Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
2.
Appl Biochem Biotechnol ; 193(8): 2389-2402, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33686628

ABSTRACT

Heparosan, a capsular polysaccharide synthesized by certain pathogenic bacteria, is a promising precursor for heparin production. Heparosan production is catalyzed by the formation of KfiC-KfiA complex and the subsequent action of KfiC and KfiA proteins. Polycistronic expression of kfiC and kfiA in Bacillus megaterium yielded an unbalanced expression of KfiC and KfiA proteins resulted in decreased heparosan production. In this study, dual promoter plasmid system was constructed to increase the expression levels of KfiC and KfiA proteins. Dual promoter plasmid system along with UDP-glucuronic acid pathway overexpression (CADuet-DB) increased the heparosan production to 203 mg/L in shake flask experiments. Batch fermentation of strain CADuet-DB under controlled conditions yielded a maximum heparosan concentration of 627 mg/L, which is 59% higher than strain CA-DB. A modified logistic model is applied to describe the kinetics of heparosan production and biomass growth. Fed batch fermentation resulted in 3-fold enhancement in heparosan concentration (1.96 g/L), compared to batch fermentation. Nuclear magnetic resonance analysis revealed that heparosan from strain CADuet-DB was similar to Escherichia coli K5 heparosan. These results suggested that dual promoter expression system is a promising alternative to polycistronic expression system to produce heparosan in B. megaterium.


Subject(s)
Bacillus megaterium , Disaccharides , Escherichia coli Proteins , Escherichia coli/genetics , Gene Expression , Glycosyltransferases , N-Acetylglucosaminyltransferases , Promoter Regions, Genetic , Bacillus megaterium/genetics , Bacillus megaterium/metabolism , Disaccharides/biosynthesis , Disaccharides/genetics , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Glycosyltransferases/biosynthesis , Glycosyltransferases/genetics , N-Acetylglucosaminyltransferases/biosynthesis , N-Acetylglucosaminyltransferases/genetics
3.
Biochim Biophys Acta Gen Subj ; 1865(1): 129765, 2021 01.
Article in English | MEDLINE | ID: mdl-33069832

ABSTRACT

BACKGROUND: Heparin, a lifesaving blood thinner used in over 100 million surgical procedures worldwide annually, is currently isolated from over 700 million pigs and ~200 million cattle in slaughterhouses worldwide. Though animal-derived heparin has been in use over eight decades, it is a complex mixture that poses a risk for chemical adulteration, and its availability is highly vulnerable. Therefore, there is an urgent need in devising bioengineering approaches for the production of heparin polymers, especially low molecular weight heparin (LMWH), and thus, relying less on animal sources. One of the main challenges, however, is the rapid, cost-effective production of low molecular weight heparosan, a precursor of LMWH and size-defined heparosan oligosaccharides. Another challenge is N-sulfation of N-acetyl heparosan oligosaccharides efficiently, an essential modification required for subsequent enzymatic modifications, though chemical and enzymatic N-sulfation is effectively performed at the polymer level. METHODS: To devise a strategy to produce low molecular weight heparosan and heparosan oligosaccharides, several non-pathogenic E. coli strains are engineered by transforming the essential heparosan biosynthetic genes with or without the eliminase gene (elmA) from pathogenic E. coli K5. RESULTS: The metabolically engineered non-pathogenic strains are shown to produce ~5 kDa heparosan, a precursor for low molecular weight heparin, for the first time. Additionally, heparosan oligosaccharides of specific sizes ranging from tetrasaccharide to dodecasaccharide are directly generated, in a single step, from the recombinant bacterial strains that carry both heparosan biosynthetic genes and the eliminase gene. Various modifications, such as chemical N-sulfation of N-acetyl heparosan hexasaccharide following the selective protection of reducing end GlcNAc residue, enzymatic C5-epimerization of N-sulfo heparosan tetrasaccharide and complete 6-O sulfation of N-sulfo heparosan hexasaccharide, are shown to be feasible. CONCLUSIONS: We engineered non-pathogenic E. coli strains to produce low molecular weight heparosan and a range of size-specific heparosan oligosaccharides in a controlled manner through modulating culture conditions. We have also shown various chemical and enzymatic modifications of heparosan oligosaccharides. GENERAL SIGNIFICANCE: Heparosan is a precursor of heparin and the methods to produce low molecular weight heparosan is widely awaited. The methods described herein are promising and will pave the way for potential large scale production of low molecular weight heparin anticoagulants and bioactive heparin oligosaccharides in the coming decade.


Subject(s)
Disaccharides/metabolism , Escherichia coli/metabolism , Metabolic Engineering , Oligosaccharides/metabolism , Disaccharides/chemistry , Disaccharides/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Industrial Microbiology , Oligosaccharides/chemistry , Oligosaccharides/genetics
4.
Sci Rep ; 10(1): 15258, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943670

ABSTRACT

Raffinose family oligosaccharides (RFOs) are implicated in plant regulatory mechanisms of abiotic stresses tolerance and, despite their antinutritional proprieties in grain legumes, little information is available about the enzymes involved in RFO metabolism in Fabaceae species. In the present study, the systematic survey of legume proteins belonging to five key enzymes involved in the metabolism of RFOs (galactinol synthase, raffinose synthase, stachyose synthase, alpha-galactosidase, and beta-fructofuranosidase) identified 28 coding-genes in Arachis duranensis and 31 in A. ipaënsis. Their phylogenetic relationships, gene structures, protein domains, and chromosome distribution patterns were also determined. Based on the expression profiling of these genes under water deficit treatments, a galactinol synthase candidate gene (AdGolS3) was identified in A. duranensis. Transgenic Arabidopsis plants overexpressing AdGolS3 exhibited increased levels of raffinose and reduced stress symptoms under drought, osmotic, and salt stresses. Metabolite and expression profiling suggested that AdGolS3 overexpression was associated with fewer metabolic perturbations under drought stress, together with better protection against oxidative damage. Overall, this study enabled the identification of a promising GolS candidate gene for metabolic engineering of sugars to improve abiotic stress tolerance in crops, whilst also contributing to the understanding of RFO metabolism in legume species.


Subject(s)
Arachis/genetics , Galactosyltransferases/genetics , Raffinose/genetics , Stress, Physiological/genetics , Arabidopsis/genetics , Disaccharides/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Oligosaccharides/genetics , Plant Proteins/genetics , Plants, Genetically Modified , beta-Fructofuranosidase/genetics
5.
J Biol Chem ; 295(31): 10638-10652, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32518157

ABSTRACT

Infections by many bacterial pathogens rely on their ability to degrade host glycans by producing glycoside hydrolases (GHs). Here, we discovered a conserved multifunctional GH, SsGalNagA, containing a unique combination of two family 32 carbohydrate-binding modules (CBM), a GH16 domain and a GH20 domain, in the zoonotic pathogen Streptococcus suis 05ZYH33. Enzymatic assays revealed that the SsCBM-GH16 domain displays endo-(ß1,4)-galactosidase activity specifically toward the host-derived αGal epitope Gal(α1,3)Gal(ß1,4)Glc(NAc)-R, whereas the SsGH20 domain has a wide spectrum of exo-ß-N-acetylhexosaminidase activities, including exo-(ß1,3)-N-acetylglucosaminidase activity, and employs this activity to act in tandem with SsCBM-GH16 on the αGal-epitope glycan. Further, we found that the CBM32 domain adjacent to the SsGH16 domain is indispensable for SsGH16 catalytic activity. Surface plasmon resonance experiments uncovered that both CBM32 domains specifically bind to αGal-epitope glycan, and together they had a KD of 3.5 mm toward a pentasaccharide αGal-epitope glycan. Cell-binding and αGal epitope removal assays revealed that SsGalNagA efficiently binds to both swine erythrocytes and tracheal epithelial cells and removes the αGal epitope from these cells, suggesting that SsGalNagA functions in nutrient acquisition or alters host signaling in S. suis Both binding and removal activities were blocked by an αGal-epitope glycan. SsGalNagA is the first enzyme reported to sequentially act on a glycan containing the αGal epitope. These findings shed detailed light on the evolution of GHs and an important host-pathogen interaction.


Subject(s)
Bacterial Proteins/chemistry , Epitopes/chemistry , Glycoside Hydrolases/chemistry , Polysaccharides, Bacterial/chemistry , Streptococcus suis/chemistry , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Disaccharides/chemistry , Disaccharides/genetics , Disaccharides/metabolism , Epitopes/genetics , Epitopes/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Mice , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Protein Domains , Rabbits , Streptococcus suis/genetics , Streptococcus suis/metabolism , Swine
6.
Int J Biol Macromol ; 160: 69-76, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32445821

ABSTRACT

Low molecular weight heparosan is an un-sulfated polysaccharide primarily used as a precursor for heparin synthesis that has recently been used in drug delivery applications. Heparosan synthesis from recombinant bacterial systems provides a safer alternative to naturally producing pathogenic bacterial systems. In this study, we engineered a functional heparosan synthesis pathway in Bacillus megaterium by the expression of E. coli K5 kfiC and kfiA glycosyltransferase genes. Upregulation of individual UDP-sugar precursor pathway genes enhanced the heparosan production, indicating that UDP-precursor sugar concentrations were limiting the biosynthesis. The engineered B. megaterium yielded a maximum heparosan concentration of 394 mg/L in batch bioreactor. The heparosan titer was further increased to 1.32 g/L in fed-batch fermentation. Nuclear magnetic resonance analysis revealed that the chemical structure of B. megaterium derived heparosan was identical to E. coli K5 heparosan. The heparosan molecular weight varied from 31 to 60 kDa, indicating its potential as a precursor for chemoenzymatic heparin biosynthesis. This study provides an efficient process to produce heparosan from non-pathogenic B. megaterium.


Subject(s)
Bacillus megaterium/genetics , Disaccharides/genetics , Escherichia coli/genetics , Glycosyltransferases/genetics , Biosynthetic Pathways/genetics , Escherichia coli Proteins/genetics , Fermentation/genetics , Metabolic Engineering/methods , Molecular Weight , N-Acetylglucosaminyltransferases/genetics
7.
Methods Mol Biol ; 2132: 201-213, 2020.
Article in English | MEDLINE | ID: mdl-32306329

ABSTRACT

In the 2010s, a novel lectin family with ß-trefoil folding has been identified in marine mussels from the family Mytilidae (phylum Mollusca). "MytiLec-1," the lectin described in this chapter, was the first member of this family to be isolated and characterized from the Mediterranean mussel Mytilus galloprovincialis, a commercially and ecologically important species, spread in marine coastal areas worldwide. MytiLec-1 bound to the sugar moiety of globotriose (Gb3: Galα1-4Galß1-4Glc), an α-galactoside, leading to apoptosis of Gb3-expressing Burkitt's lymphoma cells. Although the primary structure of MytiLec-1 was quite unusual, its three-dimensional structure was arranged as a ß-trefoil fold, which is the typical architecture of "Ricin B chain (or R)-type" lectins, which are found in a broad range of organisms. To date, MytiLec-1-like lectins have been exclusively found in a few species of the mollusk family Mytilidae (M. galloprovincialis, M. trossulus, M. californianus, and Crenomytilus grayanus) and in the phylum Brachiopoda. Transcriptome data revealed the presence of different structural forms of mytilectin in mussels, which included prototype and chimera-type proteins. The primary sequence of these lectins did not match any previously described known protein family, leading to their assignment to the new "mytilectin family." We here report the method of purification of this lectin and describe its use in cell biology.


Subject(s)
Burkitt Lymphoma/metabolism , Disaccharides/chemistry , Disaccharides/genetics , Lectins/chemistry , Lectins/genetics , Mytilus/metabolism , Trisaccharides/chemistry , Trisaccharides/genetics , Amino Acid Sequence , Animals , Burkitt Lymphoma/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Disaccharides/pharmacology , Gene Expression Profiling , Gene Expression Regulation , Humans , K562 Cells , Lectins/pharmacology , Models, Molecular , Mytilus/genetics , Protein Conformation, beta-Strand , Trisaccharides/metabolism , Trisaccharides/pharmacology
8.
J Agric Food Chem ; 67(44): 12322-12332, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31638792

ABSTRACT

The objective of the present study was to reveal the antibacterial mechanism of lactobionic acid (LBA) against methicillin-resistant Staphylococcus aureus (MRSA) using quantitative proteomics by sequential window acquisition of all theoretical mass spectra (SWATH-MS) to analyze 100 differentially expressed proteins after LBA treatment. Furthermore, multiple experiments were conducted to validate the results of the proteomic analysis including reactive oxygen species (ROS), virulence-associated gene expression, and the relative quantification of target proteins and genes by parallel reaction monitoring and quantitative real-time PCR. Combining the ultrastructure observations, proteomic analysis, and our previous research, the mode of LBA action against MRSA was speculated as cell wall damage and loss of membrane integrity; inhibition of DNA repair and protein synthesis; inhibition of virulence factors and biofilm production; induction of oxidative stress; and inhibition of metabolic pathways. These results suggest potential applications for LBA in food safety and pharmaceuticals, considering its multitarget effects against MRSA.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Disaccharides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Disaccharides/genetics , Disaccharides/metabolism , Mass Spectrometry , Methicillin-Resistant Staphylococcus aureus/chemistry , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Proteomics
9.
Mol Microbiol ; 112(6): 1744-1756, 2019 12.
Article in English | MEDLINE | ID: mdl-31529727

ABSTRACT

The bicistronic genBA operon (formerly named celBA) of the opportunistic pathogen Enterococcus faecalis, encodes a 6-phospho-ß-glucosidase (GenA) and a phosphotransferase system permease EIIC (GenB). It resembles the cel operon of Streptococcus pyogenes, which is implicated in the metabolism of cellobiose. However, genBA mutants grew normally on cellobiose, but not (genA) or only slowly (genB) on gentiobiose and amygdalin. The two glucosides were also found to be the main inducers of the operon, confirming that the encoded proteins are involved in the utilization of ß-1,6- rather than ß-1,4-linked oligosaccharides. Expression of the genBA operon is regulated by the transcriptional activator GenR, which is encoded by the gene upstream from genB. Thermal shift analysis showed that it binds gentiobiose-6'-P with a Kd of 0.04 mM and with lower affinity also other phospho-sugars. The GenR/gentiobiose-6'-P complex binds to the promoter region upstream from genB. The genBA promoter region contains a cre box and gel-shift experiments demonstrated that the operon is under negative control of the global carbon catabolite regulator CcpA. We also show that the orphan EIIC (GenB) protein needs the EIIA component of the putative OG1RF_10750-OG1RF_10755 operon situated elsewhere on the chromosome to form a functional PTS transporter.


Subject(s)
Disaccharides/metabolism , Glucosidases/metabolism , Glucosides/metabolism , Bacterial Proteins/metabolism , Cellobiose/metabolism , Disaccharides/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/metabolism , Gene Expression Regulation, Bacterial/genetics , Glucosidases/genetics , Oligosaccharides/metabolism , Operon/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/genetics , Phosphoenolpyruvate Sugar Phosphotransferase System/metabolism , Phosphotransferases/metabolism , Promoter Regions, Genetic/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism
10.
FEBS J ; 286(16): 3182-3193, 2019 08.
Article in English | MEDLINE | ID: mdl-30980597

ABSTRACT

The galactosylation of xyloglucan blocks many of the enzymatic processes targeting this oligosaccharide. We found that the expression of a gene encoding Aspergillus oryzae ß-galactosidase (LacA) is induced in the presence of xyloglucan oligosaccharides. With detailed analyses of the substrate specificity of purified recombinant LacA, we show that LacA cleaves galactopyranosyl residues from xyloglucan oligosaccharides, but not from xyloglucan polysaccharide, and plays a vital role in xyloglucan degradation. LacA acts cooperatively with the isoprimeverose-producing oligoxyloglucan hydrolase IpeA to hydrolyze xyloglucan oligosaccharides. Galactosylation of the xylopyranosyl side chain at the nonreducing end of oligoxyloglucan saccharides completely abolishes IpeA activity while LacA efficiently removes the galactopyranosyl residue. Conversely, an isoprimeverose unit at the nonreducing end of the main chain of xyloglucan oligosaccharides blocks LacA activity, while IpeA can still remove the isoprimeverose moiety. This is the first study reporting the cooperative action of ß-galactosidase and isoprimeverose-producing oligoxyloglucan hydrolase on xyloglucan oligosaccharide degradation. Our findings shed light on the true role of LacA and the enzymatic coordination between ß-galactosidase and other hydrolases on xyloglucan degradation.


Subject(s)
Aspergillus oryzae/genetics , Disaccharides/genetics , Glucans/metabolism , Xylans/metabolism , beta-Galactosidase/genetics , Amino Acid Sequence/genetics , Aspergillus oryzae/enzymology , Carbohydrate Metabolism/genetics , Disaccharides/chemistry , Gene Expression Regulation, Enzymologic , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Hydrolysis , Oligosaccharides/genetics , Oligosaccharides/metabolism , Substrate Specificity , beta-Galactosidase/chemistry
11.
Biotechnol Appl Biochem ; 66(1): 53-59, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30294837

ABSTRACT

The structure of the carbohydrate moiety of a natural phenolic glycoside can have a significant effect on the molecular interactions and physicochemical and pharmacokinetic properties of the entire compound, which may include anti-inflammatory and anticancer activities. The enzyme 6-O-α-rhamnosyl-ß-glucosidase (EC 3.2.1.168) has the capacity to transfer the rutinosyl moiety (6-O-α-l-rhamnopyranosyl-ß-d-glucopyranose) from 7-O-rutinosylated flavonoids to hydroxylated organic compounds. This transglycosylation reaction was optimized using hydroquinone (HQ) and hesperidin as rutinose acceptor and donor, respectively. Since HQ undergoes oxidation in a neutral to alkaline aqueous environment, the transglycosylation process was carried out at pH values ≤6.0. The structure of 4-hydroxyphenyl-ß-rutinoside was confirmed by NMR, that is, a single glycosylated product with a free hydroxyl group was formed. The highest yield of 4-hydroxyphenyl-ß-rutinoside (38%, regarding hesperidin) was achieved in a 2-h process at pH 5.0 and 30 °C, with 36 mM OH-acceptor and 5% (v/v) cosolvent. Under the same conditions, the enzyme synthesized glycoconjugates of various phenolic compounds (phloroglucinol, resorcinol, pyrogallol, catechol), with yields between 12% and 28% and an apparent direct linear relationship between the yield and the pKa value of the aglycon. This work is a contribution to the development of convenient and sustainable processes for the glycosylation of small phenolic compounds.


Subject(s)
Acremonium/enzymology , Disaccharides/chemistry , Fungal Proteins/chemistry , Glycoside Hydrolases/chemistry , Acremonium/genetics , Disaccharides/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Glycosylation , Hydrogen-Ion Concentration
12.
Org Biomol Chem ; 17(3): 461-466, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30570639

ABSTRACT

The natural product A-94964 is a uridine-derived nucleoside antibiotic isolated from Streptomyces sp. SANK 60404. In this study, we propose a biosynthetic pathway for A-94964 using gene deletion experiments coupled with in silico analysis of the biosynthetic gene cluster. This study provides insights into the unique biosynthetic pathway for A-94964.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Biological Products/metabolism , Disaccharides/biosynthesis , Pyrimidine Nucleotides/biosynthesis , Uridine/metabolism , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Disaccharides/chemistry , Disaccharides/genetics , Molecular Structure , Multigene Family , Pyrimidine Nucleotides/chemistry , Pyrimidine Nucleotides/genetics , Uridine/chemistry
13.
Microbiol Immunol ; 62(10): 673-676, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30125970

ABSTRACT

Quantitative PCR (qPCR) of human T-cell leukemia virus type 1 (HTLV-1) provirus is used for HTLV-1 testing and for assessment of risk of HTLV-1-related diseases. In this study, a reference material was developed for standardizing HTLV-1 qPCR. Freeze-dried TL-Om1 cells diluted with Jurkat cells were prepared and an assigned value for proviral load (PVL) of 2.71 copies/100 cells was determined by digital PCR. Nine Japanese laboratories using their own methods evaluated the PVLs of this reference material as 1.08-3.49 copies/100 cells. The maximum difference between laboratories was 3.2-fold. Correcting measured PVLs by using a formula incorporating the assigned value of this reference material should minimize such discrepancies.


Subject(s)
DNA, Viral/analysis , Human T-lymphotropic virus 1/genetics , Leukemia, T-Cell/virology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Cell Line, Tumor , DNA, Viral/genetics , Disaccharides/genetics , HTLV-I Infections/genetics , HTLV-I Infections/virology , Humans , Japan , Jurkat Cells , Proviruses/genetics , Reference Standards , Viral Load/genetics
14.
Plant Cell Physiol ; 59(7): 1398-1414, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29660070

ABSTRACT

Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The effective components, naringin and neoeriocitrin, share a highly similar chemical structure and medicinal function. Our HPLC-tandem mass spectrometry (MS/MS) results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin-related genes involved in their regulatory pathways. Due to a lack of basic genetic information, we applied a combination of single molecule real-time (SMRT) sequencing and second-generation sequencing (SGS) to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the differentially expressed gene (DEG)-based heat map analysis revealed that naringin/neoeriocitrin-related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. We found that naringin/neoeriocitrin-related DEGs distributed in nine distinct modules, and DEGs in these modules showed significantly different patterns of transcript abundance to be linked to specific tissues or ages. Moreover, weighted gene co-expression network analysis (WGCNA) results further identified that PAL, 4CL and C4H, and C3H and HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis, respectively, and exhibited high co-expression with MYB- and basic helix-leucine-helix (bHLH)-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue and time specificity of the gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome data set provided important genetic information for further research on D. roosii.


Subject(s)
Disaccharides/genetics , Flavanones/genetics , Gene Expression Regulation, Plant , Polypodiaceae/genetics , Chromatography, High Pressure Liquid , Disaccharides/metabolism , Flavanones/metabolism , Gene Regulatory Networks , Malonyl Coenzyme A/genetics , Malonyl Coenzyme A/metabolism , Phenylalanine/genetics , Phenylalanine/metabolism , Plant Proteins/genetics , Polypodiaceae/metabolism , Sequence Analysis, RNA/methods , Tandem Mass Spectrometry , Transcription Factors/genetics , Transcriptome
15.
Appl Microbiol Biotechnol ; 102(7): 3007-3015, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29476401

ABSTRACT

Difructose dianhydride III (DFA III) is a cyclic difructose containing two reciprocal glycosidic linkages. It is easily generated with a small amount by sucrose caramelization and thus occurs in a wide range of food-stuffs during food processing. DFA III has half sweetness but only 1/15 energy of sucrose, showing potential industrial application as low-calorie sucrose substitute. In addition, it displays many benefits including prebiotic effect, low cariogenicity property, and hypocholesterolemic effect, and improves absorption of minerals, flavonoids, and immunoglobulin G. DFA III is biologically produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). Plenty of DFA III-producing enzymes have been identified. The crystal structure of inulin fructotransferase has been determined, and its molecular modification has been performed to improve the catalytic activity and structural stability. Large-scale production of DFA III has been studied by various IFTases, especially using an ultrafiltration membrane bioreactor. In this article, the recent findings on physiological effects of DFA III are briefly summarized; the research progresses on identification, expression, and molecular modification of IFTase and large-scale biological production of DFA III by IFTase are reviewed in detail.


Subject(s)
Bioreactors , Biotechnology/trends , Disaccharides/biosynthesis , Disaccharides/genetics , Disaccharides/metabolism , Hexosyltransferases/metabolism , Inulin/metabolism , Sweetening Agents/metabolism
16.
Microb Cell Fact ; 17(1): 23, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29448943

ABSTRACT

BACKGROUND: Kojibiose as a prebiotic and inhibitor of α-glucosidase exhibits potential for a wide range of applications in the food and medicine fields; however, large-scale separation and extraction of kojibiose from nature is difficult. Sucrose phosphorylase (SPase) can be used for the production of kojibiose, and currently, SPase is only heterologously expressed in E. coli, making it unsuitable for use in the food industry. However, Bacillus subtilis is generally considered to be a safe organism potentially useful for SPase expression. RESULTS: Here, for the first time, we heterologously expressed Bifidobacterium adolescentis SPase in a food-grade B. subtilis strain. The results showed that SPase was efficiently secreted into the extracellular medium in the absence of a signal peptide. After culturing the recombinant strain in a 3-L bioreactor, crude SPase yield and activity reached 7.5 g/L and 5.3 U/mL, respectively, the highest levels reported to date. The optimal reaction conditions for kojibiose synthesis catalyzed by recombinant SPase were as follows: 0.5 M sucrose, 0.5 M glucose, 0.02 Uenzyme/mgall_substrates, pH 7.0, 50 °C, and 30 h. Furthermore, the substrate-conversion rate reached 40.01%, with kojibiose accounting for 104.45 g/L and selectivity for kojibiose production at 97%. CONCLUSIONS: Here, we successfully expressed SPase in B. subtilis in the absence of a signal peptide and demonstrated its secretion into the extracellular medium. Our results indicated high levels of recombinant enzyme expression, with a substrate-conversion rate of 40.01%. These results provide a basis for large-scale preparation of kojibiose by the recombinant SPase.


Subject(s)
Bacillus subtilis/genetics , Cloning, Organism/methods , Disaccharides/chemical synthesis , Glucosyltransferases/genetics , Disaccharides/genetics , Recombinant Proteins/genetics
17.
PLoS Genet ; 13(7): e1006877, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28683122

ABSTRACT

Chitin utilization by the cholera pathogen Vibrio cholerae is required for its persistence and evolution via horizontal gene transfer in the marine environment. Genes involved in the uptake and catabolism of the chitin disaccharide chitobiose are encoded by the chb operon. The orphan sensor kinase ChiS is critical for regulation of this locus, however, the mechanisms downstream of ChiS activation that result in expression of the chb operon are poorly understood. Using an unbiased transposon mutant screen, we uncover that the nucleoid occlusion protein SlmA is a regulator of the chb operon. SlmA has not previously been implicated in gene regulation. Also, SlmA is a member of the TetR family of proteins, which are generally transcriptional repressors. In vitro, we find that SlmA binds directly to the chb operon promoter, and in vivo, we show that this interaction is required for transcriptional activation of this locus and for chitobiose utilization. Using point mutations that disrupt distinct functions of SlmA, we find that DNA-binding, but not nucleoid occlusion, is critical for transcriptional activation. This study identifies a novel role for SlmA as a transcriptional regulator in V. cholerae in addition to its established role as a cell division licensing factor.


Subject(s)
Bacterial Proteins/genetics , Cholera/genetics , Disaccharides/genetics , Operon/genetics , Transcriptional Activation/genetics , Vibrio cholerae/genetics , Binding Sites , Chitin/metabolism , Cholera/microbiology , DNA-Binding Proteins/genetics , Disaccharides/biosynthesis , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal/genetics , Humans , Point Mutation , Promoter Regions, Genetic , Vibrio cholerae/pathogenicity
18.
Appl Microbiol Biotechnol ; 101(11): 4533-4546, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28280871

ABSTRACT

Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 â†’ 4)-2-acetamido-2-deoxy-ß-D-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N'-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-ß-D-glucosaminide (1 â†’ 4)-ß-linkages and are thus "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer variabilis, respectively. Both FbalChi18A and MvarChi18A were recombinantly expressed in Escherichia coli and were confirmed to exert exo-chitobiose hydrolase activity on chito-oligosaccharides, but differed in temperature and pH activity response profiles. Amino acid sequence comparison of the catalytic ß/α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools for utilization of chitin as an N-acetylglucosamine donor substrate via chitobiose.


Subject(s)
Alteromonadaceae/enzymology , Chitin/metabolism , Disaccharides/genetics , Gammaproteobacteria/enzymology , Hydrolases/genetics , Hydrolases/metabolism , Catalytic Domain , Chitinases/genetics , Chitinases/metabolism , Disaccharides/metabolism , Escherichia coli/genetics , Hydrolases/chemistry , Hydrolysis , Kinetics , Protein Binding , Sequence Analysis, DNA , Serratia marcescens/enzymology , Serratia marcescens/genetics , Substrate Specificity
19.
Glycobiology ; 27(5): 438-449, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28130266

ABSTRACT

Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation.


Subject(s)
Chondroitin Sulfates/biosynthesis , Dermatan Sulfate/biosynthesis , Glycosaminoglycans/biosynthesis , Regeneration/genetics , Animals , Cell Proliferation/genetics , Chlorates/pharmacology , Chondroitin Sulfates/genetics , Dermatan Sulfate/genetics , Disaccharides/genetics , Disaccharides/metabolism , Echinodermata/genetics , Echinodermata/growth & development , Glycosaminoglycans/genetics , Sulfotransferases/genetics
20.
J Antibiot (Tokyo) ; 70(4): 404-413, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27731336

ABSTRACT

Antibiotic A201A produced by Saccharothrix mutabilis subsp. capreolus NRRL3817 contains an aminonucleoside (N6, N6-dimethyl-3'-amino-3'-deoxyadenosyl), a polyketide (α-methyl-p-coumaric acid) and a disaccharide moiety. The heterologous expression in Streptomyces lividans and Streptomyces coelicolor of a S. mutabilis genomic region of ~34 kb results in the production of A201A, which was identified by microbiological, biochemical and physicochemical approaches, and indicating that this region may contain the entire A201A biosynthetic gene cluster (ata). The analysis of the nucleotide sequence of the fragment reveals the presence of 32 putative open reading frames (ORF), 28 of which according to boundary gene inactivation experiments are likely to be sufficient for A201A biosynthesis. Most of these ORFs could be assigned to the biosynthesis of the antibiotic three structural moieties. Indeed, five ORFs had been previously implicated in the biosynthesis of the aminonucleoside moiety, at least nine were related to the biosynthesis of the polyketide (ata-PKS1-ataPKS4, ata18, ata19, ata2, ata4 and ata7) and six were associated with the synthesis of the disaccharide (ata12, ata13, ata16, ata17, ata5 and ata10) moieties. In addition to AtaP5, three putative methyltransferase genes are also found in the ata cluster (Ata6, Ata8 and Ata11), and no regulatory genes were found.


Subject(s)
Actinomycetales/genetics , Aminoglycosides/biosynthesis , Aminoglycosides/genetics , Anti-Bacterial Agents/biosynthesis , Multigene Family/genetics , Amino Acid Sequence , Base Sequence , Computational Biology , Disaccharides/biosynthesis , Disaccharides/genetics , Gene Targeting , Methyltransferases/genetics , Oligonucleotides/chemistry , Plasmids , Polyketides/metabolism , Streptomyces/genetics , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...