Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 614
1.
Phytomedicine ; 129: 155690, 2024 Jul.
Article En | MEDLINE | ID: mdl-38761523

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been administered as the first-line therapy for patients with EGFR mutations in LUAD, but it is almost inevitable that resistance to EGFR-TKIs therapy eventually arises. Polyphyllin I (PPI), derived from Paris polyphylla rhizomes, has been shown to have potent anti-cancer properties in a range of human cancer types including LUAD. However, the role of PPI in gefitinib resistance and the underlying mechanism remain elusive. PURPOSE: To evaluate the antitumor impacts of PPI on gefitinib resistance cells and investigate its molecular mechanism. METHODS: CCK-8, wound healing, transwell assay, and xenograft model were performed to determine the anti-cancer effects of PPI as well as its ability to overcome gefitinib resistance. Immunoblotting, co-immunoprecipitation, phospho-RTK antibody array, qRT-PCR, and immunofluorescence were utilized to explore the mechanism by which PPI overrides gefitinib resistance. RESULTS: PPI inhibited cell survival, growth, and migration/invasion in both gefitinib-sensitive (PC9) and -resistant (PC9/GR) LUAD cells (IC50 at 2.0 µM). Significantly, treatment with PPI at 1.0 µM resensitized the resistant cells to gefitinib. Moreover, cell-derived xenograft experiments revealed that the combination of PPI and gefitinib overcame gefitinib resistance. The phospho-RTK array and immunoblotting analyses showed PPI significant inhibition of the VEGFR2/p38 pathway. In addition, molecular docking suggested the interaction between PPI and HIF-1α. Mechanistically, PPI reduced the protein expression of HIF-1α in both normoxia and hypoxia conditions by triggering HIF-1α degradation. Moreover, HIF-1α protein but not mRNA level was elevated in gefitinib-resistant LUAD. We further demonstrated that PPI considerably facilitated the binding of HIF-1α to VHL. CONCLUSIONS: We present a novel discovery demonstrating that PPI effectively counteracts gefitinib resistance in LUAD by modulating the VEGF/VEGFR2/p38 pathway. Mechanistic investigations unveil that PPI facilitates the formation of the HIF-1α /VHL complex, leading to the degradation of HIF-1α and subsequent inhibition of angiogenesis. These findings uncover a previously unidentified mechanism governing HIF-1α expression in reaction to PPI, providing a promising method for therapeutic interventions targeting EGFR-TKI resistance in LUAD.


Adenocarcinoma of Lung , Diosgenin , Drug Resistance, Neoplasm , Gefitinib , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Mice, Nude , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Gefitinib/pharmacology , Humans , Drug Resistance, Neoplasm/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Lung Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Cell Line, Tumor , Adenocarcinoma of Lung/drug therapy , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Female
2.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Article En | MEDLINE | ID: mdl-38775678

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Cardiomyopathies , Diosgenin , Myeloid Differentiation Factor 88 , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Toll-Like Receptor 4/metabolism , Rats , Myeloid Differentiation Factor 88/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Signal Transduction/drug effects , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/prevention & control , Cell Line , Rats, Sprague-Dawley , Transcription Factor RelA/metabolism , Oxidative Stress/drug effects , Lipopolysaccharides , Disease Models, Animal , Apoptosis/drug effects
3.
Mol Med ; 30(1): 59, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745316

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Autophagy , Disease Models, Animal , Microglia , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Autophagy/drug effects , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Cell Polarity/drug effects
4.
Biochem Biophys Res Commun ; 712-713: 149941, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38643718

While diosgenin has been demonstrated effective in various cardiovascular diseases, its specific impact on treating heart attacks remains unclear. Our research revealed that diosgenin significantly improved cardiac function in a myocardial infarction (MI) mouse model, reducing cardiac fibrosis and cell apoptosis while promoting angiogenesis. Mechanistically, diosgenin upregulated the Hand2 expression, promoting the proliferation and migration of endothelial cells under hypoxic conditions. Acting as a transcription factor, HAND2 activated the angiogenesis-related gene Aggf1. Conversely, silencing Hand2 inhibited the diosgenin-induced migration of hypoxic endothelial cells and angiogenesis. In summary, these findings provide new insights into the protective role of diosgenin in MI, validating its effect on angiogenic activity and providing a theoretical basis for clinical treatment strategies.


Basic Helix-Loop-Helix Transcription Factors , Diosgenin , Mice, Inbred C57BL , Myocardial Infarction , Neovascularization, Physiologic , Animals , Diosgenin/pharmacology , Diosgenin/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Neovascularization, Physiologic/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Male , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis
5.
Biomolecules ; 14(4)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38672439

Recent evidence suggests that ferroptosis, an iron-facilitated cell death with excessive lipid peroxidation, is a critical mechanism underlying doxorubicin (DOX)-induced cardiotoxicity (DIC). Although dioscin has been reported to improve acute DIC, direct evidence is lacking to clarify the role of dioscin in chronic DIC and its potential mechanism in cardiac ferroptosis. In this study, we used chronic DIC rat models and H9c2 cells to investigate the potential of dioscin to mitigate DIC by inhibiting ferroptosis. Our results suggest that dioscin significantly improves chronic DIC-induced cardiac dysfunction. Meanwhile, it significantly inhibited DOX-induced ferroptosis by reducing Fe2+ and lipid peroxidation accumulation, maintaining mitochondrial integrity, increasing glutathione peroxidase 4 (GPX4) expression, and decreasing acyl-CoA synthetase long-chain family 4 (ACSL4) expression. Through transcriptomic analysis and subsequent validation, we found that the anti-ferroptotic effects of dioscin are achieved by regulating the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 axis and Nrf2 downstream iron metabolism genes. Dioscin further downregulates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) and upregulates expression of frataxin (FXN) and ATP-binding cassette B8 (ABCB8) to limit mitochondrial Fe2+ and lipid peroxide accumulation. However, Nrf2 inhibition diminishes the anti-ferroptotic effects of dioscin, leading to decreased GPX4 expression and increased lipid peroxidation. This study is a compelling demonstration that dioscin can effectively reduce DIC by inhibiting ferroptosis, which is dependent on the Nrf2/GPX4 pathway modulation.


Cardiotoxicity , Diosgenin , Ferroptosis , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Rats , Cardiotoxicity/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cell Line , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Ferroptosis/drug effects , Iron/metabolism , Lipid Peroxidation/drug effects , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Rats, Sprague-Dawley
6.
J Nat Med ; 78(3): 618-632, 2024 Jun.
Article En | MEDLINE | ID: mdl-38668832

Acute myeloid leukemia (AML) is a malignant disease that is difficult to completely cure. Polyphyllin I (PPI), a steroidal saponin isolated from Paris polyphylla, has exhibited multiple biological activities. Here, we discovered the superior cytotoxicity of PPI on AML cells MOLM-13 with an IC50 values of 0.44 ± 0.09 µM. Mechanically, PPI could cause ferroptosis via the accumulation of intracellular iron concentration and triggering lipid peroxidation. Interestingly, PPI could induced stronger ferroptosis in a short time of about 6 h compared to erastin. Furthermore, we demonstrate that PPI-induced rapid ferroptosis is due to the simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering lipid peroxidation, and PI3K inhibitor Alpelisib can enhance the activity of erastin-induced ferroptosis. Molecular docking simulations and kinase inhibition assays demonstrated that PPI is a PI3K inhibitor. In addition, PPI significantly inhibited tumor progression and prolonged mouse survival at 4 mg/kg with well tolerance. In summary, our study highlights the therapeutic potential of PPI for AML and shows its unique dual mechanism.


Diosgenin , Ferroptosis , Leukemia, Myeloid, Acute , Lipid Peroxidation , Phosphatidylinositol 3-Kinases , Ferroptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Animals , Humans , Lipid Peroxidation/drug effects , Mice , Phosphatidylinositol 3-Kinases/metabolism , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Diosgenin/therapeutic use , Cell Line, Tumor , Molecular Docking Simulation , Saponins/pharmacology , Saponins/chemistry
7.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Article En | MEDLINE | ID: mdl-38538058

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Diosgenin , Ovarian Neoplasms , PTEN Phosphohydrolase , Female , Humans , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement , Cell Proliferation/drug effects , Diosgenin/pharmacology , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/pharmacology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/drug effects , PTEN Phosphohydrolase/metabolism , Up-Regulation
8.
Steroids ; 205: 109393, 2024 May.
Article En | MEDLINE | ID: mdl-38458369

Diosgenin can inhibit the proliferation and cause apoptosis of various tumor cells, and its inhibitory effect on oral squamous cell carcinoma (OSCC) and its mechanism are still unclear. In this study, we predicted the targets of diosgenin for the treatment of OSCC through the database, then performed bioinformatics analysis of the targets, and further verified the effect of diosgenin on the activity of OSCC cell line HSC-3, the transcriptional profile of the targets and the molecular docking of the targets with diosgenin. The results revealed that there were 146 potential targets of diosgenin for OSCC treatment, which involved signaling pathways such as Ras, TNF, PI3K-AKT, HIF, NF-κB, and could regulate cellular activity through apoptosis, autophagy, proliferation and differentiation, inflammatory response, DNA repair, etc. Diosgenin significantly inhibited HSC-3 cell activity. The genes such as AKT1, MET1, SRC1, APP1, CCND1, MYC, PTGS2, AR, NFKB1, BIRC2, MDM2, BCL2L1, MMP2, may be important targets of its action, not only their expression was regulated by diosgenin but also their proteins had a high binding energy with diosgenin. These results suggest that diosgenin may have a therapeutic effect on OSCC through AKT1, MMP2 and other targets and multiple signaling pathways, which is of potential clinical value.


Carcinoma, Squamous Cell , Diosgenin , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck , Matrix Metalloproteinase 2/pharmacology , Diosgenin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-akt/metabolism
9.
Int J Biol Macromol ; 266(Pt 1): 131108, 2024 May.
Article En | MEDLINE | ID: mdl-38531523

Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.


Autophagy , Cellulose , Diosgenin , Mitochondria , Protein Aggregates , Humans , Autophagy/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Protein Aggregates/drug effects , Reactive Oxygen Species/metabolism , HEK293 Cells , Cell Death/drug effects , Muramidase/metabolism , Muramidase/chemistry , Animals , Nanoparticles/chemistry , Drug Carriers/chemistry , Up-Regulation/drug effects
10.
Hematology ; 29(1): 2326389, 2024 Dec.
Article En | MEDLINE | ID: mdl-38466633

Objectives: Aplastic anemia (AA) is one of the immune-mediated bone marrow failure disorders caused by multiple factors, including the inability of CD4 + CD25 + regulatory T cells (Tregs) to negatively regulate cytotoxic T lymphocytes (CTLs). Dioscin is a natural steroid saponin that has a similar structure to steroid hormones. The purpose of this study is to look into the effect of Dioscin on the functions of CD4 + CD25+ Tregs in the AA mouse model and explore its underlying mechanism.Methods: To begin with, bone marrow failure was induced through total body irradiation and allogeneic lymphocyte infusion using male Balb/c mice. After 14 consecutive days of Dioscin orally administrated, the AA mouse model was tested for complete blood counts, HE Staining of the femur, Foxp3, IL-10 and TGF-ß. Then CD4 + CD25+ Tregs were isolated from splenic lymphocytes of the AA mouse model, Tregs and the biomarkers and cytokines of Tregs were measured after 24 h of Dioscin intervention treatment in vitro.Results: Dioscin promotes the expression of Foxp3, IL-10, IL-35 and TGF-ß, indicating its Tregs-promoting properties. Mechanistically, the administration of Dioscin resulted in the alteration of CD152, CD357, Perforin and CD73 on the surface of Tregs, and restored the expression of Foxp3.Conclusion: Dioscin markedly attenuated bone marrow failure, and promoted Tregs differentiation, suggesting the maintenance of theimmune balance effect of Dioscin. Dioscin attenuates pancytopenia and bone marrow failure via its Tregs promotion properties.


Anemia, Aplastic , Diosgenin , Diosgenin/analogs & derivatives , Animals , Mice , Male , Humans , T-Lymphocytes, Regulatory , Interleukin-10/metabolism , Interleukin-10/pharmacology , Diosgenin/pharmacology , Diosgenin/therapeutic use , Diosgenin/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Forkhead Transcription Factors
11.
Phytomedicine ; 128: 155417, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518642

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Diosgenin , Glioma , NF-kappa B , Animals , Humans , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Feedback, Physiological/drug effects , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , Tumor Microenvironment/drug effects
12.
Biol Cell ; 116(3): e2300052, 2024 Mar.
Article En | MEDLINE | ID: mdl-38408271

BACKGROUND INFORMATION: Antiproliferative and apoptotic activities have been attributed to the phytosteroid diosgenin ((25R)-spirost-5-en-3ß-ol; 1). It is known that combining glucose with two rhamnoses (the chacotrioside framework) linked to diosgenin increases its apoptotic activity. However, the effects of diosgenin glucosamine glycosides on different cancer cell types and cell death have not been entirely explored. RESULTS: This study reports the antiproliferative, cytotoxic, and apoptotic activities of diosgenin and its glycosylated derivative ((25R)-spirost-5-en-3ß-yl ß-D-glucopyranoside; 2). It also explores the effects of two diosgenin glucosamine derivates, diosgenin 2-acetamido-2-deoxy-ß-D-glucopyranoside (3), and diosgenin 2-amino-2-deoxy-ß-D-glucopyranoside hydrochloride (4), on different cancer cell lines. We found that all the compounds affected proliferative activity with minimal toxicity. In addition, all cancer cell lines showed morphological and biochemical characteristics corresponding to an apoptotic process. Apoptotic cell death was higher in all cell lines treated with compounds 2, 3 and 4 than in those treated with diosgenin. Moreover, compounds 3 and 4 induced apoptosis better than compounds 1 and 2. These results suggest that combining glucosamine with modified glucosamine attached to diosgenin has a greater apoptotic effect than diosgenin or its glycosylated derivative (compound 2). Furthermore, diosgenin and the abovementioned glycosides had a selective effect on tumour cells since the proliferative capacity of human lymphocytes, keratinocytes (HaCaT) and epithelial cells (CCD841) was not significantly affected. CONCLUSIONS: Altogether, these results demonstrate that diosgenin glucosamine compounds exert an antiproliferative effect on cancer cell lines and induce apoptotic effects more efficiently than diosgenin alone without affecting non-tumour cells. SIGNIFICANCE: This study evidences the pro-apoptotic and selective activities of diosgenyl glucosamine compounds in cancer cell lines.


Antineoplastic Agents , Diosgenin , Neoplasms , Humans , Glucosamine/pharmacology , Diosgenin/pharmacology , Diosgenin/chemistry , Glycosides/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor
13.
Phytomedicine ; 125: 155299, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301301

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) rapidly becomes the leading cause of end-stage liver disease or liver transplantation. Nowadays, there has no approved drug for NAFLD treatment. Diosgenin as the structural analogue of cholesterol attenuates hypercholesterolemia by inhibiting cholesterol metabolism, which is an important pathogenesis in NAFLD progression. However, there has been no few report concerning its effects on NAFLD so far. METHODS: Using a high-fat diet & 10% fructose-feeding mice, we evaluated the anti-NAFLD effects of diosgenin. Transcriptome sequencing, LC/MS analysis, molecular docking simulation, molecular dynamics simulations and Luci fluorescent reporter gene analysis were used to evaluate pathways related to cholesterol metabolism. RESULTS: Diosgenin treatment ameliorated hepatic dysfunction and inhibited NAFLD formation including lipid accumulation, inflammation aggregation and fibrosis formation through regulating cholesterol metabolism. For the first time, diosgenin was structurally similar to cholesterol, down-regulated expression of CYP7A1 and regulated cholesterol metabolism in the liver (p < 0.01) and further affecting bile acids like CDCA, CA and TCA in the liver and feces. Besides, diosgenin decreased expression of NPC1L1 and suppressed cholesterol transport (p < 0.05). Molecular docking and molecular dynamics further proved that diosgenin was more strongly bound to CYP7A1. Luci fluorescent reporter gene analysis revealed that diosgenin concentration-dependently inhibited the enzymes activity of CYP7A1. CONCLUSION: Our findings demonstrated that diosgenin was identified as a specific regulator of cholesterol metabolism, which pave way for the design of novel clinical therapeutic strategies.


Diosgenin , Hypercholesterolemia , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Diosgenin/pharmacology , Diosgenin/metabolism , Molecular Docking Simulation , Liver , Cholesterol/metabolism , Hypercholesterolemia/drug therapy , Lipid Metabolism , Diet, High-Fat/adverse effects
14.
Plant Physiol Biochem ; 207: 108382, 2024 Feb.
Article En | MEDLINE | ID: mdl-38271864

Nowadays, it is increasingly crucial to combine innovative approaches with established methods to enhance plant tolerance and maximize the production of beneficial compounds. With this aim in view, a study was carried out to investigate how different melatonin concentrations (0, 30, and 60 ppm), cold plasma treatment (at 3000 and 4000 V), and varying exposure durations (0, 1, 2, and 4 min) affect the physiological and biochemical attributes of fenugreek plants, as well as the levels of diosgenin under salinity stress. This study revealed that the application of 3000 V cold plasma for 2 min with 60 ppm melatonin by establishing cellular redox homeostasis in salinity-treated fenugreek plants, effectively prevented the destruction of pigments and reduced the electrolyte leakage index of malondialdehyde content. The utilization of these two elicitors has the potential to trigger multiple pathways, including the enzymatic and non-enzymatic antioxidants biosynthesis, and abscisic acid-dependent pathways. This activation results in an enhanced production of abscisic acid, auxin, and endogenous melatonin, along with the regulation of signal transduction pathways. Surprisingly, applying these two treatments increased the expression of SQS, CAS, SSR, BGL, SEP, SMT, and diosgenin content by 13, 22.5, 21.6, 19, 15.4, 12, and 6 times respectively. The findings highlight the intricate interplay between these treatments and the positive impact of their combined application, opening up avenues for further research and practical applications in improving plant tolerance to environmental stresses.


Diosgenin , Melatonin , Plasma Gases , Trigonella , Melatonin/pharmacology , Abscisic Acid , Trigonella/metabolism , Antioxidants/metabolism , Salt Stress , Diosgenin/pharmacology
15.
Int J Biol Macromol ; 254(Pt 3): 127975, 2024 Jan.
Article En | MEDLINE | ID: mdl-37944715

The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 µg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.


Antineoplastic Agents , Chitosan , Diosgenin , Metal Nanoparticles , Nanoparticles , Animals , Mice , Chitosan/chemistry , Silver , Diosgenin/pharmacology , Diosgenin/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanoparticles/chemistry
16.
Int Immunopharmacol ; 126: 111270, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-38029551

Diosgenin (DG) is a steroidal saponin derived from plants, and it exhibits anti-inflammatory properties. In this study, we employed an in vitro model of P.g.-LPS-stimulated mouse macrophage cell line RAW264.7 to investigate the anti-inflammatory effects and mechanism of DG under the condition of altered polarization of macrophages. The RAW264.7 cells were subjected to pre-treatment with DG with or without P.g.-LPS. In cultured macrophages, DG inhibited P.g.-LPS-induced pro-inflammatory M1 macrophages, and increased anti-inflammatory M2 macrophages. Notably, DG reduced the expression of phosphorylation levels of NF-κB p65 and IκB while increasing the expression of PPARγ. Further studies revealed that PPARγ inhibitor GW9662 or PPARγ siRNA reversed the inhibitory effect of DG on M1 phenotype. Collectively, the anti-inflammatory mechanism of DG is related to altering macrophage polarization by activating PPARγ and inhibiting NF-κB signaling pathways.


Diosgenin , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , PPAR gamma/metabolism , Lipopolysaccharides/pharmacology , Diosgenin/pharmacology , Signal Transduction , Macrophages , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/metabolism
17.
Molecules ; 28(21)2023 Oct 26.
Article En | MEDLINE | ID: mdl-37959702

Recent studies have demonstrated the antiproliferative and cytotoxic effects of aza-steroids and steroidal sapogenins on human cancer cell lines. The scientific community has shown a growing interest in these compounds as drug candidates for cancer treatment. In the current work, we report the synthesis of new diosgenin oxime derivatives as potential antiproliferative agents. From (25 R)-5α-spirost-3,5,6-triol (1), a diosgenin derivative, ketones 2, 3, 4, and 9 were obtained and used as precursors of the new oximes. A condensation reaction was carried out between the steroidal ketones (2, 3, 4, and 9) with hydroxylamine hydrochloride in 2,4,6-trimethylpyridine to produce five spirostanic oximes (four of them are not reported before) with a 42-96% yield. Also, a new spirostanic α, ß-unsaturated cyanoketone was synthesized via Beckmann fragmentation using thionyl chloride with a 62% yield. Furthermore, we proposed a reaction mechanism with the aim of explaining such transformation.


Antineoplastic Agents , Diosgenin , Humans , Cyanoketone , Diosgenin/pharmacology , Steroids/pharmacology , Antineoplastic Agents/pharmacology , Oximes/pharmacology , Ketones/pharmacology
18.
Nutrients ; 15(16)2023 Aug 11.
Article En | MEDLINE | ID: mdl-37630743

Diabetic nephropathy (DN) is a worldwide health problem with increasing incidence. Diosgenin (DIO) is a natural active ingredient extracted from Chinese yams (Rhizoma dioscoreae) with potential antioxidant, anti-inflammatory, and antidiabetic effects. However, the protective effect of DIO on DN is still unclear. The present study explored the mitigating effects and underlying mechanisms of DIO on DN in vivo and in vitro. In the current study, the DN rats were induced by a high-fat diet and streptozotocin and then treated with DIO and metformin (Mef, a positive control) for 8 weeks. The high-glucose (HG)-induced HK-2 cells were treated with DIO for 24 h. The results showed that DIO decreased blood glucose, biomarkers of renal damage, and renal pathological changes with an effect comparable to that of Mef, indicating that DIO is potential active substance to relieve DN. Thus, the protective mechanism of DIO on DN was further explored. Mechanistically, DIO improved autophagy and mitophagy via the regulation of the AMPK-mTOR and PINK1-MFN2-Parkin pathways, respectively. Knockdown of CaMKK2 abolished AMPK-mTOR and PINK1-MFN2-Parkin pathways-mediated autophagy and mitophagy. Mitophagy and mitochondrial dynamics are closely linked physiological processes. DIO also improved mitochondrial dynamics through inhibiting fission-associated proteins (DRP1 and p-DRP1) and increasing fusion proteins (MFN1/2 and OPA1). The effects were abolished by CaMKK2 and PINK1 knockdown. In conclusion, DIO ameliorated DN by enhancing autophagy and mitophagy and by improving mitochondrial dynamics in a CaMKK2-dependent manner. PINK1 and MFN2 are proteins that concurrently regulated mitophagy and mitochondrial dynamics.


Diabetes Mellitus , Diabetic Nephropathies , Diosgenin , Animals , Rats , Mitophagy , Diabetic Nephropathies/drug therapy , AMP-Activated Protein Kinases , Mitochondrial Dynamics , Autophagy , Diosgenin/pharmacology , Diosgenin/therapeutic use
19.
Life Sci ; 330: 122033, 2023 Oct 01.
Article En | MEDLINE | ID: mdl-37598976

Aim Overcoming resistance to apoptosis and antimitotic chemotherapy is crucial for effective treatment of lung cancer. Diosgenin (DG), a promising phytochemical, can regulate various molecular pathways implicated in tumor formation and progression. However, the precise biological activity of DG in lung cancer remains unclear. This study aimed to investigate the antiproliferative activity of DG in NCI-H460 lung carcinoma cells to explore the underlying antimitotic mechanisms and alternative cell death pathways. MATERIALS AND METHODS: In a 2D culture system, we analyzed cell viability, multinucleated cell frequency, cell concentration, cell cycle changes, cell death induction, intracellular reactive oxygen species (ROS) production, and nuclear DNA damage, particularly in relation to target gene expression. We also evaluated the antiproliferative activity of DG in a 3D culture system of spheroids, assessing volume changes, cell death induction, and inhibition of proliferation recovery and clonogenic growth. KEY FINDINGS: DG reduced cell viability and concentration while increasing the frequency of cells with multiple nuclei, particularly binucleated cells resulting from daughter cell fusion. This effect was associated with genes involved in cytokinesis regulation (RAB35, OCRL, BIRC5, and AURKB). Additionally, DG-induced cell death was linked to necroptosis, as evidenced by increased intracellular ROS production and RIPK3, MLKL, TRAF2, and HSPA5 gene expression. In tumor spheroids, DG increased spheroid volume, induced cell death, and inhibited proliferation recovery and clonogenic growth. SIGNIFICANCE: Our study provides new insights into the biological activities of DG in lung cancer cells, contributing to the development of novel oncological therapies.


Antimitotic Agents , Diosgenin , Lung Neoplasms , Humans , Cytokinesis , Necroptosis , Reactive Oxygen Species , Lung Neoplasms/drug therapy , Cell Division , Diosgenin/pharmacology , Lung
20.
ACS Chem Neurosci ; 14(17): 3173-3182, 2023 09 06.
Article En | MEDLINE | ID: mdl-37579249

Depression is a multifaceted psychiatric disorder that affects a significant number of individuals worldwide, and its pathophysiology encompasses a variety of mechanisms, including the induction of endoplasmic reticulum (ER) stress, which has been correlated with depressive-like behaviors in animal models. Yamogenin, a bioactive compound derived from traditional Chinese medicine Dioscorea species, possesses diverse pharmacological properties. This investigation aimed to explore the antidepressant-like effects of yamogenin and the underlying mechanisms involved. By utilizing a murine model of lipopolysaccharide (LPS)-induced depressive-like behavior, we demonstrated that yamogenin enhanced sucrose preference and reduced immobility time in the forced swimming test. These effects were observed alongside the attenuation of ER stress through modulation of the PERK/eIF2α/ATF4/CHOP signaling pathway in the prefrontal cortex. Moreover, yamogenin augmented the expression of the antiapoptotic protein Bcl-2 while diminishing the expression of the proapoptotic protein caspase-3. Additionally, yamogenin exhibited inhibitory effects on microglial activation but did not elicit the promotion of brain-derived neurotrophic factor (BDNF) signaling. Collectively, our findings propose that yamogenin exerts antidepressant-like effects in LPS-induced mice by inhibiting ER stress and microglial activation. This study contributes novel insights into the potential utilization of yamogenin as a natural antidepressant agent.


Diosgenin , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Microglia , Antidepressive Agents/pharmacology , Diosgenin/pharmacology , Endoplasmic Reticulum Stress , Depression/metabolism
...