic rats exhibited noticeable morphological damage, accompanied by decreased miR-146a expression (2.61 ± 0.11 vs 5.0 ± 0.3, p < 0.01) and increased inflammation levels (p65: 1.89 ± 0.04 vs 0.82 ± 0.05, p < 0.01; TNF-α: 0.93 ± 0.03 vs 0.33 ± 0.03, p < 0.01). Notably, the administration of metformin effectively ameliorated the structural alterations in the sciatic nerve by suppressing the inflammatory pathway (p65: 1.15 ± 0.05 vs 1.89 ± 0.04, p < 0.01; TNF-α: 0.67 ± 0.04 vs 0.93 ± 0.03, p < 0.01) and reducing oxidative stress (NO: 0.062 ± 0.004 vs 0.154 ± 0.004umol/mg, p < 0.01; SOD: 3.08 ± 0.09 vs 2.46 ± 0.09 U/mg, p < 0.01). The miR-146a mimics intervention group exhibited comparable findings. CONCLUSION: This study's findings implied that metformin can potentially mitigate diabetic neuropathy in rats through the modulation of miR-146a expression.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Metformin , MicroRNAs , Oxidative Stress , Rats, Sprague-Dawley , Up-Regulation , Animals , Metformin/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Diabetic Neuropathies/pathology , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/drug therapy , Male , Oxidative Stress/drug effects , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Up-Regulation/drug effects , Sciatic Nerve/drug effects , Sciatic Nerve/pathology , Sciatic Nerve/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Inflammation/drug therapy , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology
11.
Zhen Ci Yan Jiu ; 49(4): 349-357, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38649202

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on activation of silent information regulator 1 (Sirt1)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)/mitochondrial transcription factor A (TFAM) pathway in type 2 diabetes (T2DM) rats with peripheral neuropathy (DPN) , so as to explore its possible mechanisms underlying improvement of DPN. METHODS: Thirty male SD rats were randomly divided into blank control group (n=8) and DPN model group (n=22) which were further divided into model group (n=8) and EA group (n=8) after successful modeling. The model of T2DM was established by high-fat diet and low-dose intraperitoneal injection of streptozocin (35 mg/kg). For rats of the EA group (anesthetized with isoflurane), EA stimulation (2 Hz/15 Hz, 2 mA) was applied to "Tianshu"(ST25) for 20 min, once daily, 6 times a week for 6 weeks. The blood glucose level, body weight, area under curve (AUC) of glucose tolerance test, and hind-paw mechanical pain threshold and thermal pain threshold were observed. The intra-epidermal nerve fiber density (IENFD) of the hind-foot pad was observed by immunofluorescence staining. The motor nerve conduction velocity (MNCV) of the sciatic nerve was measured by using electrophysiological method. H.E. staining was used to observe the histopathological changes of the sciatic nerve after modeling. Transmission electron microscopy (TEM) was used to observe the ultrastructural changes of the sciatic nerve. The protein expressions of energy-related Sirt1, PGC-1α and TFAM in the sciatic nerve was detected by Western blot. RESULTS: Compared with the blank control group, the model group had a higher blood glucose contents and AUC (P<0.001), a slower MNCV (P<0.01), and a decrease in the body weight and in the mechanical and thermal pain thresholds (P<0.001) and IENFD (P<0.001), and in the expression levels of Sirt1, PGC-1α and TFAM (P<0.05, P<0.01). In contrast to the model group, the EA group had a decrease in the blood glucose contents and AUC (P<0.05, P<0.01), and an increase in mechanical and thermal pain thresholds, MNCV, IENFD, and expression levels of Sirt1, PGC-1α and TFAM proteins (P<0.01, P<0.05). In addition, results of histopathological and ultrastructural changes of the sciatic nerve showed more fragmented and disordered distribution of axons on the transverse section, and extensive separation of myelin and axons, uneven myelin thickness, axonal degeneration and irregular shape in the model group, whereas in the EA group, the axons on the transverse section were relatively more dense and more complete, the myelin sheath of the sciatic nerve was relatively uniform, and the axonal shape was relatively regular with relatively milder lesions. CONCLUSIONS: EA up-regulates the expressions of Sirt1, PGC-1α, TFAM in T2DM rats with DPN, which may be associated with its functions in improving and repairing the injured peripheral nerves in rats with DPN.


Subject(s)
Acupuncture Points , Diabetes Mellitus, Type 2 , Electroacupuncture , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , Animals , Humans , Male , Rats , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Neuropathies/therapy , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Peripheral Nervous System Diseases/therapy , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats, Sprague-Dawley , Sciatic Nerve/metabolism , Sirtuin 1/metabolism , Sirtuin 1/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Mol Pain ; 20: 17448069241252654, 2024.
Article in English | MEDLINE | ID: mdl-38658141

ABSTRACT

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.


Subject(s)
Diabetic Neuropathies , Hyperalgesia , Mitochondria , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Streptozocin , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/pathology , Male , Mitochondria/metabolism , Mitochondria/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Mice, Inbred C57BL , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Peptides/pharmacology , Mice , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Microglia/drug effects , Microglia/metabolism
13.
Eur J Med Res ; 29(1): 149, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429764

ABSTRACT

BACKGROUND: As a traditional Mongolian medicine, Zhenzhu Tongluo pills has played a good neuroprotective function in clinic. However, the key mechanisms by which it works are poorly studied. OBJECTIVES: To study the effect and mechanism of Zhenzhu Tongluo pills in treating diabetic peripheral neuropathy injury. METHODS: Diabetic peripheral neuropathy model was established by injecting STZ into rats. Physiological, behavioral, morphological and functional analyses were used to evaluate that the overall therapeutic effect of rats, ELISA, qRT-PCR, Western blot, immunohistochemical staining, HE staining and TUNEL staining were used to further study the related mechanism. RESULTS: Zhenzhu Tongluo pills can significantly improve the physiological changes, behavioral abnormalities, structural and functional damage in diabetic peripheral neuropathy rats, which may be related to the anti-inflammatory and anti-apoptotic effects that realized by regulating PI3K/AKT, MAPK, NF-κB signaling pathways. CONCLUSIONS: Zhenzhu Tongluo pills has neuroprotective effect, and anti-inflammatory and anti-apoptosis may be the important way of its function.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Drugs, Chinese Herbal , Rats , Animals , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Phosphatidylinositol 3-Kinases , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , NF-kappa B/metabolism , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus/drug therapy
14.
Neuropharmacology ; 250: 109907, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38492884

ABSTRACT

The glymphatic system plays a crucial role in maintaining optimal central nervous system (CNS) function by facilitating the removal of metabolic wastes. Aquaporin-4 (AQP4) protein, predominantly located on astrocyte end-feet, is a key pathway for metabolic waste excretion. ß-Dystroglycan (ß-DG) can anchor AQP4 protein to the end-feet membrane of astrocytes and can be cleaved by matrix metalloproteinase (MMP)-9 protein. Studies have demonstrated that hyperglycemia upregulates MMP-9 expression in the nervous system, leading to neuropathic pain. Ginkgolide B (GB) exerts an inhibitory effect on the MMP-9 protein. In this study, we investigated whether inhibition of MMP-9-mediated ß-DG cleavage by GB is involved in the regulation of AQP4 polarity within the glymphatic system in painful diabetic neuropathy (PDN) and exerts neuroprotective effects. The PDN model was established by injecting streptozotocin (STZ). Functional changes in the glymphatic system were observed using magnetic resonance imaging (MRI). The paw withdrawal threshold (PWT) was measured to assess mechanical allodynia. The protein expressions of MMP-9, ß-DG, and AQP4 were detected by Western blotting and immunofluorescence. Our findings revealed significant decreases in the efficiency of contrast agent clearance within the spinal glymphatic system of the rats, accompanied by decreased PWT, increased MMP-9 protein expression, decreased ß-DG protein expression, and loss of AQP4 polarity. Notably, GB treatment demonstrated the capacity to ameliorate spinal cord glymphatic function by modulating AQP4 polarity through MMP-9 inhibition, offering a promising therapeutic avenue for PDN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Ginkgolides , Glymphatic System , Lactones , Rats , Animals , Glymphatic System/metabolism , Matrix Metalloproteinase 9 , Neuroprotection , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Spinal Cord/metabolism , Aquaporin 4/metabolism
15.
Eur J Neurosci ; 59(10): 2628-2645, 2024 May.
Article in English | MEDLINE | ID: mdl-38491850

ABSTRACT

Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.


Subject(s)
Formins , Signal Transduction , Humans , Animals , Formins/metabolism , Signal Transduction/physiology , Receptor for Advanced Glycation End Products/metabolism , Diabetes Complications/metabolism , Diabetic Neuropathies/metabolism
16.
Biomed Pharmacother ; 173: 116392, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479183

ABSTRACT

Gamma-aminobutyric acid (GABA) neuronal system-related transcription factors (TFs) play a critical role in GABA production, and GABA modulates diabetic neuropathic pain (DNP). The present study investigated the therapeutic effects of intrathecal delivery of two TFs achaete-scute homolog 1 (Ascl1) and LIM homeobox protein 6 (Lhx6) in a mouse model of DNP and elucidated their underlying mechanisms. GABA-related specific TFs, including Ascl1, Lhx6, distal-less homeobox 1, distal-less homeobox 5, the Nkx2.1 homeobox gene, and the Nkx2.2 homeobox gene, were investigated under normal and diabetic conditions. Among these, the expression of Ascl1 and Lhx6 was significantly downregulated in mice with diabetes. Therefore, a single intrathecal injection of combined lenti-Ascl1/Lhx6 was performed. Intrathecal delivery of lenti-Ascl1/Lhx6 significantly relieved mechanical allodynia and heat hyperalgesia in mice with DNP. Ascl1/Lhx6 delivery also reduced microglial activation, decreased the levels of pro-inflammatory cytokines including tumor necrosis factor-α and interleukin (IL)-1ß, increased the levels of anti-inflammatory cytokines including IL-4, IL-10, and IL-13, and reduced the activation of p38, c-Jun N-terminal kinase, and NF-κB in the spinal cord of mice with DNP, thereby reducing DNP. The results of this study suggest that intrathecal Ascl1/Lhx6 delivery attenuates DNP via upregulating spinal GABA neuronal function and inducing anti-inflammatory effects.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Neuralgia , Rats , Mice , Animals , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Microglia/metabolism , Spinal Cord/metabolism , Cytokines/metabolism , Diabetic Neuropathies/metabolism , Hyperalgesia/metabolism , Anti-Inflammatory Agents/therapeutic use , gamma-Aminobutyric Acid/metabolism , Diabetes Mellitus/drug therapy , Basic Helix-Loop-Helix Transcription Factors/metabolism
17.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R427-R437, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497128

ABSTRACT

Methylglyoxal (MG), a reactive metabolic byproduct of glycolysis, is a causative of painful diabetic neuropathy. Patients with diabetes are associated with more frequent severe asthma exacerbation. Stimulation of capsaicin-sensitive lung vagal (CSLV) afferents may contribute to the pathogenesis of hyperreactive airway diseases such as asthma. However, the possibility of the stimulatory effect of MG on CSLV afferents and the underlying mechanisms remain unknown. Our results showed that intravenous injection of MG (25 mg/kg, MG25) in anesthetized, spontaneously breathing rats elicited pulmonary chemoreflexes characterized by apnea, bradycardia, and hypotension. The MG-induced apneic response was reproducible and dose dependent. MG25 no longer evoked these reflex responses after perineural capsaicin treatment of both cervical vagi to block C-fibers' conduction, suggesting that the reflexes were mediated through the stimulation of CSLV afferents. Pretreatment with HC030031 [an antagonist of transient receptor potential ankyrin subtype 1 protein (TRPA1)] or AP18 (another TRPA1 antagonist), but not their vehicle, markedly attenuated the apneic response induced by MG25. Consistently, electrophysiological results showed that pretreatment with HC030031 largely attenuated the intense discharge in CSLV afferents induced by injection of MG25 in open-chest and artificially ventilated rats. In isolated CSLV neurons, the perfusion of MG evoked an abrupt and pronounced increase in calcium transients in a concentration-dependent manner. This stimulatory effect on CSLV neurons was also abolished by HC030031 treatment but not by its vehicle. In conclusion, these results suggest that MG exerts a stimulatory effect on CSLV afferents, inducing pulmonary chemoreflexes, and such stimulation is mediated through the TRPA1 activation.NEW & NOTEWORTHY Methylglyoxal (MG) is implicated in the development of painful diabetic neuropathy. A retrospective cohort study revealed an increased incidence of asthma exacerbations in patients with diabetes. This study demonstrated that elevated circulating MG levels stimulate capsaicin-sensitive lung vagal afferents via activation of TRPA1, which in turn triggers respiratory reflexes. These findings provide new information for understanding the pathogenic mechanism of diabetes-associated hyperreactive airway diseases and potential therapy.


Subject(s)
Acetanilides , Asthma , Diabetic Neuropathies , Purines , Humans , Rats , Animals , Capsaicin/pharmacology , Rats, Sprague-Dawley , Pyruvaldehyde/adverse effects , Pyruvaldehyde/metabolism , Diabetic Neuropathies/metabolism , Retrospective Studies , Lung , Vagus Nerve/physiology , Apnea , Asthma/metabolism , TRPA1 Cation Channel/metabolism
18.
Neuroreport ; 35(4): 258-268, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38305135

ABSTRACT

Diabetic neuropathic pain (DNP) is a frequent complication of diabetes. Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), a multi-functional serine/threonine kinase subunit, is mainly located in the surface layer of the spinal cord dorsal horn (SCDH) and the primary sensory neurons in dorsal root ganglion (DRG). Numerous studies have indicated electroacupuncture (EA) takes effect in various kinds of pain. In this research, we explored whether CaMKIIα on rats' SCDH and DRG participated in DNP and further explored the mechanisms underlying the analgesic effects of EA. The DNP model in rats was successfully established by intraperitoneal injection of streptozotocin. Certain DNP rats were treated with intrathecal injections of KN93, a CaMKII antagonist, and some of the DNP rats received EA intervention. The general conditions, behaviors, the expressions of CaMKIIα and phosphorylated CaMKIIα (p-CaMKIIα) were evaluated. DNP rats' paw withdrawal threshold was reduced and the expressions of p-CaMKIIα in SCDH and DRG were upregulated compared with the Normal group, while the level of CaMKIIα showed no significance. KN93 attenuated DNP rats' hyperalgesia and reduced the expressions of p-CaMKIIα. We also found EA attenuated the hyperalgesia of DNP rats and reduced the expressions of p-CaMKIIα. The above findings suggest that p-CaMKIIα in SCDH and DRG is involved in DNP. The analgesic effect of EA in DNP might be related to the downregulation of p-CaMKIIα expression level. Our study further supports that EA can be an effective clinical treatment for DNP.


Subject(s)
Benzenesulfonamides , Benzylamines , Diabetes Mellitus , Diabetic Neuropathies , Electroacupuncture , Neuralgia , Rats , Animals , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Streptozocin , Diabetic Neuropathies/therapy , Diabetic Neuropathies/metabolism , Neuralgia/therapy , Neuralgia/metabolism , Analgesics
19.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(1): 141-147, 2024 Jan 06.
Article in Chinese | MEDLINE | ID: mdl-38228562

ABSTRACT

Diabetic peripheral neuropathy (DPN) is one of the chronic complications of diabetic neuropathy, and also the main cause of chronic wounds and disability. Exosomes and exosomal-microRNAs (miRNAs) are closely related to DPN and participate in the signal transduction and protein expression of the peripheral nervous system by mediating intercellular communication. However, the specific role and mechanism of EVs and exosomal-miRNAs in the occurrence and development of DPN in high-glucose environments are not fully understood. This article reviews the promotion of EVs and exosomal-miRNAs in the occurrence and development of DPN in inhibiting axon growth, promoting inflammatory response, and inducing vascular injury in a high glucose environment.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Exosomes , MicroRNAs , Humans , MicroRNAs/genetics , Exosomes/genetics , Exosomes/metabolism , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Signal Transduction , Glucose/metabolism
20.
Curr Diabetes Rev ; 20(1): e130423215734, 2024.
Article in English | MEDLINE | ID: mdl-37069711

ABSTRACT

Diabetes mellitus is a type of metabolic disorders. Various pharmaceutical interventions and animal models have been used to investigate the genetic, environmental, and etiological aspects of diabetes and its effects. In recent years for the development of ant-diabetic remedies, numerous novel genetically modified animals, pharmaceutical substances, medical techniques, viruses, and hormones have been developed to screen diabetic complications. A unique disease-treating drug with new properties is still being sought after. The current review tried to include all published models and cutting-edge techniques. Experimental induction of diabetes mellitus in animal models and in vitro methods are essential for advancing our knowledge, a thorough grasp of pathophysiology, and the creation of novel therapeutics. Animal models and in vitro techniques are necessary to develop innovative diabetic medications. New approaches and additional animal models are required for diabetes research to advance. This is particularly true for models produced via dietary modifications, which have various macronutrient compositions. In this article, we review the rodent models of diet-induced diabetic peripheral neuropathy, diabetic retinopathy, and diabetic nephropathy and critically compare the key characteristics of these micro-vascular complications in humans and the diagnostic criteria with the parameters used in preclinical research using rodent models, taking into consideration the potential need for factors that can accelerate or aggravate these conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetic Neuropathies , Diabetic Retinopathy , Animals , Humans , Diabetic Nephropathies/etiology , Diabetic Retinopathy/etiology , Diabetic Neuropathies/etiology , Diabetic Neuropathies/metabolism , Pharmaceutical Preparations , In Vitro Techniques , Diabetes Mellitus, Type 2/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...