Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.720
1.
Nat Commun ; 15(1): 4796, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839783

Powdery mildew is a devastating disease that affects wheat yield and quality. Wheat wild relatives represent valuable sources of disease resistance genes. Cloning and characterization of these genes will facilitate their incorporation into wheat breeding programs. Here, we report the cloning of Pm57, a wheat powdery mildew resistance gene from Aegilops searsii. It encodes a tandem kinase protein with putative kinase-pseudokinase domains followed by a von Willebrand factor A domain (WTK-vWA), being ortholog of Lr9 that mediates wheat leaf rust resistance. The resistance function of Pm57 is validated via independent mutants, gene silencing, and transgenic assays. Stable Pm57 transgenic wheat lines and introgression lines exhibit high levels of all-stage resistance to diverse isolates of the Bgt fungus, and no negative impacts on agronomic parameters are observed in our experimental set-up. Our findings highlight the emerging role of kinase fusion proteins in plant disease resistance and provide a valuable gene for wheat breeding.


Aegilops , Ascomycota , Disease Resistance , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Triticum , Triticum/microbiology , Triticum/genetics , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Ascomycota/genetics , Ascomycota/pathogenicity , Plant Proteins/genetics , Plant Proteins/metabolism , Aegilops/genetics , Aegilops/microbiology , Plant Breeding , Protein Kinases/genetics , Protein Kinases/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant
2.
BMC Plant Biol ; 24(1): 501, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840062

BACKGROUND: Peanut (Arachis hypogaea), a vital oil and food crop globally, is susceptible to web blotch which is a significant foliar disease caused by Phoma arachidicola Marasas Pauer&Boerema leading to substantial yield losses in peanut production. Calcium treatment has been found to enhance plant resistance against pathogens. RESULTS: This study investigates the impact of exogenous calcium on peanut resistance to web blotch and explores its mechanisms. Greenhouse experiments revealed that exogenous calcium treatment effectively enhanced resistance to peanut web blotch. Specifically, amino acid calcium and sugar alcohol calcium solutions demonstrated the best induced resistance effects, achieving reduction rates of 61.54% and 60% in Baisha1016, and 53.94% and 50% in Luhua11, respectively. All exogenous calcium treatments reduced malondialdehyde (MDA) and relative electrical conductivity (REC) levels in peanut leaves, mitigating pathogen-induced cell membrane damage. Exogenous calcium supplementation led to elevated hydrogen peroxide (H2O2) content and superoxide anion (O2∙-) production in peanut leaves, facilitating the accumulation of reactive oxygen species (ROS) crucial for plant defense responses. Amino acid calcium and sugar alcohol calcium treatments significantly boosted activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in peanut leaves. Activation of these antioxidant enzymes effectively scavenged excess ROS, maintaining ROS balance and mitigating cellular damage. CONCLUSIONS: In summary, exogenous calcium treatment triggered ROS production, which was subsequently eliminated by the activation of antioxidant enzymes, thereby reducing cell membrane damage and inducing defense responses against peanut web blotch.


Arachis , Calcium , Cell Membrane , Disease Resistance , Plant Diseases , Reactive Oxygen Species , Arachis/metabolism , Arachis/physiology , Reactive Oxygen Species/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Ascomycota/physiology , Plant Leaves/metabolism , Hydrogen Peroxide/metabolism
3.
Microbiome ; 12(1): 101, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840214

BACKGROUND: Plant microbiota contributes to plant growth and health, including enhancing plant resistance to various diseases. Despite remarkable progress in understanding diseases resistance in plants, the precise role of rhizosphere microbiota in enhancing watermelon resistance against soil-borne diseases remains unclear. Here, we constructed a synthetic community (SynCom) of 16 core bacterial strains obtained from the rhizosphere of grafted watermelon plants. We further simplified SynCom and investigated the role of bacteria with synergistic interactions in promoting plant growth through a simple synthetic community. RESULTS: Our results demonstrated that the SynCom significantly enhanced the growth and disease resistance of ungrafted watermelon grown in non-sterile soil. Furthermore, analysis of the amplicon and metagenome data revealed the pivotal role of Pseudomonas in enhancing plant health, as evidenced by a significant increase in the relative abundance and biofilm-forming pathways of Pseudomonas post-SynCom inoculation. Based on in vitro co-culture experiments and bacterial metabolomic analysis, we selected Pseudomonas along with seven other members of the SynCom that exhibited synergistic effects with Pseudomonas. It enabled us to further refine the initially constructed SynCom into a simplified SynCom comprising the eight selected bacterial species. Notably, the plant-promoting effects of simplified SynCom were similar to those of the initial SynCom. Furthermore, the simplified SynCom protected plants through synergistic effects of bacteria. CONCLUSIONS: Our findings suggest that the SynCom proliferate in the rhizosphere and mitigate soil-borne diseases through microbial synergistic interactions, highlighting the potential of synergistic effects between microorganisms in enhancing plant health. This study provides a novel insight into using the functional SynCom as a promising solution for sustainable agriculture. Video Abstract.


Citrullus , Fusarium , Microbiota , Plant Diseases , Pseudomonas , Rhizosphere , Soil Microbiology , Citrullus/microbiology , Fusarium/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pseudomonas/genetics , Disease Resistance , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Plant Roots/microbiology
4.
Physiol Plant ; 176(3): e14375, 2024.
Article En | MEDLINE | ID: mdl-38837224

MicroRNA(miRNA) is a class of non-coding small RNA that plays an important role in plant growth, development, and response to environmental stresses. Unlike most miRNAs, which usually target homologous genes across a variety of species, miR827 targets different types of genes in different species. Research on miR827 mainly focuses on its role in regulating phosphate (Pi) homeostasis of plants, however, little is known about its function in plant response to virus infection. In the present study, miR827 was significantly upregulated in the recovery tissue of virus-infected Nicotiana tabacum. Overexpression of miR827 could improve plants resistance to the infection of chilli veinal mottle virus (ChiVMV) in Nicotiana benthamiana, whereas interference of miR827 increased the susceptibility of the virus-infected plants. Further experiments indicated that the antiviral defence regulated by miR827 was associated with the reactive oxygen species and salicylic acid signalling pathways. Then, fructose-1,6-bisphosphatase (FBPase) was identified to be a target of miR827, and virus infection could affect the expression of FBPase. Finally, transient expression of FBPase increased the susceptibility to ChiVMV-GFP infection in N. benthamiana. By contrast, silencing of FBPase increased plant resistance. Taken together, our results demonstrate that miR827 plays a positive role in tobacco response to virus infection, thus providing new insights into understanding the role of miR827 in plant-virus interaction.


Disease Resistance , Gene Expression Regulation, Plant , MicroRNAs , Nicotiana , Plant Diseases , Nicotiana/virology , Nicotiana/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/virology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Salicylic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Tobamovirus/physiology , Tobamovirus/genetics , Plants, Genetically Modified
5.
Physiol Plant ; 176(3): e14377, 2024.
Article En | MEDLINE | ID: mdl-38837251

One of the most devastating diseases of apples is scab, caused by the fungus Venturia inaequalis. Most commercial apple varieties are susceptible to this disease; only a few are resistant. Breeding approaches are being used to develop better apple varieties that are resistant to scab. Volatile organic compounds (VOCs) contribute greatly to a plant's phenotype, and their emission profile largely depends on the genotype. In the non-destructive phenotyping of plants, VOCs can be used as biomarkers. In this study, we assessed non-destructively the scab tolerance potential of resistant (cv. 'Prima') and susceptible (cv. 'Oregon Spur') apple cultivars by comparing their major leaf VOC compositions and relative proportions. A comparison of the leaf VOC profiles of the two cultivars revealed 16 different VOCs, with cis-3-hexenyl acetate (3HA) emerging as a biomarker of cultivar differences. V. inaequalis growth was significantly inhibited in vitro by 3HA treatment. 3HA was significantly effective in reducing scab symptoms on V. inaequalis-inoculated leaves of 'Oregon Spur.' The resistant cultivar 'Prima' also exhibited higher lipoxygenase (LOX) activity and α-linolenic acid (ALA) levels, suggesting that V. inaequalis resistance is linked to LOX activity and 3HA biosynthesis. This study proposes 3HA as a potential biomarker for rapid non-destructive screening of scab-resistant apple germplasm of 'Prima' based on leaf VOCs.


Ascomycota , Disease Resistance , Malus , Phenotype , Plant Diseases , Plant Leaves , Volatile Organic Compounds , Malus/microbiology , Malus/genetics , Malus/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Plant Diseases/microbiology , Ascomycota/physiology , Ascomycota/pathogenicity , Plant Leaves/microbiology , Plant Leaves/metabolism , Disease Resistance/genetics , Lipoxygenase/metabolism , Lipoxygenase/genetics
6.
Plant Mol Biol ; 114(3): 68, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842571

Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.


Alternaria , Arabidopsis , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Transcriptome , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis/immunology , Alternaria/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Scopoletin/metabolism , Gene Expression Profiling , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
7.
Sci Rep ; 14(1): 12816, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834653

Previous studies showed that Australian wheat cultivars Janz and Sunco carry leaf rust and stem rust resistance genes Lr24 and Sr24 derived from Thinopyrum ponticum chromosome arm 3AgL. However, the size of the alien segments carrying Lr24 and Sr24 in the lines were not determined. In this study, we used non-denaturing fluorescence in situ hybridization (ND-FISH), genomic in situ hybridization (GISH), and PCR-based landmark unique gene (PLUG) markers to visualize the alien segments in Janz and Sunco, and further compared them with the segments in US cultivars Agent and Amigo. The fraction length (FL) of the alien translocation in Agent was 0.70-1.00, whereas those in Janz, Sunco, and Amigo were smaller, at FL 0.85-1.00. It was deduced that the alien gene RAg encoding for red grain color and rust resistance genes Lr24 and Sr24 on chromosome arm 3AgL were in bins of FL 0.70-0.85 and 0.85-1.00, respectively. We retrieved and extracted nucleotide-binding site-leucine-rich repeat (NBS-LRR) receptor genes corresponding to the region of Lr24 and Sr24 on chromosomes 3E, and 3J, 3Js and 3St from the reference genome sequences of Th. elongatum and Th. intermedium, respectively. A set of molecular markers developed for Lr24 and Sr24 from those extracted NBS-LRR genes will provide valuable information for fine mapping and cloning of these genes.


Chromosomes, Plant , Disease Resistance , Genes, Plant , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Chromosomes, Plant/genetics , In Situ Hybridization, Fluorescence , Basidiomycota , Chromosome Mapping
8.
Mol Biol Rep ; 51(1): 708, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824228

BACKGROUND: Groundnut is vulnerable to the major foliar fungal disease viz., late leaf spot (LLS) and rust in kharif season, which results in severe yield losses. Until now, LLS and rust resistance linked markers were developed based on GPBD 4 as a major donor source and were validated in its derivatives only, which restricted their use in marker assisted selection (MAS) involving other donors. METHODS AND RESULTS: The current study focused to validate LLS and rust resistance linked markers employing advanced breeding lines of F6 generation, derived from nine different crosses involving nine diverse parents, to identify potential markers for marker-assisted breeding of LLS and rust resistance in groundnut. Out of 28-trait linked markers used for validation, 8 were polymorphic (28.57%). Marker-trait association (MTA) and Single Marker Analysis (SMA) revealed that the SSR marker pPGPseq5D05 is significantly associated with both LLS (15.8% PVE) and rust (17.5% PVE) resistance, whereas, the marker IPAHM103 is tightly linked with rust resistance (26.8% PVE) alone. In silico analysis revealed that the marker gene for IPAHM103 is a zinc finger protein and the marker gene for pPGPseq5D05 is an ADP-ribosylation factor GTPase-activating protein. Both these protein products impart resistance or tolerance to biotic stress in crop plants. Two other markers namely, GMLQ975 and pPGPseq13A10 were also found to be associated with LLS resistance explaining MTA up to 60%. CONCLUSION: These gene specific markers will enable us to screen more number of germplasm lines or newly developed lines in MAS schemes for LLS and rust resistance using a wide range of resistant sources.


Arachis , Disease Resistance , Plant Diseases , Disease Resistance/genetics , Arachis/genetics , Arachis/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Genetic Markers , Plant Breeding/methods , Basidiomycota/pathogenicity , Basidiomycota/physiology , Plant Leaves/genetics , Plant Leaves/microbiology , Quantitative Trait Loci/genetics , Genes, Plant/genetics , Chromosome Mapping/methods
9.
Mol Plant Pathol ; 25(6): e13483, 2024 Jun.
Article En | MEDLINE | ID: mdl-38829344

As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.


Calcium , Disease Resistance , Gossypium , Plant Diseases , Plant Proteins , Gossypium/microbiology , Gossypium/genetics , Gossypium/metabolism , Gossypium/immunology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Plant Proteins/genetics , Calcium/metabolism , Gene Expression Regulation, Plant , Calmodulin/metabolism , Calmodulin/genetics , Arabidopsis/microbiology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Ascomycota/physiology , Ascomycota/pathogenicity , Plants, Genetically Modified , Verticillium/physiology , Verticillium/pathogenicity
10.
Plant Cell Rep ; 43(6): 158, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822833

KEY MESSAGE: Transgenic plants stably overexpressing ScOPR1 gene enhanced disease resistance by increasing the accumulation of JA, SA, and GST, as well as up-regulating the expression of genes related to signaling pathways. 12-Oxo-phytodienoate reductase (OPR) is an oxidoreductase that depends on flavin mononucleotide (FMN) and catalyzes the conversion of 12-oxophytodienoate (12-OPDA) into jasmonic acid (JA). It plays a key role in plant growth and development, and resistance to adverse stresses. In our previous study, we have obtained an OPR gene (ScOPR1, GenBank Accession Number: MG755745) from sugarcane. This gene showed positive responses to methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), and Sporisorium scitamineum, suggesting its potential for pathogen resistance. Here, in our study, we observed that Nicotiana benthamiana leaves transiently overexpressing ScOPR1 exhibited weaker disease symptoms, darker 3,3-diaminobenzidine (DAB) staining, higher accumulation of reactive oxygen species (ROS), and higher expression of hypersensitive response (HR) and SA pathway-related genes after inoculation with Ralstonia solanacearum and Fusarium solanacearum var. coeruleum. Furthermore, the transgenic N. benthamiana plants stably overexpressing the ScOPR1 gene showed enhanced resistance to pathogen infection by increasing the accumulation of JA, SA, and glutathione S-transferase (GST), as well as up-regulating genes related to HR, JA, SA, and ROS signaling pathways. Transcriptome analysis revealed that the specific differentially expressed genes (DEGs) in ScOPR1-OE were significantly enriched in hormone transduction signaling and plant-pathogen interaction pathways. Finally, a functional mechanism model of the ScOPR1 gene in response to pathogen infection was depicted. This study provides insights into the molecular mechanism of ScOPR1 and presents compelling evidence supporting its positive involvement in enhancing plant disease resistance.


Cyclopentanes , Disease Resistance , Gene Expression Regulation, Plant , Oxylipins , Plant Diseases , Plant Growth Regulators , Plant Proteins , Plants, Genetically Modified , Saccharum , Salicylic Acid , Signal Transduction , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Saccharum/genetics , Saccharum/microbiology , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Nicotiana/genetics , Nicotiana/microbiology , Reactive Oxygen Species/metabolism , Acetates/pharmacology , Plant Leaves/genetics , Plant Leaves/microbiology , Abscisic Acid/metabolism , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity
11.
Physiol Plant ; 176(3): e14323, 2024.
Article En | MEDLINE | ID: mdl-38695188

Tomatoes are frequently challenged by various pathogens, among which Phytophthora capsici (P. capsici) is a destructive soil-borne pathogen that seriously threatens the safe production of tomatoes. Plant growth-promoting rhizobacteria (PGPR) positively induced plant resistance against multiple pathogens. However, little is known about the role and regulatory mechanism of PGPR in tomato resistance to P. capsici. Here, we identified a new strain Serratia plymuthica (S. plymuthica), HK9-3, which has a significant antibacterial effect on P. capsici infection. Meanwhile, stable colonization in roots by HK9-3, even under P. capsici infection, improved tomato growth parameters, root system architecture, photosynthetic capacity, and boosted biomass. Importantly, HK9-3 colonization significantly alleviated the damage caused by P. capsici infection through enhancing ROS scavenger ability and inducing antioxidant defense system and pathogenesis-related (PR) proteins in leaves, as evidenced by elevating the activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), and chitinase, ß-1,3-glucanase, and increasing the transcripts of POD, SOD, CAT, APX1, PAL1, PAL2, PAL5, PPO2, CHI17 and ß-1,3-glucanase genes. Notably, HK9-3 colonization not only effectively improved soil microecology and soil fertility, but also significantly enhanced fruit yield by 44.6% and improved quality. Our study presents HK9-3 as a promising and effective solution for controlling P. capsici infection in tomato cultivation while simultaneously promoting plant growth and increasing yield, which may have implications for P. capsici control in vegetable production.


Disease Resistance , Phytophthora , Plant Diseases , Rhizosphere , Serratia , Solanum lycopersicum , Solanum lycopersicum/microbiology , Solanum lycopersicum/physiology , Solanum lycopersicum/genetics , Phytophthora/physiology , Serratia/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Antioxidants/metabolism , Plant Roots/microbiology , Plant Roots/physiology
12.
New Phytol ; 243(1): 345-361, 2024 Jul.
Article En | MEDLINE | ID: mdl-38757730

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins with pathogen sensor activities have evolved to initiate immune signaling by activating helper NLRs. However, the mechanisms underpinning helper NLR activation by sensor NLRs remain poorly understood. Although coiled coil (CC) type sensor NLRs such as the Potato virus X disease resistance protein Rx have been shown to activate the oligomerization of their downstream helpers NRC2, NRC3 and NRC4, the domains involved in sensor-helper signaling are not known. Here, we used Agrobacterium tumefaciens-mediated transient expression in Nicotiana benthamiana to show that the nucleotide-binding (NB) domain within the NB-ARC of Rx is necessary and sufficient for oligomerization and immune signaling of downstream helper NLRs. In addition, the NB domains of the disease resistance proteins Gpa2 (cyst nematode resistance), Rpi-amr1, Rpi-amr3 (oomycete resistance) and Sw-5b (virus resistance) are also sufficient to activate their respective downstream NRC helpers. Using transient expression in the lettuce (Lactuca sativa), we show that Rx (both as full length or as NB domain truncation) and its helper NRC2 form a minimal functional unit that can be transferred from solanaceous plants (lamiids) to Campanulid species. Our results challenge the prevailing paradigm that NLR proteins exclusively signal via their N-terminal domains and reveal a signaling activity for the NB domain of NRC-dependent sensor NLRs. We propose a model in which helper NLRs can perceive the status of the NB domain of their upstream sensors.


Disease Resistance , NLR Proteins , Nicotiana , Plant Proteins , Protein Domains , Signal Transduction , Nicotiana/genetics , Nicotiana/immunology , NLR Proteins/metabolism , NLR Proteins/genetics , Disease Resistance/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Lactuca/genetics , Lactuca/immunology , Protein Multimerization , Nucleotides/metabolism , Plant Diseases/virology , Plant Diseases/immunology , Plants, Genetically Modified , Plant Immunity
13.
Dev Comp Immunol ; 157: 105190, 2024 Aug.
Article En | MEDLINE | ID: mdl-38697378

Toll-like receptor 1 (TLR1) is a pattern recognition receptor that plays critical roles in triggering immune activation via detecting bacterial lipoproteins and lipopeptides. In this study, the genetic characteristic of TLR1 was studied for an important aquaculture fish, swamp eel Monopterus albus. The eel has been seriously threatened by infectious diseases. However, a low level of genetic heterogeneity in the fish that has resulted from a demographic bottleneck presents further challenges in breeding for disease resistance. A comparison with the homologue of closely related species M. javanensis revealed that amino acid replacement (nonsynonymous) but not silent (synonymous) differences have accumulated nonrandomly over the coding sequences of the receptors at the early stage of their phylogenetic split. The combined results from comparative analyses of nonsynonymous-to-synonymous polymorphisms showed that the receptor has undergone significant diversification in M. albus driven by adaptive selection likely after the genetic bottleneck. Some of the changes reported here have taken place in the structures mediating heterodimerization with co-receptor TLR2, ligand recognition, and/or formation of active signaling complex with adaptor, which highlighted key structural elements and strategies of TLR1 in arms race against exogenous challenges. The findings of this study will add to the knowledge base of genetic engineering and breeding for disease resistance in the eel.


Fish Proteins , Phylogeny , Smegmamorpha , Toll-Like Receptor 1 , Animals , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 1/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Smegmamorpha/genetics , Smegmamorpha/immunology , Immunity, Innate , Polymorphism, Genetic , Disease Resistance/genetics , Disease Resistance/immunology , Evolution, Molecular , Fish Diseases/immunology
14.
Mol Biol Rep ; 51(1): 626, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717621

BACKGROUND: Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases of rice leading to huge yield losses in Southeast Asia. The recessive resistance gene xa-45(t) from Oryza glaberrima IRGC102600B, mapped on rice chromosome 8, spans 80 Kb with 9 candidate genes on Nipponbare reference genome IRGSP-1.0. The xa-45(t) gene provides durable resistance against all the ten Xanthomonas pathotypes of Northern India, thus aiding in the expansion of recessive bacterial blight resistance gene pool. Punjab Rice PR127, carrying xa-45(t), was released for wider use in breeding programs. This study aims to precisely locate the target gene among the 9 candidates conferring resistance to bacterial blight disease. METHODS AND RESULTS: Sanger sequencing of all nine candidate genes revealed seven SNPs and an Indel between the susceptible parent Pusa 44 and the resistant introgression line IL274. The genotyping with polymorphic markers identified three recombinant breakpoints for LOC_Os08g42370, and LOC_Os08g42400, 15 recombinants for LOC_Os08g423420 and 26 for LOC_Os08g42440 out of 190 individuals. Relative expression analysis across six time intervals (0, 8, 24, 48, 72, and 96 h) after bacterial blight infection showed over expression of LOC_Os08g42410-specific transcripts in IL274 compared to Pusa 44, with a significant 4.46-fold increase observed at 72 h post-inoculation. CONCLUSIONS: The Indel marker at the locus LOC_Os08g42410 was found co-segregating with the phenotype, suggesting its candidacy towards xa-45(t). The transcript abundance assay provides strong evidence for the involvement of LOC_Os08g42410 in the resistance conferred by the bacterial blight gene xa-45(t).


Chromosome Mapping , Disease Resistance , Oryza , Plant Diseases , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genes, Recessive , Genotype , Oryza/genetics , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Polymorphism, Single Nucleotide/genetics , Xanthomonas/pathogenicity
15.
New Phytol ; 243(1): 362-380, 2024 Jul.
Article En | MEDLINE | ID: mdl-38730437

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Cyclopentanes , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Diseases , Plant Immunity , Plant Proteins , Rhizoctonia , Salicylic Acid , Xanthomonas , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Oryza/microbiology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Xanthomonas/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizoctonia/physiology , Plant Immunity/drug effects , Mutation/genetics , Disease Resistance/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding/drug effects
16.
Sci Rep ; 14(1): 12253, 2024 05 28.
Article En | MEDLINE | ID: mdl-38806545

Overexpression of Glycine max disease resistant 1 (GmDR1) exhibits broad-spectrum resistance against Fusarium virguliforme, Heterodera glycines (soybean cyst nematode), Tetranychus urticae (Koch) (spider mites), and Aphis glycines Matsumura (soybean aphids) in soybean. To understand the mechanisms of broad-spectrum immunity mediated by GmDR1, the transcriptomes of a strong and a weak GmDR1-overexpressor following treatment with chitin, a pathogen- and pest-associated molecular pattern (PAMP) common to these organisms, were investigated. The strong and weak GmDR1-overexpressors exhibited altered expression of 6098 and 992 genes, respectively, as compared to the nontransgenic control following chitin treatment. However, only 192 chitin- and 115 buffer-responsive genes exhibited over two-fold changes in expression levels in both strong and weak GmDR1-overexpressors as compared to the control. MapMan analysis of the 192 chitin-responsive genes revealed 64 biotic stress-related genes, of which 53 were induced and 11 repressed as compared to the control. The 53 chitin-induced genes include nine genes that encode receptor kinases, 13 encode nucleotide-binding leucine-rich repeat (NLR) receptor proteins, seven encode WRKY transcription factors, four ethylene response factors, and three MYB-like transcription factors. Investigation of a subset of these genes revealed three receptor protein kinases, seven NLR proteins, and one WRKY transcription factor genes that are induced following F. virguliforme and H. glycines infection. The integral plasma membrane GmDR1 protein most likely recognizes PAMPs including chitin and activates transcription of genes encoding receptor kinases, NLR proteins and defense-related genes. GmDR1 could be a pattern recognition receptor that regulates the expression of several NLRs for expression of PAMP-triggered immunity and/or priming the effector triggered immunity.


Disease Resistance , Gene Expression Regulation, Plant , Glycine max , NLR Proteins , Plant Diseases , Plant Proteins , Glycine max/parasitology , Glycine max/genetics , Disease Resistance/genetics , Plant Diseases/parasitology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , NLR Proteins/metabolism , NLR Proteins/genetics , Animals , Fusarium , Chitin/metabolism , Cell Membrane/metabolism , Transcriptome , Plants, Genetically Modified
17.
Int J Biol Macromol ; 270(Pt 1): 132206, 2024 Jun.
Article En | MEDLINE | ID: mdl-38735610

The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.


Brassica napus , Disease Resistance , Gene Expression Regulation, Plant , Plant Diseases , Plasmodiophorida , Brassica napus/parasitology , Brassica napus/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/drug effects , Plant Diseases/parasitology , Plant Diseases/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Multigene Family , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Genome, Plant , Intramolecular Transferases
18.
Biochem Biophys Res Commun ; 720: 150086, 2024 Aug 06.
Article En | MEDLINE | ID: mdl-38761478

Root-knot nematode (RKN) is one of the most damaging plant pathogen in the world. They exhibit a wide host range and cause serious crop losses. The cell wall, encasing every plant cell, plays a crucial role in defending of RKN invasion. Expansins are a group of cell wall proteins inducing cell wall loosening and extensibility. They are widely involved in the regulation of plant growth and the response to biotic and abiotic stresses. In this study, we have characterized the biological function of tobacco (Nicotiana tabacum) NtEXPA7, the homologue of Solyc08g080060.2 (SlEXPA18), of which the transcription level was significantly reduced in susceptible tomato upon RKN infection. The expression of NtEXPA7 was up-regulated after inoculation of RKNs. The NtEXPA7 protein resided in the cell wall. Overexpression of NtEXPA7 promoted the seedling growth of transgenic tobacco. Meanwhile the increased expression of NtEXPA7 was beneficial to enhance the resistance against RKNs. This study expands the understanding of biological role of expansin in coordinate plant growth and disease resistance.


Disease Resistance , Gene Expression Regulation, Plant , Nicotiana , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Seedlings , Nicotiana/parasitology , Nicotiana/genetics , Nicotiana/metabolism , Animals , Seedlings/parasitology , Seedlings/growth & development , Seedlings/genetics , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/parasitology , Plant Diseases/genetics , Disease Resistance/genetics , Plants, Genetically Modified/parasitology , Tylenchoidea/physiology , Cell Wall/metabolism , Cell Wall/parasitology , Plant Roots/parasitology , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics
19.
JCI Insight ; 9(9)2024 May 08.
Article En | MEDLINE | ID: mdl-38716731

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/immunology , Uganda , Adult , Male , Minor Histocompatibility Antigens/immunology , Minor Histocompatibility Antigens/genetics , Female , Tuberculosis/immunology , Tuberculosis/microbiology , T-Lymphocytes/immunology , Latent Tuberculosis/immunology , Latent Tuberculosis/microbiology , Clone Cells/immunology , Disease Resistance/immunology , Disease Resistance/genetics , Young Adult , Histocompatibility Antigens Class I
20.
BMC Plant Biol ; 24(1): 462, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802731

In this comprehensive genome-wide study, we identified and classified 83 Xylanase Inhibitor Protein (XIP) genes in wheat, grouped into five distinct categories, to enhance understanding of wheat's resistance to Fusarium head blight (FHB), a significant fungal threat to global wheat production. Our analysis reveals the unique distribution of XIP genes across wheat chromosomes, particularly at terminal regions, suggesting their role in the evolutionary expansion of the gene family. Several XIP genes lack signal peptides, indicating potential alternative secretion pathways that could be pivotal in plant defense against FHB. The study also uncovers the sequence homology between XIPs and chitinases, hinting at a functional diversification within the XIP gene family. Additionally, the research explores the association of XIP genes with plant immune mechanisms, particularly their linkage with plant hormone signaling pathways like abscisic acid and jasmonic acid. XIP-7A3, in particular, demonstrates a significant increase in expression upon FHB infection, highlighting its potential as a key candidate gene for enhancing wheat's resistance to this disease. This research not only enriches our understanding of the XIP gene family in wheat but also provides a foundation for future investigations into their role in developing FHB-resistant wheat cultivars. The findings offer significant implications for wheat genomics and breeding, contributing to the development of more resilient crops against fungal diseases.


Disease Resistance , Fusarium , Plant Diseases , Plant Proteins , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/immunology , Fusarium/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Immunity/genetics , Genome-Wide Association Study , Genes, Plant , Genome, Plant , Phylogeny
...