Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 126.119
1.
BMC Plant Biol ; 24(1): 494, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831264

BACKGROUND ACMELLA RADICANS: (Jacquin) R.K. Jansen is a new invasive species record for Yunnan Province, China. Native to Central America, it has also been recently recorded invading other parts of Asia. To prevent this weed from becoming a serious issue, an assessment of its ecological impacts and potential distribution is needed. We predicted the potential distribution of A. radicans in China using the MaxEnt model and its ecological impacts on local plant communities and soil nutrients were explored. RESULTS: Simulated training using model parameters produced an area under curve value of 0.974, providing a high degree of confidence in model predictions. Environmental variables with the greatest predictive power were precipitation of wettest month, isothermality, topsoil TEB (total exchangeable bases), and precipitation seasonality, with a cumulative contribution of more than 72.70% and a cumulative permutation importance of more than 69.20%. The predicted potential suitable area of A. radicans in China is concentrated in the southern region. Projected areas of A. radicans ranked as high and moderately suitable comprised 5425 and 26,338 km2, accounting for 0.06 and 0.27% of the Chinese mainland area, respectively. Over the 5 years of monitoring, the population density of A. radicans increased while at the same time the population density and importance values of most other plant species declined markedly. Community species richness, diversity, and evenness values significantly declined. Soil organic matter, total N, total P, available N, and available P concentrations decreased significantly with increasing plant cover of A. radicans, whereas pH, total K and available K increased. CONCLUSION: Our study was the first to show that A. radicans is predicted to expand its range in China and may profoundly affect plant communities, species diversity, and the soil environment. Early warning and monitoring of A. radicans must be pursued with greater vigilance in southern China to prevent its further spread.


Introduced Species , China , Soil/chemistry , Ecosystem
2.
Parasit Vectors ; 17(1): 244, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822348

BACKGROUND: Snails of the Lymnaeidae family are the intermediate hosts of Fasciola species, the causative agents of fascioliasis. The purpose of this study was to determine the prevalence of Fasciola species in lymnaeid snails and to investigate the association of geoclimatic factors and Fasciola species distribution in northwestern provinces of Iran using geographical information system (GIS) data. METHODS: A total of 2000 lymnaeid snails were collected from 33 permanent and seasonal habitats in northwestern Iran during the period from June to November 2021. After identification by standard morphological keys, they were subjected to shedding and crushing methods. Different stages of Fasciola obtained from these snails were subjected to the ITS1 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for species identification. The associations of weather temperature, rainfall, humidity, evaporation, air pressure, wind speed, elevation, and land cover with the distribution of Fasciola species were investigated. Geographical and statistical analysis was performed using ArcMap and SPSS software, respectively, to determine factors related to Fasciola species distribution. RESULTS: Of the 2000 snails collected, 19 were infected with Fasciola hepatica (0.09%), six with F. gigantica (0.03%), and 13 with other trematodes. Among geoclimatic and environmental factors, mean humidity, maximum humidity, and wind speed were significantly higher in areas where F. hepatica was more common than F. gigantica. The altitude of F. hepatica-prevalent areas was generally lower than F. gigantica areas. No significant relationship was observed between other investigated geoclimatic factors and the distribution of infected snails. CONCLUSIONS: The present study showed the relationship of humidity and wind speed with the distribution of snails infected with F. hepatica or F. gigantica in the northwestern regions of Iran. In contrast to F. gigantica, F. hepatica was more prevalent in low-altitude areas. Further research is recommended to elucidate the relationship between geoclimatic factors and the presence of intermediate hosts of the two Fasciola species.


Fasciola , Fascioliasis , Snails , Animals , Iran/epidemiology , Fascioliasis/epidemiology , Fascioliasis/veterinary , Fascioliasis/parasitology , Snails/parasitology , Fasciola/genetics , Fasciola/isolation & purification , Fasciola/classification , Fasciola hepatica/genetics , Fasciola hepatica/isolation & purification , Fasciola hepatica/physiology , Fasciola hepatica/classification , Climate , Ecosystem , Seasons , Polymorphism, Restriction Fragment Length
3.
Microbes Environ ; 39(2)2024.
Article En | MEDLINE | ID: mdl-38825479

The nitrite oxidizing bacterial genus Ca. Nitrotoga was only recently discovered to be widespread in freshwater systems; however, limited information is currently available on the environmental factors and seasonal effects that influence its distribution in lakes. In a one-year study in a dimictic lake, based on monthly sampling along a vertical profile, the droplet digital PCR quantification of Ca. Nitrotoga showed a strong spatio-temporal patchiness. A correlation ana-lysis with environmental parameters revealed that the abundance of Ca. Nitrotoga correlated with dissolved oxygen and ammonium, suggesting that the upper hypolimnion of the lake is the preferred habitat.


Lakes , Seasons , Lakes/microbiology , Lakes/chemistry , Nitrites/metabolism , Nitrites/analysis , Ammonium Compounds/metabolism , Ammonium Compounds/analysis , Oxygen/metabolism , Oxygen/analysis , Ecosystem
4.
Glob Chang Biol ; 30(6): e17362, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822565

The presence of alien species represents a major cause of habitat degradation and biodiversity loss worldwide, constituting a critical environmental challenge of our time. Despite sometimes experiencing reduced propagule pressure, leading to a reduced genetic diversity and an increased chance of inbreeding depression, alien invaders are often able to thrive in the habitats of introduction, giving rise to the so-called "genetic paradox" of biological invasions. The adaptation of alien species to the new habitats is therefore a complex aspect of biological invasions, encompassing genetic, epigenetic, and ecological processes. Albeit numerous studies and reviews investigated the mechanistic foundation of the invaders' success, and aimed to solve the genetic paradox, still remains a crucial oversight regarding the temporal context in which adaptation takes place. Given the profound knowledge and management implications, this neglected aspect of invasion biology should receive more attention when examining invaders' ability to thrive in the habitats of introduction. Here, we discuss the adaptation mechanisms exhibited by alien species with the purpose of highlighting the timing of their occurrence during the invasion process. We analyze each stage of the invasion separately, providing evidence that adaptation mechanisms play a role in all of them. However, these mechanisms vary across the different stages of invasion, and are also influenced by other factors, such as the transport speed, the reproduction type of the invader, and the presence of human interventions. Finally, we provide insights into the implications for management, and identify knowledge gaps, suggesting avenues for future research that can shed light on species adaptability. This, in turn, will contribute to a more comprehensive understanding of biological invasions.


Adaptation, Physiological , Ecosystem , Introduced Species , Biodiversity , Animals
5.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822559

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Droughts , Ecosystem , Nitrogen Cycle , Nitrogen Isotopes , Soil , Soil/chemistry , Nitrogen Isotopes/analysis , China , Nitrogen/analysis , Nitrogen/metabolism , Desert Climate
6.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822568

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Environmental Restoration and Remediation/methods , Ecology/methods , Climate Change
7.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822590

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Climate Change , Salinity , Stress, Physiological , Zooplankton , Animals , Zooplankton/physiology , Time Factors , Fresh Water , Hot Temperature/adverse effects , Ecosystem
8.
Environ Monit Assess ; 196(7): 592, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829468

Freshwater aquatic ecosystems are threatened globally. Biological monitoring is required to deliver rapid and replicable assessment of changes in habitat quality. The Ephemeroptera, Plectoptera, Trichoptera (EPT) index is a globally recognised rapid bioassessment that measures taxa richness of three insect orders whose larvae are considered sensitive to freshwater habitat degradation. South-western Australia contains threatened freshwater ecosystems but has depauperate EPT fauna and high endemism, potentially reducing the capacity of the EPT index to track degradation. This study investigated if EPT species richness, composition or individual species tracked physical or chemical river degradation in three catchments in south-western Australia. We sampled EPT fauna and measured water chemistry, erosion, sedimentation, riparian vegetation cover and instream habitat at 98 sites in the winters of 2007 and 2023. We found 35 EPT taxa across the study area with a median number of species per site of two. EPT species richness had weak positive associations with a composite water quality index and dissolved oxygen and weak negative associations with electrical conductivity and total nitrogen. No association was found between physical and fringing zone degradation measures and EPT species richness. EPT community structure generally did not distinguish between sites with high or low degradation levels. The presence of the mayfly Nyungara bunni tracked salinity, dissolved oxygen and nitrogen levels, but its usefulness as a bioindicator could be limited by its restricted range. This study suggests that the EPT index would need modification or combination with other indices to be a useful rapid bioassessment in south-western Australia.


Biodiversity , Ecosystem , Environmental Monitoring , Rivers , Animals , Rivers/chemistry , Environmental Monitoring/methods , Western Australia , Insecta , Ephemeroptera
9.
Sci Rep ; 14(1): 12684, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830920

Climate change is recognised to lead to spatial shifts in the distribution of small pelagic fish, likely by altering their environmental optima. Fish supply along the Northwest African coast is significant at both socio-economic and cultural levels. Evaluating the impacts of climatic change on small pelagic fish is a challenge and of serious concern in the context of shared stock management. Evaluating the impact of climate change on the distribution of small pelagic fish, a trend analysis was conducted using data from 2363 trawl samplings and 170,000 km of acoustics sea surveys. Strong warming is reported across the Southern Canary Current Large Marine Ecosystem (CCLME), extending from Morocco to Senegal. Over 34 years, several trends emerged, with the southern CCLME experiencing increases in both wind speed and upwelling intensity, particularly where the coastal upwelling was already the strongest. Despite upwelling-induced cooling mechanisms, sea surface temperature (SST) increased in most areas, indicating the complex interplay of climatic-related stressors in shaping the marine ecosystem. Concomitant northward shifts in the distribution of small pelagic species were attributed to long-term warming trends in SST and a decrease in marine productivity in the south. The abundance of Sardinella aurita, the most abundant species along the coast, has increased in the subtropics and fallen in the intertropical region. Spatial shifts in biomass were observed for other exploited small pelagic species, similar to those recorded for surface isotherms. An intensification in upwelling intensity within the northern and central regions of the system is documented without a change in marine primary productivity. In contrast, upwelling intensity is stable in the southern region, while there is a decline in primary productivity. These environmental differences affected several small pelagic species across national boundaries. This adds a new threat to these recently overexploited fish stocks, making sustainable management more difficult. Such changes must motivate common regional policy considerations for food security and sovereignty in all West African countries sharing the same stocks.


Climate Change , Ecosystem , Fishes , Food Security , Animals , Fishes/physiology , Fisheries , Temperature
10.
Sci Rep ; 14(1): 12707, 2024 06 03.
Article En | MEDLINE | ID: mdl-38830929

Understanding the determinants of biodiversity in fragmented habitats is fundamental for informing sustainable landscape development, especially in urban landscapes that substantially fragment natural habitat. However, the relative roles of landscape and habitat characteristics, as emphasized by two competing frameworks (the island biogeography theory and the habitat diversity hypothesis), in structuring species assemblages in fragmented habitats have not been fully explored. This study investigated bird assemblages at 26 habitat patches (ranging in size from 0.3 to 290.4 ha) in an urban landscape, southwest China, among which habitat type composition and woody plant species composition varied significantly. Through 14 bird surveys conducted over six breeding seasons from 2017 to 2022, we recorded 70 breeding bird species (excluding birds recorded only once and fly-overs, such as raptors, swallows and swifts), with an average of 26 ± 10 (SD) species per patch. We found that patch area had significant direct and indirect effects on bird richness, with the indirect effects mediated by habitat richness (i.e., the number of habitat types). Isolation (measured as the distance to the nearest patch), perimeter to area ratio (PAR), and woody plant richness did not significantly predict variation in bird richness. Furthermore, none of these factors significantly sorted bird species based on their functional traits. However, the overall makeup of bird assemblages was significantly associated with the specific habitat types and woody plant species present in the patches. The results suggest that neither the island biogeography theory nor the habitat diversity hypothesis can fully explain the impacts of habitat fragmentation on bird richness in our study system, with their roles primarily being linked to patch area. The findings that habitat and plant compositions were the major drivers of variation in bird assemblage composition offer valuable insights into urban planning and green initiatives. Conservation efforts should focus not only on preserving large areas, but also on preventing urban monocultures by promoting diverse habitats within those areas, contributing to the persistence of meta-communities.


Biodiversity , Birds , Ecosystem , Animals , Birds/physiology , China , Conservation of Natural Resources , Plants/classification , Cities
11.
Sci Rep ; 14(1): 12813, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834719

Deep-sea coral assemblages are marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to the impacts of human activities such as fishing. The critically endangered "bamboo coral" Isidella elongata is a key structuring species of deep muddy bottoms that is susceptible to habitat destruction, particularly from trawling. A shallow population of this species was recently discovered by a multibeam and ROV survey offshore of the Asinara Island marine protected area (MPA) (northwestern Sardinia, NW Mediterranean Sea). This vulnerable marine assemblage has been found under healthy conditions at depths ranging from 110 to 298 m. Isidella elongata occurs on a muddy seafloor locally characterised by boulders associated with black coral species (Parantipathes larix and Antipathes dichotoma). The lush colonies of I. elongata seem to be related to natural protection from bottom trawling activity; nevertheless, the presence of lost fishing artisanal nets has been observed in the study area. These structuring species are indicators of vulnerable marine ecosystems, and their conservation is essential for preserving marine biodiversity. Therefore, enlarging the perimeter of the Asinara Island MPA into its deeper western waters is suggested to ensure the protection of these valuable and vulnerable marine ecosystems.


Anthozoa , Biodiversity , Conservation of Natural Resources , Islands , Animals , Mediterranean Sea , Conservation of Natural Resources/methods , Italy , Ecosystem , Fisheries
12.
Parasit Vectors ; 17(1): 246, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38831449

BACKGROUND: Arthropods vector a multitude of human disease-causing organisms, and their geographic ranges are shifting rapidly in response to changing climatic conditions. This is, in turn, altering the landscape of disease risk for human populations that are brought into novel contact with the vectors and the diseases they carry. Sand flies in the genera Lutzomyia and Pintomyia are vectors of serious disease-causing agents such as Leishmania (the etiological agent of leishmaniasis) and may be expanding their range in the face of climate change. Understanding the climatic conditions that vector species both tolerate physiologically and prefer behaviorally is critical to predicting the direction and magnitude of range expansions and the resulting impacts on human health. Temperature and humidity are key factors that determine the geographic extent of many arthropods, including vector species. METHODS: We characterized the habitat of two species of sand flies, Lutzomyia longipalpis and Pintomyia evansi. Additionally, we studied two behavioral factors of thermal fitness-thermal and humidity preference in two species of sand flies alongside a key aspect of physiological tolerance-desiccation resistance. RESULTS: We found that Lu. longipalpis is found at cooler and drier conditions than Pi. evansi. Our results also show significant interspecific differences in both behavioral traits, with Pi. evansi preferring warmer, more humid conditions than Lu. longipalpis. Finally, we found that Lu. longipalpis shows greater tolerance to extreme low humidity, and that this is especially pronounced in males of the species. CONCLUSIONS: Taken together, our results suggest that temperature and humidity conditions are key aspects of the climatic niche of Lutzomyia and Pintomyia sand flies and underscore the value of integrative studies of climatic tolerance and preference in vector biology.


Ecosystem , Humidity , Psychodidae , Temperature , Animals , Psychodidae/physiology , Psychodidae/classification , Female , Male , Insect Vectors/physiology
13.
PeerJ ; 12: e17424, 2024.
Article En | MEDLINE | ID: mdl-38827279

Background: Nonylphenol (NP) is widely recognized as a crucial environmental endocrine-disrupting chemical and persistent toxic substance. The remediation of NP-contaminated sites primarily relies on biological degradation. Compound microbial products, as opposed to pure strains, possess a greater variety of metabolic pathways and can thrive in a wider range of environmental conditions. This characteristic is believed to facilitate the synergistic degradation of pollutants. Limited research has been conducted to thoroughly examine the potential compatibility of compound microbial agents with indigenous microflora, their ability to function effectively in practical environments, their capacity to enhance the dissipation of NP, and their potential to improve soil physicochemical and biological characteristics. Methods: In order to efficiently eliminate NP in contaminated soil in an eco-friendly manner, a simulation study was conducted to investigate the impact of bioaugmentation using the functional compound microbial agent NP-M2 at varying concentrations (50 and 200 mg/L) on the dynamics of the soil microbial community. The treatments were set as follows: sterilized soil with 50 mg/kg NP (CK50) or 200 mg/kg NP (CK200); non-sterilized soil with 50 mg/kg NP (TU50) or 200 mg/kg NP (TU200); non-sterilized soil with the compound microbial agent NP-M2 at 50 mg/kg NP (J50) or 200 mg/kg NP (J200). Full-length 16S rRNA analysis was performed using the PacBio Sequel II platform. Results: Both the indigenous microbes (TU50 and TU200 treatments) and the application of NP-M2 (J50 and J200 treatments) exhibited rapid NP removal, with removal rates ranging from 93% to 99%. The application of NP-M2 further accelerated the degradation rate of NP for a subtle lag period. Although the different treatments had minimal impacts on the soil bacterial α-diversity, they significantly altered the ß-diversity and composition of the bacterial community. The dominant phyla were Proteobacteria (35.54%-44.14%), Acidobacteria (13.55%-17.07%), Planctomycetes (10.78%-11.42%), Bacteroidetes (5.60%-10.74%), and Actinobacteria (6.44%-8.68%). The core species were Luteitalea_pratensis, Pyrinomonas_methylaliphatogenes, Fimbriiglobus_ruber, Longimicrobium_terrae, and Massilia_sp003590855. The bacterial community structure and taxon distribution in polluted soils were significantly influenced by the activities of soil catalase, sucrase, and polyphenol oxidase, which were identified as the major environmental factors. Notably, the concentration of NP and, to a lesser extent, the compound microbial agent NP-M2 were found to cause major shifts in the bacterial community. This study highlights the importance of conducting bioremediation experiments in conjunction with microbiome assessment to better understand the impact of bioaugmentation/biostimulation on the potential functions of complex microbial communities present in contaminated soils, which is essential for bioremediation success.


Biodegradation, Environmental , Phenols , Soil Microbiology , Soil Pollutants , Phenols/pharmacology , Microbiota/drug effects , Soil/chemistry , Ecosystem , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification
14.
PeerJ ; 12: e17412, 2024.
Article En | MEDLINE | ID: mdl-38827283

Modern microbial mats are relictual communities mostly found in extreme environments worldwide. Despite their significance as representatives of the ancestral Earth and their important roles in biogeochemical cycling, research on microbial mats has largely been localized, focusing on site-specific descriptions and environmental change experiments. Here, we present a global comparative analysis of non-lithifying microbial mats, integrating environmental measurements with metagenomic data from 62 samples across eight sites, including two new samples from the recently discovered Archaean Domes from Cuatro Ciénegas, Mexico. Our results revealed a notable influence of environmental filtering on both taxonomic and functional compositions of microbial mats. Functional redundancy appears to confer resilience to mats, with essential metabolic pathways conserved across diverse and highly contrasting habitats. We identified six highly correlated clusters of taxa performing similar ecological functions, suggesting niche partitioning and functional specialization as key mechanisms shaping community structure. Our findings provide insights into the ecological principles governing microbial mats, and lay the foundation for future research elucidating the intricate interplay between environmental factors and microbial community dynamics.


Metagenomics , Archaea/genetics , Archaea/classification , Mexico , Bacteria/genetics , Bacteria/classification , Ecosystem , Microbiota/genetics , Metagenome , Geologic Sediments/microbiology
15.
Chaos ; 34(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38829789

This paper reports an important conclusion that self-diffusion is not a necessary condition for inducing Turing patterns, while taxis could establish complex pattern phenomena. We investigate pattern formation in a zooplankton-phytoplankton model incorporating phytoplankton-taxis, where phytoplankton-taxis describes the zooplankton that tends to move toward the high-densities region of the phytoplankton population. By using the phytoplankton-taxis sensitivity coefficient as the Turing instability threshold, one shows that the model exhibits Turing instability only when repulsive phytoplankton-taxis is added into the system, while the attractive-type phytoplankton-taxis cannot induce Turing instability of the system. In addition, the system does not exhibit Turing instability when the phytoplankton-taxis disappears. Numerically, we display the complex patterns in 1D, 2D domains and on spherical and zebra surfaces, respectively. In summary, our results indicate that the phytoplankton-taxis plays a pivotal role in giving rise to the Turing pattern formation of the model. Additionally, these theoretical and numerical results contribute to our understanding of the complex interaction dynamics between zooplankton and phytoplankton populations.


Models, Biological , Phytoplankton , Zooplankton , Animals , Zooplankton/physiology , Phytoplankton/physiology , Computer Simulation , Nonlinear Dynamics , Ecosystem , Plankton/physiology , Population Dynamics
16.
Proc Natl Acad Sci U S A ; 121(24): e2316419121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38830089

The extinction of the woolly rhinoceros (Coelodonta antiquitatis) at the onset of the Holocene remains an enigma, with conflicting evidence regarding its cause and spatiotemporal dynamics. This partly reflects challenges in determining demographic responses of late Quaternary megafauna to climatic and anthropogenic causal drivers with available genetic and paleontological techniques. Here, we show that elucidating mechanisms of ancient extinctions can benefit from a detailed understanding of fine-scale metapopulation dynamics, operating over many millennia. Using an abundant fossil record, ancient DNA, and high-resolution simulation models, we untangle the ecological mechanisms and causal drivers that are likely to have been integral in the decline and later extinction of the woolly rhinoceros. Our 52,000-y reconstruction of distribution-wide metapopulation dynamics supports a pathway to extinction that began long before the Holocene, when the combination of cooling temperatures and low but sustained hunting by humans trapped woolly rhinoceroses in suboptimal habitats along the southern edge of their range. Modeling indicates that this ecological trap intensified after the end of the last ice age, preventing colonization of newly formed suitable habitats, weakening stabilizing metapopulation processes, triggering the extinction of the woolly rhinoceros in the early Holocene. Our findings suggest that fragmentation and resultant metapopulation dynamics should be explicitly considered in explanations of late Quaternary megafauna extinctions, sending a clarion call to the fragility of the remaining large-bodied grazers restricted to disjunct fragments of poor-quality habitat due to anthropogenic environmental change.


Extinction, Biological , Fossils , Perissodactyla , Population Dynamics , Animals , Ecosystem , DNA, Ancient/analysis , Paleontology
17.
Harmful Algae ; 135: 102630, 2024 May.
Article En | MEDLINE | ID: mdl-38830708

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Dinoflagellida , Fresh Water , Introduced Species , Phylogeny , Ships , Dinoflagellida/physiology , Dinoflagellida/genetics , Dinoflagellida/classification , Fresh Water/parasitology , China , Ecosystem , Geologic Sediments , Harmful Algal Bloom
18.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Article En | MEDLINE | ID: mdl-38822535

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Mycorrhizae , Nitrogen , Soil Microbiology , Soil , Mycorrhizae/physiology , Mycorrhizae/metabolism , Nitrogen/metabolism , Soil/chemistry , Plants/metabolism , Plants/microbiology , Ecosystem
19.
Nat Commun ; 15(1): 4027, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773096

The wave of new global conservation targets, the conclusion of the High Seas Treaty negotiations, and the expansion of extractive use into the deep sea call for a paradigm shift in ocean conservation. The current reductionist 2D representation of the ocean to set targets and measure impacts will fail at achieving effective biodiversity conservation. Here, we develop a framework that overlays depth realms onto marine ecoregions to conduct the first three-dimensional spatial analysis of global marine conservation achievements and fisheries footprint. Our novel approach reveals conservation gaps of mesophotic, rariphotic, and abyssal depths and an underrepresentation of high protection levels across all depths. In contrast, the 3D footprint of fisheries covers all depths, with benthic fishing occurring down to the lower bathyal and mesopelagic fishing peaking in areas overlying abyssal depths. Additionally, conservation efforts are biased towards areas where the lowest fishing pressures occur, compromising the effectiveness of the marine conservation network. These spatial mismatches emphasize the need to shift towards 3D thinking to achieve ocean sustainability.


Biodiversity , Conservation of Natural Resources , Fisheries , Oceans and Seas , Conservation of Natural Resources/methods , Animals , Ecosystem , Fishes
20.
Sci Data ; 11(1): 517, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773139

This study investigates the adaptive strategies of the Alashan Ground Squirrel (Spermophilus alashanicus) in response to habitat changes, as rodents are sensitive indicators of ecosystem changes. Despite its ecological importance, the genome and microbiome of this species have not been thoroughly studied. This research fills this gap by presenting the first comprehensive metagenomic and transcriptomic datasets of the species. Transcriptomic data was collected from five tissue types, including heart, liver, cecum, muscle, and blood, resulting in the assembly of 72,156 unigenes. Metagenomic sequencing identified predominant bacterial groups such as Firmicutes, Bacteroidetes, Verrucomicrobia, Urovircota, and Proteobacteria. Our workflow involved RNA and DNA extraction, library preparation, assembly, and annotation, yielding valuable insights into gene discovery, microbial composition, and further genome and microbial function studies. In conclusion, our findings have significant implications for understanding the adaptive mechanisms of this species in response to environmental changes.


Metagenomics , Sciuridae , Transcriptome , Animals , Bacteria/genetics , Bacteria/classification , Ecosystem , Metagenome , Microbiota , Sciuridae/genetics , Mongolia
...