Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.145
Filter
1.
ACS Appl Mater Interfaces ; 16(31): 40739-40752, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39047081

ABSTRACT

Oxidative stress (OS) is a major mediator of secondary brain injury following intracerebral hemorrhage (ICH). Thus, antioxidant therapy is emerging as an attractive strategy to combat ICH. To achieve both reactive oxygen species (ROS) scavenging ability and on-demand drug release ability, we constructed a novel polydopamine (PDA)-coated diselenide-bridged mesoporous silica nanoparticle (DSeMSN) drug delivery system (PDA-DSeMSN). Edaravone (Eda) was blocked in the pores of DSeMSN by covering the pores with PDA as a gatekeeper. The drug maintained nearly "zero release" before reaching the lesion site, while in the ROS-enriched circumstances, the PDA shell went through degradation and the doped diselenide bonds broke up, triggering the disintegration of nanoparticles and leading to Eda release. Interestingly, the ROS-degradable property of the PDA shell and diselenide bond endowed the system with enhanced ROS-eliminating capacity. The synergistic effect of ROS-responsive drug delivery and ROS-scavenging PDA-DSeMSN showed efficient antioxidative and mitochondria protective performance without apparent toxicity in vitro. Importantly, PDA-DSeMSN@Eda through intravenous administration specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model through antioxidative and antiapoptotic effects with high biological safety. Thus, the PDA-DSeMSN platform holds tremendous potential as an excellent carrier for on-demand delivery of drugs and provides a new and effective strategy for the clinical treatment of ICH.


Subject(s)
Cerebral Hemorrhage , Edaravone , Indoles , Nanoparticles , Reactive Oxygen Species , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , Edaravone/chemistry , Edaravone/pharmacology , Indoles/chemistry , Indoles/pharmacology , Porosity , Polymers/chemistry , Polymers/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Male , Antioxidants/chemistry , Antioxidants/pharmacology , Oxidative Stress/drug effects
2.
Pharmacol Res Perspect ; 12(4): e1228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38956898

ABSTRACT

Contrast-induced nephropathy (CIN) is a serious complication that occurs subsequent to the administration of contrast media for therapeutic angiographic interventions. As of present, no effective therapy exists to prevent its occurrence. This single-center double-blind randomized controlled trial aimed to evaluate the effect of edaravone, an antioxidant, in a group of high-risk patients undergoing coronary angiography. Ninety eligible patients with chronic kidney disease Stages 3-4 were randomly assigned to either the control group (n = 45) or the intervention group (n = 45). In the intervention group, one dosage of edaravone (60 mg) in 1 L of normal saline was infused via a peripheral vein 1 h prior to femoral artery-directed coronary angiography. Patients in the control group received an equal amount of infusion in their last hour before angiography. Both groups received intravenous hydration with 0.9% sodium 1 mL/kg/h starting 12 h before and continuing for 24 h after angiography. The primary outcome measure was the onset of CIN, defined as a 25% increase in serum creatinine levels 120 h after administration of contrast media. The occurrence of CIN was observed in 5.5% (n = 5) of the studied population: 2.2% of patients in the intervention group (n = 1) and 8.9% of controls (n = 4). However, this difference was not statistically significant. Administration of a single dosage of edaravone 1 h prior to infusion of contrast media led to a reduction in the incidence of CIN. Further investigations, employing larger sample sizes, are warranted to gain a comprehensive understanding of its efficacy.


Subject(s)
Contrast Media , Coronary Angiography , Edaravone , Humans , Edaravone/therapeutic use , Edaravone/administration & dosage , Double-Blind Method , Contrast Media/adverse effects , Male , Female , Coronary Angiography/adverse effects , Middle Aged , Aged , Free Radical Scavengers/therapeutic use , Free Radical Scavengers/administration & dosage , Creatinine/blood , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Antipyrine/analogs & derivatives , Antipyrine/therapeutic use , Treatment Outcome
3.
J Clin Neurosci ; 126: 270-283, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986338

ABSTRACT

BACKGROUND: The use of both edaravone (EDA) and hyperbaric oxygen therapy (HBOT) is increasingly prevalent in the treatment of delayed encephalopathy after carbon monoxide poisoning (DEACMP). This meta-analysis aims to evaluate the efficacy of using EDA and HBOT in combination with HBOT alone in the treatment of DEACMP. METHODS: We searched and included all randomized controlled trials (RCTs) published before November 6, 2023, from 12 Chinese and English databases and clinical trial centers in China and the United States. The main outcome indicator was the total effective rate. The secondary outcome indicators included the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI), Hasegawa Dementia Scale (HDS), Fugl-Meyer Assessment (FMA), Superoxide Dismutase (SOD), and Malondialdehyde (MDA). Statistical measures utilized include risk ratios (RR), weighted mean difference (WMD), and 95 % confidence intervals (95 % CI). RESULTS: Thirty studies involving a combined total of 2075 participants were ultimately incorporated. It was observed that the combination of EDA with HBOT for the treatment of DEACMP demonstrated an improvement in the total effective rate (RR: 1.25; 95 % CI: 1.20-1.31; P < 0.01), MMSE (WMD: 3.67; 95 % CI: 2.59-4.76; P < 0.01), MoCA (WMD: 4.38; 95 % CI: 4.00-4.76; P < 0.01), BI (WMD: 10.94; 95 % CI: 5.23-16.66; P < 0.01), HDS (WMD: 6.80; 95 % CI: 4.05-9.55; P < 0.01), FMA (WMD: 8.91; 95 % CI: 7.22-10.60; P < 0.01), SOD (WMD: 18.45; 95 % CI: 16.93-19.98; P < 0.01); and a reduction in NIHSS (WMD: -4.12; 95 % CI: -4.93 to -3.30; P < 0.01) and MDA (WMD: -3.05; 95 % CI: -3.43 to -2.68; P < 0.01). CONCLUSION: Low-quality evidence suggests that for DEACMP, compared to using HBOT alone, the combined use of EDA and HBOT may be associated with better cognition and activity of daily living. In the future, conducting more meticulously designed multicenter and large-sample RCTs to substantiate our conclusions is essential.


Subject(s)
Carbon Monoxide Poisoning , Edaravone , Hyperbaric Oxygenation , Hyperbaric Oxygenation/methods , Humans , Edaravone/therapeutic use , Carbon Monoxide Poisoning/complications , Carbon Monoxide Poisoning/therapy , Combined Modality Therapy/methods , Brain Diseases/etiology , Brain Diseases/therapy , Randomized Controlled Trials as Topic , Free Radical Scavengers/therapeutic use
4.
Neuropharmacology ; 258: 110089, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39033904

ABSTRACT

Autism spectrum disorder (ASD) is neurodevelopmental disorder with a high incidence rate, characterized by social deficits and repetitive behaviors. There is currently no effective management available to treat the core symptoms of ASD; however, oxidative stress has been implicated in its pathogenesis. Edaravone (EDA), a free-radical scavenger, is used to treat amyotrophic lateral sclerosis (ALS) and acute ischemic stroke (AIS). Here, we hypothesized that an oral formula of EDA may have therapeutic efficacy in the treatment of core ASD symptoms. A rat model of autism was established by prenatal exposure to valproic acid (VPA), and the offsprings were orally treated with EDA at low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg) doses once daily for 28 days starting from postnatal day 25 (PND25). Oral EDA administration alleviated the core symptoms in VPA rats in a dose-dependent manner, including repetitive stereotypical behaviors and impaired social interaction. Furthermore, oral administration of EDA significantly reduced oxidative stress in a dose-dependent manner, as evidenced by a reduction in oxidative stress markers and an increase in antioxidants in the blood and brain. In addition, oral EDA significantly attenuated downstream pathologies, including synaptic and mitochondrial damage in the brain. Proteomic analysis further revealed that EDA corrected the imbalance in brain oxidative reduction and mitochondrial proteins induced by prenatal VPA administration. Overall, these findings demonstrate that oral EDA has therapeutic potential for ASD by targeting the oxidative stress pathway of disease pathogenesis and paves the way towards clinical studies.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Edaravone , Oxidative Stress , Valproic Acid , Animals , Valproic Acid/pharmacology , Valproic Acid/administration & dosage , Edaravone/pharmacology , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/chemically induced , Female , Oxidative Stress/drug effects , Male , Administration, Oral , Pregnancy , Rats , Rats, Sprague-Dawley , Brain/drug effects , Brain/metabolism , Brain/pathology , Prenatal Exposure Delayed Effects/chemically induced , Free Radical Scavengers/pharmacology , Free Radical Scavengers/administration & dosage , Free Radical Scavengers/therapeutic use , Dose-Response Relationship, Drug , Stereotyped Behavior/drug effects , Behavior, Animal/drug effects , Social Interaction/drug effects
5.
Biomed Pharmacother ; 177: 117032, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941894

ABSTRACT

In cell-based bone augmentation, transplanted cell dysfunction and apoptosis can occur due to oxidative stress caused by the overproduction of reactive oxygen species (ROS). Edaravone (EDA) is a potent free radical scavenger with potential medical applications. This study aimed to investigate the effect of controlling oxidative stress on bone regeneration using EDA. Bone marrow-derived cells were collected from 4-week-old rats, and EDA effects on cell viability and osteogenic differentiation were evaluated. Collagen gels containing PKH26-prelabeled cells were implanted into the calvarial defects of 12-week-old rats, followed by daily subcutaneous injections of normal saline or 500 µM EDA for 4 d. Bone formation was examined using micro-computed tomography and histological staining. Immunofluorescence staining was performed for markers of oxidative stress, macrophages, osteogenesis, and angiogenesis. EDA suppressed ROS production and hydrogen peroxide-induced apoptosis, recovering cell viability and osteoblast differentiation. EDA treatment in vivo increased new bone formation. EDA induced the transition of the macrophage population toward the M2 phenotype. The EDA group also exhibited stronger immunofluorescence for vascular endothelial growth factor and CD31. In addition, more PKH26-positive and PKH26-osteocalcin-double-positive cells were observed in the EDA group, indicating that transplanted cell survival was prolonged, and they differentiated into bone-forming cells. This could be attributed to oxidative stress suppression at the transplantation site by EDA. Collectively, local administration using EDA facilitates bone regeneration by improving the local environment and angiogenesis, prolonging survival, and enhancing the osteogenic capabilities of transplanted cells.


Subject(s)
Bone Regeneration , Cell Differentiation , Cell Survival , Edaravone , Osteogenesis , Oxidation-Reduction , Oxidative Stress , Rats, Sprague-Dawley , Reactive Oxygen Species , Animals , Bone Regeneration/drug effects , Edaravone/pharmacology , Osteogenesis/drug effects , Oxidative Stress/drug effects , Cell Differentiation/drug effects , Reactive Oxygen Species/metabolism , Rats , Cell Survival/drug effects , Male , Apoptosis/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Macrophages/drug effects , Macrophages/metabolism , Skull/drug effects , Cells, Cultured , Free Radical Scavengers/pharmacology , Free Radical Scavengers/administration & dosage
6.
BMC Neurol ; 24(1): 209, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902691

ABSTRACT

BACKGROUND: Edaravone dexborneol has been reported as an effective neuroprotective agent in the treatment of acute ischemic stroke (AIS). This study aimed at investigating the impact of edaravone dexborneol on functional outcomes and systematic inflammatory response in AIS patient. METHODS: All participants were recruited from the AISRNA study (registered 21/11/2019, NCT04175691 [ClinicalTrials.gov]) between January 2022 and December 2022. The AIS patients were divided into two groups based on whether they received the treatment of edaravone dexborneol (37.5 mg/12 hours, IV) within 48 h after stroke onset. Inflammatory response was determined by detecting levels of cytokines (interleukin-2 [IL-2], IL-4, IL-5, IL-8, IL-6, IL-10, IL-12p70, IL-17, tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], IFN-α, and IL-1ß) within 14 days after stroke onset. RESULTS: Eighty-five AIS patients were included from the AISRNA study. Patients treated with edaravone dexborneol showed a significantly higher proportion of modified Rankin Scale score < 2 compared to those who did not receive this treatment (70.7% versus 47.8%; P = 0.031). Furthermore, individuals receiving edaravone dexborneol injection exhibited lower expression levels of interleukin (IL)-1ß, IL-6, and IL-17, along with higher levels of IL-4 and IL-10 expression during the acute phase of ischemic stroke (P < 0.05). These trends were not observed for IL-2, IL-5, IL-8, IL-12p70, tumor necrosis factor-α, interferon-γ [IFN-γ], and IFN-α (P > 0.05). CONCLUSIONS: Treatment with edaravone dexborneol resulted in a favorable functional outcome at 90 days post-stroke onset when compared to patients without this intervention; it also suppressed proinflammatory factors expression while increasing anti-inflammatory factors levels. TRIAL REGISTRATION: ClinicalTrials.gov NCT04175691. Registered November 21, 2019, https://www. CLINICALTRIALS: gov/ct2/show/NCT04175691 .


Subject(s)
Edaravone , Ischemic Stroke , Aged , Female , Humans , Male , Middle Aged , Cytokines/metabolism , Edaravone/therapeutic use , Edaravone/administration & dosage , Edaravone/pharmacology , Inflammation/drug therapy , Ischemic Stroke/drug therapy , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/administration & dosage , Treatment Outcome
7.
Am J Ther ; 31(3): e258-e267, 2024.
Article in English | MEDLINE | ID: mdl-38691665

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by loss of motor neurons due to degeneration of nerve cells within the brain and spinal cord. Early symptoms include limb weakness, twitching or muscle cramping, and slurred speech. As the disease progresses, difficulty breathing, swallowing, and paralysis can lead to death. Currently, there are no medications that cure ALS, and guidelines recommend treatments focused on symptom management. Intravenous (IV) edaravone was approved by the US Food and Drug Administration (FDA) in 2017 as a treatment to slow the progression of ALS. In May 2022, the FDA approved an oral suspension (ORS) formulation of edaravone. MECHANISM OF ACTION: The mechanism of action of edaravone is not well defined. However, its neuroprotective effects are thought to result from antioxidant properties occurring through elimination of free radicals. PHARMACOKINETICS: Edaravone ORS (105 mg) has a bioavailability of 57% when compared with edaravone IV (60 mg). The ORS should be taken on an empty stomach in the morning, with water and no food or beverages, for 1 hour. Edaravone is bound to albumin (92%), has a mean volume of distribution of 63.1 L, a half-life of 4.5-9 hours, and a total clearance of 35.9 L/h after intravenous administration. Edaravone is metabolized into nonactive sulfate and glucuronide conjugates. CLINICAL TRIALS: The FDA approval was based on studies of the pharmacokinetics, safety, tolerability, and bioavailability of edaravone ORS. A phase III, global, multicenter, open-label safety study was conducted on edaravone ORS in 185 patients with ALS over 48 weeks. The most reported treatment-emergent adverse events were falls, muscular weakness, and constipation. Serious treatment-emergent adverse events included disease worsening, dysphagia, dyspnea, and respiratory failure. THERAPEUTIC ADVANCE: Oral edaravone is an ALS treatment that can be self-administered or administered by a caregiver, precluding the need for administration by a health care professional in an institutional setting.


Subject(s)
Amyotrophic Lateral Sclerosis , Edaravone , Neuroprotective Agents , Edaravone/administration & dosage , Edaravone/pharmacology , Edaravone/therapeutic use , Humans , Amyotrophic Lateral Sclerosis/drug therapy , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/adverse effects , Administration, Oral , Suspensions , Biological Availability
8.
Neuropharmacology ; 255: 110006, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38763325

ABSTRACT

Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aß deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Edaravone , Membrane Glycoproteins , Receptors, Immunologic , Toll-Like Receptor 4 , Up-Regulation , Animals , Toll-Like Receptor 4/metabolism , Mice , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Membrane Glycoproteins/metabolism , Edaravone/pharmacology , Edaravone/therapeutic use , Up-Regulation/drug effects , Mice, Transgenic , Neuroprotective Agents/pharmacology , MAP Kinase Signaling System/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Mice, Inbred C57BL , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Disease Models, Animal , Presenilin-1/genetics
9.
J Stroke Cerebrovasc Dis ; 33(7): 107738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701940

ABSTRACT

OBJECTIVES: Edaravone dexborneol is neuroprotective against ischemic stroke, with free radical-scavenging and anti-inflammatory effects, but its effects in hemorrhagic stroke remain unclear. We evaluated whether edaravone dexborneol has a neuroprotective effect in intracerebral hemorrhage, and its underlying mechanisms. MATERIALS AND METHODS: Bioinformatics were used to predict the pathway of action of edaravone dexborneol. An intracerebral hemorrhage model was established using type IV collagenase in edaravone dexborneol, intracerebral hemorrhage, Sham, adeno-associated virus + edaravone dexborneol, and adeno-associated virus + intracerebral hemorrhage groups. The modified Neurological Severity Score was used to evaluate neurological function in rats. Brain water content was measured using the dry-wet weight method. Tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid levels were determined by enzyme-linked immunosorbent assay. The expression levels of neurofilament light chain and γ-aminobutyric acid transaminase were determined by western blot. Nissl staining was used to examine neuronal morphology. Cognitive behavior was evaluated using a small-animal treadmill. RESULTS: Edaravone dexborneol alleviated neurological defects, improved cognitive function, and reduced cerebral edema, neuronal degeneration, and necrosis in rats with cerebral hemorrhage. The expression levels of neurofilament light chain, tumor necrosis factor-α, interleukin-1ß, inducible nitric oxide synthase, and γ-aminobutyric acid were decreased, while γ-aminobutyric acid transaminase expression was up-regulated. CONCLUSIONS: Edaravone dexborneol regulates γ-aminobutyric acid content by acting on the γ-aminobutyric acid transaminase signaling pathway, thus alleviating oxidative stress, neuroinflammation, neuronal degeneration, and death caused by excitatory toxic injury of neurons after intracerebral hemorrhage.


Subject(s)
Brain Edema , Disease Models, Animal , Edaravone , Interleukin-1beta , Neuroprotective Agents , Rats, Sprague-Dawley , Animals , Edaravone/pharmacology , Male , Neuroprotective Agents/pharmacology , Interleukin-1beta/metabolism , Brain Edema/pathology , Brain Edema/drug therapy , Brain Edema/metabolism , Brain Edema/enzymology , Brain Edema/prevention & control , 4-Aminobutyrate Transaminase/metabolism , 4-Aminobutyrate Transaminase/antagonists & inhibitors , Behavior, Animal/drug effects , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Cerebral Hemorrhage/enzymology , Anti-Inflammatory Agents/pharmacology , Cognition/drug effects , Brain/drug effects , Brain/pathology , Brain/metabolism , Brain/enzymology , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Inflammation Mediators/metabolism
10.
Methods Mol Biol ; 2788: 67-79, 2024.
Article in English | MEDLINE | ID: mdl-38656509

ABSTRACT

Derivatization of monosaccharides with 1-phenyl-3-methyl-5-pyrazolone (PMP) introduces two chromophores per sugar molecule. Their separation on a superficially porous C18 reverse-phase column, using common liquid chromatography equipment, results in short analysis times (under 20 min) and high sensitivity (limit of quantitation 1 nmol). This method allows for complex monosaccharide mixtures to be separated and quantified using a reasonably simple and safe derivatization procedure.


Subject(s)
Chromatography, Reverse-Phase , Monosaccharides , Chromatography, Reverse-Phase/methods , Monosaccharides/chemistry , Monosaccharides/analysis , Chromatography, High Pressure Liquid/methods , Spectrophotometry, Ultraviolet/methods , Edaravone/chemistry , Antipyrine/analogs & derivatives , Antipyrine/chemistry
11.
Medicine (Baltimore) ; 103(17): e37954, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669396

ABSTRACT

To explore the value of thromboelastography (TEG) in evaluating the efficacy of Xueshuantong combined with edaravone for the treatment of acute cerebral infarction (ACI). We retrospectively analyzed the clinical data of 96 patients with ACI treated with Xueshuantong combined with edaravone and monitored by TEG. The correlation between the results of TEG examination and treatment outcomes in patients after treatment was analyzed. After treatment, 65 of 96 patients showed good efficacy and 31 had poor efficacy. kinetic time (KT), reaction time (RT), and the percentage of clot lysis at 30 minutes after Ma value (LY30) of patients with good therapeutic effects were significantly higher than those with poor therapeutic effects; However, maximum amplitude (MA) and coagulation index (CI) were significantly lower than those with poor efficacy (P < .05). There was a significant positive correlation between KT, RT, and LY30 and the therapeutic effect of ACI, and a significant negative correlation between the therapeutic effects of MA, CI, and ACI (P < .05). Logistic analysis confirmed that KT, RT, and LY30 were protective factors for the therapeutic effect of ACI; MA and CI were risk factors for the therapeutic effect of ACI (P < .05). TEG has a high value in evaluating the efficacy of Xueshuantong combined with edaravone in the treatment of ACI. It can clarify changes in the coagulation function of patients, thereby guiding clinical follow-up treatment.


Subject(s)
Cerebral Infarction , Drugs, Chinese Herbal , Edaravone , Thrombelastography , Humans , Thrombelastography/methods , Edaravone/therapeutic use , Edaravone/pharmacology , Male , Female , Cerebral Infarction/drug therapy , Retrospective Studies , Middle Aged , Aged , Drugs, Chinese Herbal/therapeutic use , Treatment Outcome , Drug Therapy, Combination , Acute Disease , Aged, 80 and over
12.
Biomolecules ; 14(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38672460

ABSTRACT

A considerable effort has been spent in the past decades to develop targeted therapies for the treatment of demyelinating diseases, such as multiple sclerosis (MS). Among drugs with free radical scavenging activity and oligodendrocyte protecting effects, Edaravone (Radicava) has recently received increasing attention because of being able to enhance remyelination in experimental in vitro and in vivo disease models. While its beneficial effects are greatly supported by experimental evidence, there is a current paucity of information regarding its mechanism of action and main molecular targets. By using high-throughput RNA-seq and biochemical experiments in murine oligodendrocyte progenitors and SH-SY5Y neuroblastoma cells combined with molecular docking and molecular dynamics simulation, we here provide evidence that Edaravone triggers the activation of aryl hydrocarbon receptor (AHR) signaling by eliciting AHR nuclear translocation and the transcriptional-mediated induction of key cytoprotective gene expression. We also show that an Edaravone-dependent AHR signaling transduction occurs in the zebrafish experimental model, associated with a downstream upregulation of the NRF2 signaling pathway. We finally demonstrate that its rapid cytoprotective and antioxidant actions boost increased expression of the promyelinating Olig2 protein as well as of an Olig2:GFP transgene in vivo. We therefore shed light on a still undescribed potential mechanism of action for this drug, providing further support to its therapeutic potential in the context of debilitating demyelinating conditions.


Subject(s)
Antioxidants , Edaravone , Receptors, Aryl Hydrocarbon , Signal Transduction , Animals , Humans , Mice , Antioxidants/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Edaravone/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , NF-E2-Related Factor 2/metabolism , Receptors, Aryl Hydrocarbon/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects , Zebrafish/metabolism
13.
Brain Res ; 1833: 148917, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38582415

ABSTRACT

Exploring the intricate pathogenesis of Vascular Dementia (VD), there is a noted absence of potent treatments available in the current medical landscape. A new brain-protective medication developed in China, Edaravone dexboeol (EDB), has shown promise due to its antioxidant and anti-inflammatory properties, albeit with a need for additional research to elucidate its role and mechanisms in VD contexts. In a research setup, a VD model was established utilizing Sprague-Dawley (SD) rats, subjected to permanent bilateral typical carotid artery occlusion (2VO). Behavioral assessment of the rats was conducted using the Bederson test and pole climbing test, while cognitive abilities, particularly learning and memory, were evaluated via the novel object recognition test and the Morris water maze test. Ensuing, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), IL-1ß, IL-6, IL-4, and tumor necrosis factor-α (TNF-α) were determined through Enzyme-Linked Immunosorbent Assay (ELISA). Synaptic plasticity-related proteins, synaptophysin (SYP), post-synaptic density protein 95 (PSD-95), and N-methyl-D-aspartate (NMDA) receptor proteins (NR1, NR2A, NR2B) were investigated via Western blotting technique. The findings imply that EDB has the potential to ameliorate cognitive deficiencies, attributed to VD, by mitigating oxidative stress, dampening inflammatory responses, and modulating the NMDA receptor signaling pathway, furnishing new perspectives into EDB's mechanism and proposing potential avenues for therapeutic strategies in managing VD.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Disease Models, Animal , Edaravone , Hippocampus , Oxidative Stress , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate , Signal Transduction , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Oxidative Stress/drug effects , Edaravone/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Male , Signal Transduction/drug effects , Neuroprotective Agents/pharmacology , Inflammation/metabolism , Inflammation/drug therapy
14.
Medicina (Kaunas) ; 60(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38541080

ABSTRACT

Antioxidants, usually administered orally through the systemic route, are known to counteract the harmful effects of oxidative stress on retinal cells. The formulation of these antioxidants as eye drops might offer a new option in the treatment of oxidative retinopathies. In this review, we will focus on the use of some of the most potent antioxidants in treating retinal neuropathies. Melatonin, known for its neuroprotective qualities, may mitigate oxidative damage in the retina. N-acetyl-cysteine (NAC), a precursor to glutathione, enhances the endogenous antioxidant defense system, potentially reducing retinal oxidative stress. Idebenone, a synthetic analogue of coenzyme Q10, and edaravone, a free radical scavenger, contribute to cellular protection against oxidative injury. Epigallocatechin-3-gallate (EGCG), a polyphenol found in green tea, possesses anti-inflammatory and antioxidant effects that could be beneficial in cases of retinopathy. Formulating these antioxidants as eye drops presents a localized and targeted delivery method, ensuring effective concentrations reach the retina. This approach might minimize systemic side effects and enhance therapeutic efficacy. In this paper, we also introduce a relatively new strategy: the alkylation of two antioxidants, namely, edaravone and EGCG, to improve their insertion into the lipid bilayer of liposomes or even directly into cellular membranes, facilitating their crossing of epithelial barriers and targeting the posterior segment of the eye. The synergistic action of these antioxidants may offer a multifaceted defense against oxidative damage, holding potential for the treatment and management of oxidative retinopathies. Further research and clinical trials will be necessary to validate the safety and efficacy of these formulations, but the prospect of antioxidant-based eye drops represents a promising avenue for future ocular therapies.


Subject(s)
Eye Diseases , Retinal Diseases , Humans , Edaravone/pharmacology , Antioxidants/pharmacology , Oxidative Stress , Retinal Diseases/drug therapy , Ophthalmic Solutions
15.
Int J Mol Sci ; 25(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38474192

ABSTRACT

The brain is susceptible to oxidative stress, which is associated with various neurological diseases. Edaravone (MCI-186, 3-methyl-1 pheny-2-pyrazolin-5-one), a free radical scavenger, has promising effects by quenching hydroxyl radicals (∙OH) and inhibiting both ∙OH-dependent and ∙OH-independent lipid peroxidation. Edaravone was initially developed in Japan as a neuroprotective agent for acute cerebral infarction and was later applied clinically to treat amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. There is accumulating evidence for the therapeutic effects of edaravone in a wide range of diseases related to oxidative stress, including ischemic stroke, ALS, Alzheimer's disease, and placental ischemia. These neuroprotective effects have expanded the potential applications of edaravone. Data from experimental animal models support its safety for long-term use, implying broader applications in various neurodegenerative diseases. In this review, we explain the unique characteristics of edaravone, summarize recent findings for specific diseases, and discuss its prospects for future therapeutic applications.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Female , Pregnancy , Amyotrophic Lateral Sclerosis/drug therapy , Antioxidants/therapeutic use , Antipyrine , Edaravone/pharmacology , Edaravone/therapeutic use , Free Radical Scavengers/pharmacology , Neurodegenerative Diseases/drug therapy , Neuroprotective Agents/pharmacology , Placenta
16.
Free Radic Biol Med ; 217: 126-140, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531462

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which the death of motor neurons leads to loss of muscle function. Additionally, cognitive and circadian disruptions are common in ALS patients, contributing to disease progression and burden. Most ALS cases are sporadic, and environmental exposures contribute to their aetiology. However, animal models of these sporadic ALS cases are scarce. The small vertebrate zebrafish is a leading organism to model neurodegenerative diseases; previous studies have proposed bisphenol A (BPA) or ß-methylamino-l-alanine (BMAA) exposure to model sporadic ALS in zebrafish, damaging motor neurons and altering motor responses. Here we characterise the face and predictive validity of sporadic ALS models, showing their potential for the mechanistic study of ALS drugs. We phenotypically characterise the BPA and BMAA-induced models, going beyond motor activity and motor axon morphology, to include circadian, redox, proteostasis, and metabolomic phenotypes, and assessing their predictive validity for ALS modelling. BPA or BMAA exposure induced concentration-dependent activity impairments. Also, exposure to BPA but not BMAA induced motor axonopathy and circadian alterations in zebrafish larvae. Our further study of the BPA model revealed loss of habituation to repetitive startles, increased oxidative damage, endoplasmic reticulum (ER) stress, and metabolome abnormalities. The BPA-induced model shows predictive validity, since the approved ALS drug edaravone counteracted BPA-induced motor phenotypes, ER stress, and metabolic disruptions. Overall, BPA exposure is a promising model of ALS-related redox and ER imbalances, contributing to fulfil an unmet need for validated sporadic ALS models.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Edaravone , Zebrafish , Oxidation-Reduction
17.
Free Radic Biol Med ; 217: 116-125, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38548187

ABSTRACT

PURPOSE: Ferroptosis has recently been recognized as a mechanism of cerebral ischemia-reperfusion (I/R) injury, attributed to blood-brain barrier (BBB) disruption. Edaravone dexboneol (Eda.B) is a novel neuroprotective agent widely employed in ischemic stroke, which is composed of edaravone (Eda) and dexborneol. This study aimed to investigate the protective effects of Eda.B on the BBB in cerebral I/R and explore its potential mechanisms. METHODS: Transient middle cerebral artery occlusion (tMCAO) Sprague-Dawley-rats model was used. Rats were randomly assigned to sham-operated group (sham, n = 20), model group (tMCAO, n = 20), Eda.B group (Eda.B, n = 20), Eda group (Eda, n = 20) and dexborneol group (dexborneol, n = 20), and Eda.B + Zinc protoporphyria group (Eda.B + ZnPP, n = 5). Infarct area, cellular apoptosis and neurofunctional recovery were accessed through TTC staining, TUNEL staining, and modified Garcia scoring system, respectively. BBB integrity was evaluated via Evans blue staining. Nuclear factor E2 related factor 2 (Nrf-2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) signaling were qualified by Western blot. Transmission electron microscopy (TEM) revealed alterations in ipsilateral brain tissue among groups. Glutathione (GSH) and malondialdehyde (MDA) levels, and Fe2+ tissue content determination were detected. RESULTS: Eda.B effectively improved neurological deficits, diminished infarct area and cellular apoptosis, as well as ameliorated BBB integrity in tMCAO rats. Further, Eda.B significantly inhibited ferroptosis, as evidenced by ameliorated pathological features of mitochondria, down-regulated of MDA and Fe2+ levels and up-regulated GSH content. Mechanistically, Eda.B attenuated BBB disruption via Nrf-2-mediated ferroptosis, promoting nuclear translocation of Nrf-2, increasing HO-1, GPX4 expression, alleviating the loss of zonula occludens 1 (ZO-1) and occludin as well as decreasing 4-hydroxynonenal (4-HNE) level. CONCLUSIONS: This study revealed for the first time that Eda.B safeguarded the BBB from cerebral I/R injury by inhibiting ferroptosis through the activation of the Nrf-2/HO-1/GPX4 axis, providing a novel insight into the neuroprotective effect of Eda.B in cerebral I/R.


Subject(s)
Brain Ischemia , Ferroptosis , Neuroprotective Agents , Reperfusion Injury , Rats , Animals , Blood-Brain Barrier , Heme Oxygenase-1/metabolism , Edaravone/pharmacology , Rats, Sprague-Dawley , Brain Ischemia/pathology , Neuroprotective Agents/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Reperfusion , Reperfusion Injury/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
18.
Chem Biodivers ; 21(5): e202400110, 2024 May.
Article in English | MEDLINE | ID: mdl-38424689

ABSTRACT

Drugs with anti-platelet aggregation and neuroprotection are of great significance for the treatment of ischemic stroke. A series of edaravone and 6-phenyl-4,5-dihydropyridazin-3(2H)-one hybrids were designed and synthesized. Among them, 6g showed the most effective cytoprotective effect against oxygen-glucose deprivation/reoxygenation-induced damage in BV2 cells and an excellent inhibitory effect on platelet aggregation induced by adenosine diphosphate and arachidonic acid. Additionally, 6g could prevent thrombosis caused by ferric chloride in rats and pose a lower risk of causing bleeding compared with aspirin. It provides better protection against ischemia/reperfusion injury in rats compared with edaravone and alleviates the oxidative stress related to cerebral ischemia/reperfusion by increasing the GSH and SOD levels and decreasing the MDA concentration. Finally, molecular docking results showed that 6g probably acts on PDE3 A and plays an anti-platelet aggregation effect. Overall, 6g could be a potential candidate compound for the treatment of ischemic stroke.


Subject(s)
Edaravone , Ischemic Stroke , Neuroprotective Agents , Platelet Aggregation Inhibitors , Platelet Aggregation , Animals , Edaravone/pharmacology , Edaravone/chemistry , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Rats , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Molecular Docking Simulation , Male , Mice , Molecular Structure , Structure-Activity Relationship , Rats, Sprague-Dawley , Drug Discovery , Pyridazines/pharmacology , Pyridazines/chemistry , Oxidative Stress/drug effects
19.
BMC Public Health ; 24(1): 436, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347500

ABSTRACT

BACKGROUND: Edaravone dexborneol and dl-3-n-butylphthalide are two innovative brain cytoprotective drugs from China that have been approved and widely prescribed for acute ischemic stroke, and the cost of the two drugs are partially paid by the Chinese medical insurance system. This study aimed to investigate and compare the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke from the Chinese healthcare system's perspective. METHODS: A model combining a short-term decision tree model with 90 days and a long-term Markov model with a life-time horizon (40 years) was developed to simulate the cost-effectiveness of edaravone dexborneol versus dl-3-n-butylphthalide for acute ischemic stroke over a lifetime horizon. Since the absence of a head-to-head clinical comparison of two therapies, an unanchored matching-adjusted indirect comparison (MAIC) was conducted by adjusting the patient characteristics using individual patient data from pivotal phase III trial of edaravone dexborneol and published aggregated data of dl-3-n-butylphthalide. Health outcomes were measured in quality-adjusted life years (QALYs). Utilities and costs (Chinese Yuan, CNY) were derived from publications and open-access database. One-way and probabilistic sensitivity analyses were performed to evaluate the robustness of results. RESULTS: Compared with patients in dl-3-n-butylphthalide arm, edaravone dexborneol arm was found to be cost-effective in 90 days and highly cost-effective as the study horizons extended. With a similar direct medical cost, patients in edaravone dexborneol arm slightly gained an additional 0.1615 QALYs in life-time. In the long term (40 years), patients in edaravone dexborneol arm and dl-3-n-butylphthalide arm yielded 8.0351 and 7.8736 QALYs with the overall direct medical cost of CNY 29,185.23 and CNY 29,940.28, respectively. The one-way sensitivity analysis suggested that the incremental cost-effectiveness ratio was most sensitive to the price of edaravone dexborneol and dl-3-n-butylphthalide. CONCLUSION: Edaravone dexborneol is a cost-effective alternative compared with dl-3-n-butylphthalide for acute ischemic stroke patients in current medical setting of China.


Subject(s)
Benzofurans , Ischemic Stroke , Stroke , Humans , Edaravone/therapeutic use , Cost-Benefit Analysis , Delivery of Health Care , Stroke/drug therapy , Quality-Adjusted Life Years
20.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338912

ABSTRACT

Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Neoplasms , Neuroprotective Agents , Humans , Edaravone/therapeutic use , Neuroprotective Agents/pharmacology , Amyotrophic Lateral Sclerosis/drug therapy , Antioxidants/therapeutic use , Neoplasms/drug therapy , Neoplasms/chemically induced , Free Radical Scavengers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL