Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.084
1.
Artif Cells Nanomed Biotechnol ; 52(1): 345-354, 2024 Dec.
Article En | MEDLINE | ID: mdl-38829715

Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.


3D microencapsulation models of cancer offer a customisable platform to mimic key aspects of solid tumour physiology in vitro. However, many 3D models do not recapitulate the hypoxic conditions and altered tissue stiffness established in many tumour types and stages. Furthermore, microparticles for cancer cell encapsulation are commonly produced using methods that are not necessarily suitable for scale up to high-throughput manufacturing. This review aims to evaluate current technologies for cancer cell-laden microparticle production with a focus on physiological relevance and scalability. Emerging techniques will then be touched on, for production of uniform microparticles suitable for high-throughput drug discovery applications.


Drug Discovery , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Discovery/methods , Cell Encapsulation/methods , Models, Biological , Capsules , Animals , Drug Compounding/methods , Tumor Microenvironment/drug effects
2.
Drug Res (Stuttg) ; 74(5): 208-219, 2024 Jun.
Article En | MEDLINE | ID: mdl-38830370

The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.


Artificial Intelligence , Drug Discovery , Drug Discovery/methods , Humans , Pharmaceutical Preparations
3.
Respir Res ; 25(1): 231, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824592

Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.


Drug Discovery , Lung Diseases , Lung , Animals , Lung/drug effects , Lung/physiopathology , Humans , Lung Diseases/physiopathology , Lung Diseases/pathology , Drug Discovery/methods , Organ Culture Techniques
4.
Molecules ; 29(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731447

Neuromuscular blocking agents (NMBAs) are routinely used during anesthesia to relax skeletal muscle. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels; NMBAs can induce muscle paralysis by preventing the neurotransmitter acetylcholine (ACh) from binding to nAChRs situated on the postsynaptic membranes. Despite widespread efforts, it is still a great challenge to find new NMBAs since the introduction of cisatracurium in 1995. In this work, an effective ensemble-based virtual screening method, including molecular property filters, 3D pharmacophore model, and molecular docking, was applied to discover potential NMBAs from the ZINC15 database. The results showed that screened hit compounds had better docking scores than the reference compound d-tubocurarine. In order to further investigate the binding modes between the hit compounds and nAChRs at simulated physiological conditions, the molecular dynamics simulation was performed. Deep analysis of the simulation results revealed that ZINC257459695 can stably bind to nAChRs' active sites and interact with the key residue Asp165. The binding free energies were also calculated for the obtained hits using the MM/GBSA method. In silico ADMET calculations were performed to assess the pharmacokinetic properties of hit compounds in the human body. Overall, the identified ZINC257459695 may be a promising lead compound for developing new NMBAs as an adjunct to general anesthesia, necessitating further investigations.


Molecular Docking Simulation , Molecular Dynamics Simulation , Neuromuscular Blocking Agents , Receptors, Nicotinic , Neuromuscular Blocking Agents/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/chemistry , Humans , Drug Discovery/methods , Protein Binding , Binding Sites , Ligands
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731835

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Leukemia, Myeloid, Acute , Systems Biology , Tretinoin , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Tretinoin/pharmacology , Systems Biology/methods , HL-60 Cells , Gene Expression Profiling , K562 Cells , Drug Discovery/methods , Transcriptome , Cell Line, Tumor , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Leukemic/drug effects , Tumor Necrosis Factor-alpha/metabolism
6.
Expert Opin Drug Discov ; 19(6): 671-682, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722032

INTRODUCTION: For rational drug design, it is crucial to understand the receptor-drug binding processes and mechanisms. A new era for the use of computer simulations in predicting drug-receptor interactions at an atomic level has begun with remarkable advances in supercomputing and methodological breakthroughs. AREAS COVERED: End-point free energy calculation methods such as Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) or Molecular-Mechanics/Generalized Born Surface Area (MM/GBSA), free energy perturbation (FEP), and thermodynamic integration (TI) are commonly used for binding free energy calculations in drug discovery. In addition, kinetic dissociation and association rate constants (koff and kon) play critical roles in the function of drugs. Nowadays, Molecular Dynamics (MD) and enhanced sampling simulations are increasingly being used in drug discovery. Here, the authors provide a review of the computational techniques used in drug binding free energy and kinetics calculations. EXPERT OPINION: The applications of computational methods in drug discovery and design are expanding, thanks to improved predictions of the binding free energy and kinetic rates of drug molecules. Recent microsecond-timescale enhanced sampling simulations have made it possible to accurately capture repetitive ligand binding and dissociation, facilitating more efficient and accurate calculations of ligand binding free energy and kinetics.


Drug Design , Drug Discovery , Molecular Dynamics Simulation , Thermodynamics , Humans , Computer Simulation , Drug Discovery/methods , Kinetics , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Protein Binding
7.
Expert Opin Drug Discov ; 19(6): 683-698, 2024 Jun.
Article En | MEDLINE | ID: mdl-38727016

INTRODUCTION: Prediction of pharmacokinetic (PK) properties is crucial for drug discovery and development. Machine-learning (ML) models, which use statistical pattern recognition to learn correlations between input features (such as chemical structures) and target variables (such as PK parameters), are being increasingly used for this purpose. To embed ML models for PK prediction into workflows and to guide future development, a solid understanding of their applicability, advantages, limitations, and synergies with other approaches is necessary. AREAS COVERED: This narrative review discusses the design and application of ML models to predict PK parameters of small molecules, especially in light of established approaches including in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetic (PBPK) models. The authors illustrate scenarios in which the three approaches are used and emphasize how they enhance and complement each other. In particular, they highlight achievements, the state of the art and potentials of applying machine learning for PK prediction through a comphrehensive literature review. EXPERT OPINION: ML models, when carefully crafted, regularly updated, and appropriately used, empower users to prioritize molecules with favorable PK properties. Informed practitioners can leverage these models to improve the efficiency of drug discovery and development process.


Drug Development , Drug Discovery , Machine Learning , Models, Biological , Pharmacokinetics , Humans , Drug Discovery/methods , Drug Development/methods , Animals , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/administration & dosage
8.
J Comput Aided Mol Des ; 38(1): 22, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753096

Although the size of virtual libraries of synthesizable compounds is growing rapidly, we are still enumerating only tiny fractions of the drug-like chemical universe. Our capability to mine these newly generated libraries also lags their growth. That is why fragment-based approaches that utilize on-demand virtual combinatorial libraries are gaining popularity in drug discovery. These à la carte libraries utilize synthetic blocks found to be effective binders in parts of target protein pockets and a variety of reliable chemistries to connect them. There is, however, no data on the potential impact of the chemistries used for making on-demand libraries on the hit rates during virtual screening. There are also no rules to guide in the selection of these synthetic methods for production of custom libraries. We have used the SAVI (Synthetically Accessible Virtual Inventory) library, constructed using 53 reliable reaction types (transforms), to evaluate the impact of these chemistries on docking hit rates for 40 well-characterized protein pockets. The data shows that the virtual hit rates differ significantly for different chemistries with cross coupling reactions such as Sonogashira, Suzuki-Miyaura, Hiyama and Liebeskind-Srogl coupling producing the highest hit rates. Virtual hit rates appear to depend not only on the property of the formed chemical bond but also on the diversity of available building blocks and the scope of the reaction. The data identifies reactions that deserve wider use through increasing the number of corresponding building blocks and suggests the reactions that are more effective for pockets with certain physical and hydrogen bond-forming properties.


Molecular Docking Simulation , Protein Binding , Proteins , Small Molecule Libraries , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Proteins/chemistry , Proteins/metabolism , Binding Sites , Drug Discovery/methods , Ligands , Drug Design , Humans
9.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38754409

Drug repurposing offers a viable strategy for discovering new drugs and therapeutic targets through the analysis of drug-gene interactions. However, traditional experimental methods are plagued by their costliness and inefficiency. Despite graph convolutional network (GCN)-based models' state-of-the-art performance in prediction, their reliance on supervised learning makes them vulnerable to data sparsity, a common challenge in drug discovery, further complicating model development. In this study, we propose SGCLDGA, a novel computational model leveraging graph neural networks and contrastive learning to predict unknown drug-gene associations. SGCLDGA employs GCNs to extract vector representations of drugs and genes from the original bipartite graph. Subsequently, singular value decomposition (SVD) is employed to enhance the graph and generate multiple views. The model performs contrastive learning across these views, optimizing vector representations through a contrastive loss function to better distinguish positive and negative samples. The final step involves utilizing inner product calculations to determine association scores between drugs and genes. Experimental results on the DGIdb4.0 dataset demonstrate SGCLDGA's superior performance compared with six state-of-the-art methods. Ablation studies and case analyses validate the significance of contrastive learning and SVD, highlighting SGCLDGA's potential in discovering new drug-gene associations. The code and dataset for SGCLDGA are freely available at https://github.com/one-melon/SGCLDGA.


Neural Networks, Computer , Humans , Drug Repositioning/methods , Computational Biology/methods , Algorithms , Software , Drug Discovery/methods , Machine Learning
10.
Nat Commun ; 15(1): 4175, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755132

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Antitubercular Agents , Mycobacterium tuberculosis , Single-Cell Analysis , Tuberculosis , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Single-Cell Analysis/methods , Tuberculosis/drug therapy , Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Microfluidics/methods , Phenotype , Drug Discovery/methods , Drug Synergism
11.
Life Sci ; 348: 122697, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38710280

The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.


Biomarkers, Tumor , Breast Neoplasms , Drug Discovery , Receptors, Androgen , Signal Transduction , Humans , Receptors, Androgen/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Signal Transduction/drug effects , Biomarkers, Tumor/metabolism , Drug Discovery/methods
12.
Bioinformatics ; 40(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38730554

MOTIVATION: Enhanced by contemporary computational advances, the prediction of drug-target interactions (DTIs) has become crucial in developing de novo and effective drugs. Existing deep learning approaches to DTI prediction are frequently beleaguered by a tendency to overfit specific molecular representations, which significantly impedes their predictive reliability and utility in novel drug discovery contexts. Furthermore, existing DTI networks often disregard the molecular size variance between macro molecules (targets) and micro molecules (drugs) by treating them at an equivalent scale that undermines the accurate elucidation of their interaction. RESULTS: We propose a novel DTI network with a differential-scale scheme to model the binding site for enhancing DTI prediction, which is named as BindingSiteDTI. It explicitly extracts multiscale substructures from targets with different scales of molecular size and fixed-scale substructures from drugs, facilitating the identification of structurally similar substructural tokens, and models the concealed relationships at the substructural level to construct interaction feature. Experiments conducted on popular benchmarks, including DUD-E, human, and BindingDB, shown that BindingSiteDTI contains significant improvements compared with recent DTI prediction methods. AVAILABILITY AND IMPLEMENTATION: The source code of BindingSiteDTI can be accessed at https://github.com/MagicPF/BindingSiteDTI.


Drug Discovery , Binding Sites , Humans , Drug Discovery/methods , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Computational Biology/methods , Deep Learning
13.
PLoS One ; 19(5): e0301396, 2024.
Article En | MEDLINE | ID: mdl-38776291

BACKGROUND: In the search for better anticancer drugs, computer-aided drug design (CADD) techniques play an indispensable role in facilitating the lengthy and costly drug discovery process especially when natural products are involved. Anthraquinone is one of the most widely-recognized natural products with anticancer properties. This review aimed to systematically assess and synthesize evidence on the utilization of CADD techniques centered on the anthraquinone scaffold for cancer treatment. METHODS: The conduct and reporting of this review were done in accordance to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline. The protocol was registered in the "International prospective register of systematic reviews" database (PROSPERO: CRD42023432904) and also published recently. The search strategy was designed based on the combination of concept 1 "CADD or virtual screening", concept 2 "anthraquinone" and concept 3 "cancer". The search was executed in PubMed, Scopus, Web of Science and MedRxiv on 30 June 2023. RESULTS: Databases searching retrieved a total of 317 records. After deduplication and applying the eligibility criteria, the final review ended up with 32 articles in which 3 articles were found by citation searching. The CADD methods used in the studies were either structure-based alone (69%) or combined with ligand-based methods via parallel (9%) or sequential (22%) approaches. Molecular docking was performed in all studies, with Glide and AutoDock being the most popular commercial and public software used respectively. Protein data bank was used in most studies to retrieve the crystal structure of the targets of interest while the main ligand databases were PubChem and Zinc. The utilization of in-silico techniques has enabled a deeper dive into the structural, biological and pharmacological properties of anthraquinone derivatives, revealing their remarkable anticancer properties in an all-rounded fashion. CONCLUSION: By harnessing the power of computational tools and leveraging the natural diversity of anthraquinone compounds, researchers can expedite the development of better drugs to address the unmet medical needs in cancer treatment by improving the treatment outcome for cancer patients.


Anthraquinones , Antineoplastic Agents , Drug Design , Molecular Docking Simulation , Neoplasms , Anthraquinones/chemistry , Anthraquinones/therapeutic use , Anthraquinones/pharmacology , Humans , Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Computer-Aided Design , Drug Discovery/methods
14.
J Bioinform Comput Biol ; 22(2): 2450004, 2024 Apr.
Article En | MEDLINE | ID: mdl-38812467

Biomolecular interaction recognition between ligands and proteins is an essential task, which largely enhances the safety and efficacy in drug discovery and development stage. Studying the interaction between proteins and ligands can improve the understanding of disease pathogenesis and lead to more effective drug targets. Additionally, it can aid in determining drug parameters, ensuring proper absorption, distribution, and metabolism within the body. Due to incomplete feature representation or the model's inadequate adaptation to protein-ligand complexes, the existing methodologies suffer from suboptimal predictive accuracy. To address these pitfalls, in this study, we designed a new deep learning method based on transformer and GCN. We first utilized the transformer network to grasp crucial information of the original protein sequences within the smile sequences and connected them to prevent falling into a local optimum. Furthermore, a series of dilation convolutions are performed to obtain the pocket features and smile features, subsequently subjected to graphical convolution to optimize the connections. The combined representations are fed into the proposed model for classification prediction. Experiments conducted on various protein-ligand binding prediction methods prove the effectiveness of our proposed method. It is expected that the PfgPDI can contribute to drug prediction and accelerate the development of new drugs, while also serving as a valuable partner for drug testing and Research and Development engineers.


Computational Biology , Drug Discovery , Neural Networks, Computer , Proteins , Proteins/chemistry , Proteins/metabolism , Ligands , Computational Biology/methods , Drug Discovery/methods , Deep Learning , Protein Binding , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Databases, Protein , Humans
15.
Sci Rep ; 14(1): 11995, 2024 05 25.
Article En | MEDLINE | ID: mdl-38796582

Machine learning models are revolutionizing our approaches to discovering and designing bioactive peptides. These models often need protein structure awareness, as they heavily rely on sequential data. The models excel at identifying sequences of a particular biological nature or activity, but they frequently fail to comprehend their intricate mechanism(s) of action. To solve two problems at once, we studied the mechanisms of action and structural landscape of antimicrobial peptides as (i) membrane-disrupting peptides, (ii) membrane-penetrating peptides, and (iii) protein-binding peptides. By analyzing critical features such as dipeptides and physicochemical descriptors, we developed models with high accuracy (86-88%) in predicting these categories. However, our initial models (1.0 and 2.0) exhibited a bias towards α-helical and coiled structures, influencing predictions. To address this structural bias, we implemented subset selection and data reduction strategies. The former gave three structure-specific models for peptides likely to fold into α-helices (models 1.1 and 2.1), coils (1.3 and 2.3), or mixed structures (1.4 and 2.4). The latter depleted over-represented structures, leading to structure-agnostic predictors 1.5 and 2.5. Additionally, our research highlights the sensitivity of important features to different structure classes across models.


Antimicrobial Peptides , Machine Learning , Antimicrobial Peptides/chemistry , Drug Discovery/methods , Protein Conformation, alpha-Helical , Models, Molecular
16.
Biomed Pharmacother ; 175: 116705, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713949

Currently, the drugs used in clinical to treat psoriasis mainly broadly suppress cellular immunity. However, these drugs can only provide temporary and partial symptom relief, they do not cure the condition and may lead to recurrence or even serious toxic side effects. In this study, we describe the discovery of a novel potent CDK8 inhibitor as a treatment for psoriasis. Through structure-based design, compound 46 was identified as the most promising candidate, exhibiting a strong inhibitory effect on CDK8 (IC50 value of 57 nM) along with favourable inhibition against NF-κB. Additionally, it demonstrated a positive effect in an in vitro psoriasis model induced by TNF-α. Furthermore, this compound enhanced the thermal stability of CDK8 and exerted evident effects on the biological function of CDK8, and it had favourable selectivity across the CDK family and tyrosine kinase. This compound showed no obvious inhibitory effect on CYP450 enzyme. Further studies confirmed that compound 46 exhibited therapeutic effect on IMQ-induced psoriasis, alleviated the inflammatory response in mice, and enhanced the expression of Foxp3 and IL-10 in the dorsal skin in vivo. This discovery provides a new strategy for developing selective CDK8 inhibitors with anti-inflammatory activity for the treatment of psoriasis.


Cyclin-Dependent Kinase 8 , Protein Kinase Inhibitors , Psoriasis , Animals , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Psoriasis/drug therapy , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Mice , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Pyridines/pharmacology , Pyridines/chemistry , Mice, Inbred BALB C , Interleukin-10/metabolism , Male , Pyrroles/pharmacology , Pyrroles/chemistry , Forkhead Transcription Factors/metabolism , Drug Discovery/methods , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Disease Models, Animal , Skin/drug effects , Skin/pathology , Skin/metabolism
17.
Biomed Pharmacother ; 175: 116709, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713945

Peptide medications have been more well-known in recent years due to their many benefits, including low side effects, high biological activity, specificity, effectiveness, and so on. Over 100 peptide medications have been introduced to the market to treat a variety of illnesses. Most of these peptide medications are developed on the basis of endogenous peptides or natural peptides, which frequently required expensive, time-consuming, and extensive tests to confirm. As artificial intelligence advances quickly, it is now possible to build machine learning or deep learning models that screen a large number of candidate sequences for therapeutic peptides. Therapeutic peptides, such as those with antibacterial or anticancer properties, have been developed by the application of artificial intelligence algorithms.The process of finding and developing peptide drugs is outlined in this review, along with a few related cases that were helped by AI and conventional methods. These resources will open up new avenues for peptide drug development and discovery, helping to meet the pressing needs of clinical patients for disease treatment. Although peptide drugs are a new class of biopharmaceuticals that distinguish them from chemical and small molecule drugs, their clinical purpose and value cannot be ignored. However, the traditional peptide drug research and development has a long development cycle and high investment, and the creation of peptide medications will be substantially hastened by the AI-assisted (AI+) mode, offering a new boost for combating diseases.


Algorithms , Artificial Intelligence , Drug Development , Peptides , Humans , Peptides/therapeutic use , Peptides/pharmacology , Drug Development/methods , Animals , Drug Discovery/methods , Drug Discovery/trends , Machine Learning
18.
J Biomed Semantics ; 15(1): 5, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693563

Leveraging AI for synthesizing the deluge of biomedical knowledge has great potential for pharmacological discovery with applications including developing new therapeutics for untreated diseases and repurposing drugs as emergent pandemic treatments. Creating knowledge graph representations of interacting drugs, diseases, genes, and proteins enables discovery via embedding-based ML approaches and link prediction. Previously, it has been shown that these predictive methods are susceptible to biases from network structure, namely that they are driven not by discovering nuanced biological understanding of mechanisms, but based on high-degree hub nodes. In this work, we study the confounding effect of network topology on biological relation semantics by creating an experimental pipeline of knowledge graph semantic and topological perturbations. We show that the drop in drug repurposing performance from ablating meaningful semantics increases by 21% and 38% when mitigating topological bias in two networks. We demonstrate that new methods for representing knowledge and inferring new knowledge must be developed for making use of biomedical semantics for pharmacological innovation, and we suggest fruitful avenues for their development.


Drug Discovery , Semantics , Drug Discovery/methods , Drug Repositioning/methods
19.
Methods ; 226: 164-175, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702021

Ensuring the safety and efficacy of chemical compounds is crucial in small-molecule drug development. In the later stages of drug development, toxic compounds pose a significant challenge, losing valuable resources and time. Early and accurate prediction of compound toxicity using deep learning models offers a promising solution to mitigate these risks during drug discovery. In this study, we present the development of several deep-learning models aimed at evaluating different types of compound toxicity, including acute toxicity, carcinogenicity, hERG_cardiotoxicity (the human ether-a-go-go related gene caused cardiotoxicity), hepatotoxicity, and mutagenicity. To address the inherent variations in data size, label type, and distribution across different types of toxicity, we employed diverse training strategies. Our first approach involved utilizing a graph convolutional network (GCN) regression model to predict acute toxicity, which achieved notable performance with Pearson R 0.76, 0.74, and 0.65 for intraperitoneal, intravenous, and oral administration routes, respectively. Furthermore, we trained multiple GCN binary classification models, each tailored to a specific type of toxicity. These models exhibited high area under the curve (AUC) scores, with an impressive AUC of 0.69, 0.77, 0.88, and 0.79 for predicting carcinogenicity, hERG_cardiotoxicity, mutagenicity, and hepatotoxicity, respectively. Additionally, we have used the approved drug dataset to determine the appropriate threshold value for the prediction score in model usage. We integrated these models into a virtual screening pipeline to assess their effectiveness in identifying potential low-toxicity drug candidates. Our findings indicate that this deep learning approach has the potential to significantly reduce the cost and risk associated with drug development by expediting the selection of compounds with low toxicity profiles. Therefore, the models developed in this study hold promise as critical tools for early drug candidate screening and selection.


Deep Learning , Humans , Drug Discovery/methods , Animals , Drug-Related Side Effects and Adverse Reactions , Cardiotoxicity/etiology
20.
Clin Transl Sci ; 17(5): e13824, 2024 May.
Article En | MEDLINE | ID: mdl-38752574

Accurate prediction of a new compound's pharmacokinetic (PK) profile is pivotal for the success of drug discovery programs. An initial assessment of PK in preclinical species and humans is typically performed through allometric scaling and mathematical modeling. These methods use parameters estimated from in vitro or in vivo experiments, which although helpful for an initial estimation, require extensive animal experiments. Furthermore, mathematical models are limited by the mechanistic underpinning of the drugs' absorption, distribution, metabolism, and elimination (ADME) which are largely unknown in the early stages of drug discovery. In this work, we propose a novel methodology in which concentration versus time profile of small molecules in rats is directly predicted by machine learning (ML) using structure-driven molecular properties as input and thus mitigating the need for animal experimentation. The proposed framework initially predicts ADME properties based on molecular structure and then uses them as input to a ML model to predict the PK profile. For the compounds tested, our results demonstrate that PK profiles can be adequately predicted using the proposed algorithm, especially for compounds with Tanimoto score greater than 0.5, the average mean absolute percentage error between predicted PK profile and observed PK profile data was found to be less than 150%. The suggested framework aims to facilitate PK predictions and thus support molecular screening and design earlier in the drug discovery process.


Drug Discovery , Machine Learning , Animals , Rats , Drug Discovery/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , Humans , Models, Biological , Algorithms , Molecular Structure , Pharmacokinetics , Small Molecule Libraries/pharmacokinetics
...