Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.837
Filter
1.
Clin Ter ; 175(4): 219-225, 2024.
Article in English | MEDLINE | ID: mdl-39010805

ABSTRACT

Abstract: The eggshell and the eggshell membrane (ESM) are significant by-products of the poultry industry and are being utilized for various valuable purposes in health care, like soft tissue healing and pain alleviation. The aim and objective of our study are to assess the effect of the eggshell membrane on alveolar bone regeneration after tooth extraction. A total of 40 extraction sockets (bilateral) among 20 patients were assessed clinically for healing, and radiographic parameters of bone density and socket volume were assessed on CBCT at baseline, 3 months, and 6 months. Advanced platelet-rich fibrin was created from 5 ml of autologous blood from the patient and centrifuged for 15 minutes at 1500 RPM/168 RCF. The commercially available powdered form of egg shell membrane was used in the study. Based on the randomized allotment (coin-flip), A-PRF alone or A-PRF mixed with eggshell membrane was placed inside the extraction socket and was stabilized using 3-0 silk sutures. It was ob-served that wound healing was uneventful in all 20 patients. No evidence of dry sockets or allergic reactions was noted in any patient. Statistical analysis was done using the un-paired t-test and Mann-Whitney U test with SPSS version 20.0. P<0.05 was considered significant. On comparison of the mean bone density at baseline, 3 months, and 6 months, the socket density in the eggshell with the PRF group was higher compared to the control group. To conclude, eggshell membrane has good regenerative properties and excellent osteogenic capacity; therefore, it could be a useful graft due to its low cost, abundant availability, and simple application.


Subject(s)
Egg Shell , Platelet-Rich Fibrin , Humans , Female , Adult , Male , Animals , Middle Aged , Alveolar Bone Grafting/methods , Bone Regeneration/drug effects , Tooth Extraction , Tooth Socket/drug effects , Tooth Socket/surgery , Young Adult
2.
Genes (Basel) ; 15(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927746

ABSTRACT

Green eggs are mainly caused by inserting an avian endogenous retrovirus (EVA-HP) fragment into the SLCO1B3 gene. Although the genotypes for this insertion allele are consistent, eggshell color (ESC) may vary after a peak laying period; light-colored eggs are undesired by consumers and farmers and result in financial loss, so it is necessary to resolve this problem. miRNAs are small non-coding RNAs that exert essential functions in animal development and diseases. However, the regulatory miRNAs and detailed molecular mechanisms regulating eggshell greenness remain unclear. In the present study, we determined the genotype of green-eggshell hens through the detection of a homozygous allele insertion in the SLCO1B3 gene. The shell gland epithelium was obtained from green-eggshell hens that produced white and green shell eggs to perform transcriptome sequencing and investigate the important regulatory mechanisms that influence the ESC. Approximately 921 miRNAs were expressed in these two groups, which included 587 known miRNAs and 334 novel miRNAs, among which 44 were differentially expressed. There were 22 miRNAs that were significantly upregulated in the green and white groups, respectively, which targeted hundreds of genes, including KIT, HMOX2, and several solute carrier family genes. A Gene Ontology enrichment analysis of the target genes showed that the differentially expressed miRNA-targeted genes mainly belonged to the functional categories of homophilic cell adhesion, gland development, the Wnt signaling pathway, and epithelial tube morphogenesis. A KEGG enrichment analysis showed that the Hedgehog signaling pathway was significantly transformed in this study. The current study provides an overview of the miRNA expression profiles and the interaction between the miRNAs and their target genes. It provides valuable insights into the molecular mechanisms underlying green eggshell pigmentation, screening more effective hens to produce stable green eggs and obtaining higher economic benefits.


Subject(s)
Chickens , Egg Shell , MicroRNAs , Pigmentation , Transcriptome , Animals , Chickens/genetics , MicroRNAs/genetics , Egg Shell/metabolism , Pigmentation/genetics , Transcriptome/genetics , Female
3.
Genes (Basel) ; 15(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927747

ABSTRACT

Eggshell color plays important biological roles and attracts the attention of both egg retailers and researchers. However, whether non-coding RNAs are involved in pigment deposition among different eggshell colors remains unknown. In this study, RNA sequencing was used to analyse the uterine gland transcriptome (CircRNA and miRNA) of Changshun chicken blue-shell hens producing four different eggshell color eggs including dark blue PK(DB) and light blue (LB), dark brown and greenish (between blue and pink, DP) and pink (p). We found that miR-192-x, targeting SLC16a7, was expressed in DB, DP, and LB groups compared with the PK group, which indicates that miR-192-x may play a role in the blue eggshell color. KEGG and GO analyses showed that the "metabolic pathways" with targeted genes such BLVRA and HMOX1 were detected in dark and light blue color eggshell chickens, which confirms the different ratios of biliverdin and HO-1 involved in the deposition of blue color. As annotated by connectivity analysis, RASGRF1 and RASGRF2, belonging to the RASGRF family, are involved in the Ras signaling pathway, which plays an important role in cell growth, differentiation, metastasis and apoptosis. Our findings enrich the database of circRNA, miRNAs and genes for chicken uterine tissue, which will be useful in accelerating molecular selection for blue eggshell color layers.


Subject(s)
Chickens , Egg Shell , MicroRNAs , RNA, Circular , Animals , Chickens/genetics , MicroRNAs/genetics , Egg Shell/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Pigmentation/genetics , Transcriptome/genetics , Sequence Analysis, RNA/methods , Gene Regulatory Networks
4.
Nutrients ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931240

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA.


Subject(s)
Cartilage, Articular , Egg Shell , Osteoarthritis , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Osteoarthritis/drug therapy , Osteoarthritis/chemically induced , Male , Mice , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Rats , Inflammation/drug therapy , Dietary Supplements , Cytokines/metabolism , Disease Models, Animal , Rats, Sprague-Dawley , Arthralgia/drug therapy , Arthralgia/chemically induced , Time Factors , Iodoacetic Acid , Anti-Inflammatory Agents/pharmacology
5.
ACS Appl Mater Interfaces ; 16(26): 32957-32970, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38885611

ABSTRACT

Three-dimensional (3D) printing, an additive manufacturing technique, is increasingly used in the field of tissue engineering. The ability to create complex structures with high precision makes the 3D printing of this material a preferred method for constructing personalized and functional materials. However, the challenge lies in developing affordable and accessible materials with the desired physiochemical and biological properties. In this study, we used eggshell microparticles (ESPs), an example of bioceramic and unconventional biomaterials, to reinforce thermoplastic poly(ε-caprolactone) (PCL) scaffolds via extrusion-based 3D printing. The goal was to conceive a sustainable, affordable, and unique personalized medicine approach. The scaffolds were fabricated with varying concentrations of eggshells, ranging from 0 to 50% (w/w) in the PCL scaffolds. To assess the physicochemical properties, we employed scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and X-ray diffraction analysis. Mechanical properties were evaluated through compression testing, and degradation kinetics were studied through accelerated degradation with the remaining mass ranging between 89.4 and 28.3%. In vitro, we evaluated the characteristics of the scaffolds using the MC3T3-E1 preosteoblasts over a 14 day period. In vitro characterization involved the use of the Alamar blue assay, confocal imaging, and real-time quantitative polymerase chain reaction. The results of this study demonstrate the potential of 3D printed biocomposite scaffolds, consisting of thermoplastic PCL reinforced with ESPs, as a promising alternative for bone-graft applications.


Subject(s)
Egg Shell , Polyesters , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Mice , Egg Shell/chemistry , Polyesters/chemistry , Bone and Bones , Cell Line , Biocompatible Materials/chemistry , Osteoblasts/cytology , Osteoblasts/drug effects
6.
PLoS One ; 19(6): e0305099, 2024.
Article in English | MEDLINE | ID: mdl-38843257

ABSTRACT

This study investigated the effects of different doses of limestone, light durations, light intensities, and vitamins on both the productive performance and egg quality. The study utilized two rearing houses (control and treatment), each accommodating 75000 Lohmann Brown Classic chicks reared in open-sided rearing cages from one day old until they reached 89 weeks of age. Throughout the laying period, the hens were subjected to a specific light regimen (light = 14 h; dark = 10 h a day). At the end of experiment, the treatment group displayed significant (p<0.05) differences compared to the control group across various parameters. Notably, the treatment group exhibited lower daily feed intake (treatment: 112 g/bird vs control: 115 g/bird), 9.6% higher egg production (treatment: 78.5% vs control: 68.9%), lower body weight (treatment: 2057 g vs control: 2073 g), lower feed conversion ratio (FCR)/egg (treatment: 1.44 vs control: 1.69), higher egg weight (treatment: 69.4 g vs control: 68.5 g), greater egg mass (treatment: 56.14 vs control: 48.76), greater shell thickness (treatment: 3.52 mm vs control: 3.44 mm), and greater shell weight (treatment: 9.3 g vs control: 8.79 g). However, the albumin weight, yolk weight, yolk diameter, shape index, and Haugh units (HU) were not significantly (p˃0.05) affected after 75 weeks of treatment when compared with those of the control group. Therefore, this study is the first of its kind to demonstrate that different ratios of limestone, different durations and intensities of light, and different vitamin supplementation doses in the treatment group (subjected to the novel rearing recommendations described in this study) may yield a profit of 180,541 USD, exceeding the baseline profit of the control group (subjected to conventional rearing methods).


Subject(s)
Chickens , Animals , Female , Eggs , Animal Feed/analysis , Animal Husbandry/methods , Calcium Carbonate , Vitamins/administration & dosage , Vitamins/pharmacology , Egg Shell , Light , Body Weight/drug effects
7.
ACS Biomater Sci Eng ; 10(7): 4510-4524, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38826128

ABSTRACT

Eggshell membrane-based biomedical applications have recently received great attention for their wound-healing properties. However, there are limited studies on diabetic wound healing. In this regard, we devised four types of composite eggshell membrane mats with nanoscale coatings of bioactive glass/Zn/Co-doped bioactive glass (ESM + BAG, ESM + ZnBAG, ESM + CoBAG, and ESM + ZnCoBAG) as wound-dressing materials for chronic nonhealing diabetic wounds. A detailed study of the physicochemical properties of the mats was conducted. In vitro studies demonstrated cytocompatibility and viability of human dermal fibroblasts on all four types of mats. The cells also attached finely on the mats with the help of cellular extensions, as evident from scanning electron microscopy (SEM) and rhodamine-phalloidin and Hoechst 33342 staining of cellular components. Endowed with bioactive properties, these mats influenced all aspects of full-thickness skin wound healing in diabetic animal model studies. All of the mats, especially the ESM + ZnCoBAG mat, showed the earliest wound closure, effective renewal, and restructuring of the extracellular matrix in terms of an accurate and timely accumulation of collagen, elastin, and reticulin fibers. Hydroxyproline and sulfated glycosaminoglycans were significantly (p < 0.01, p < 0.05) higher in ESM-ZnCoBAG-treated wounds in comparison to ESM-BAG-treated wounds, which suggests that these newly developed mats have potential as an affordable diabetic wound care solution in biomedical research.


Subject(s)
Bandages , Cobalt , Diabetes Mellitus, Experimental , Egg Shell , Glass , Wound Healing , Zinc , Animals , Wound Healing/drug effects , Zinc/chemistry , Zinc/pharmacology , Egg Shell/chemistry , Diabetes Mellitus, Experimental/pathology , Glass/chemistry , Rabbits , Cobalt/chemistry , Cobalt/pharmacology , Humans , Skin/pathology , Skin/drug effects , Skin/injuries , Fibroblasts/drug effects
8.
Poult Sci ; 103(7): 103784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713992

ABSTRACT

Hatchability could be quite different among individuals of indigenous chicken breed which might be affected by the egg quality. In this study, hatchability was individually recorded among 800 forty-wk-old Huainan partridge chickens. The chickens were then divided into high and low hatchability groups (HH and LH group) with 50 birds in each group. Egg quality was further determined in the 2 groups. Eight birds from each group were selected for slaughtering and tissue, responsible for egg formation, collection for structure observation by staining and candidate gene expression by transcriptome analysis. The hatchability in HH was 100% and 61.18% in LH. The eggshell thickness and shell strength were significantly lower, while the albumen height and Haugh unit were significantly higher in HH group than those in LH group (P < 0.05). The magnum weight and index, and the expression of polypeptide N-acetylgalactosaminyltransferase 9 (GALNT9), which responsible for thick albumen synthesis, in HH group were also significantly higher than that of LH group (P < 0.05). Compared with the LH group, there were 702 differentially expressed genes (DEGs) in HH group, of which 402 were up-regulated and 300 were down-regulated. Candidate genes of calbindin 1 (CALB1) and solute carrier family 26 member 9 (SLC26A9), which regulate calcium signaling pathway so as to affect Ca2+ transportation, exhibited significant high and low expression, respectively, in HH group compared to those in LH group (P < 0.05). Therefore, indigenous chicken with high expression of GALNT9 in magnum to form thick albumen to provide more protein for embryo, while high CALB1 and low expression of SLC26A9 to decrease Ca2+ transportation so as to form a thinner eggshell and provide better gas exchange during embryo development.


Subject(s)
Chickens , Egg Shell , N-Acetylgalactosaminyltransferases , Animals , Egg Shell/physiology , Chickens/genetics , Chickens/physiology , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Calcium/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Albumins/metabolism , Albumins/genetics , Ovum/physiology , Gene Expression , Gene Expression Profiling/veterinary
9.
Int J Biol Macromol ; 270(Pt 1): 132359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754678

ABSTRACT

The objective of this study was to evaluate the synergistic effect of eggshell-derived nanohydroxyapatite (EnHA) and carboxymethyl chitosan (CMC) in remineralizing artificially induced dentinal lesions. EnHA and CMC were synthesized using simple chemical processes and characterized using FTIR, XRD, HRSEM-EDX, TEM, DLS and TGA/DTA analyses. A total of 64 pre-demineralized coronal dentin specimens were randomly subjected to following treatments (n = 16):artificial saliva (AS), EnHA, CMC, and EnHA-CMC, followed by pH cycling for 7 days. HRSEM-EDX, Vickers-indenter, and micro-Raman analyses were used to assess surface-topography, microhardness, and chemical analysis, respectively. All tested materials demonstrated non-cytotoxicity when assessed on hDPSCs using MTT assay. FTIR, XRD and thermal analyses confirmed the characteristics of both EnHA and CMC. EnHA showed irregular rod-shaped nanoparticles (30-70 nm) with the presence of Ca,P,Na, and Mg ions. Dentin treated with EnHA-CMC exhibited complete tubular occlusion and highest microhardness whereas the AS group revealed the least mineral deposits (p < 0.05). No significant differences were observed between EnHA and CMC groups (p > 0.05). In addition, molecular conformation analysis revealed peak intensities in collagen's polypeptide chains in dentin treated with CMC and EnHA-CMC, whereas other groups showed poor collagen stability. The results highlighted that EnHA-CMC aided in rapid and effective biomineralization, suggesting its potential as a therapeutic solution for treating dentin caries.


Subject(s)
Chitosan , Dentin , Durapatite , Egg Shell , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Dentin/chemistry , Dentin/drug effects , Egg Shell/chemistry , Animals , Humans , Tooth Remineralization/methods , Nanoparticles/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/chemistry , Hydrogen-Ion Concentration
10.
J Wildl Dis ; 60(3): 615-620, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38755118

ABSTRACT

Wood Ducks (Aix sponsa) are secondary cavity nesters that use natural cavities and artificial nest boxes, the latter of which has been attributed to the recovery of populations across the southeastern US. Continual use of these boxes results in a buildup of bacteria, parasites, and other pathogens. To avoid the accumulation of these deleterious organisms, best management practices include the occasional removal of old nesting material (i.e., wood shavings) and replacement with fresh wood shavings. No studies have been performed on the effects of shaving material on nest box selection, nest success, and bacterial growth. We monitored 142 and 111 nest boxes in Florida and Georgia, USA, respectively, and filled a random sample with aspen or cedar shavings. We then swabbed the surface of 144 and 150 eggs during 2020 and 2021, respectively, to screen for culturable bacteria. We detected no effect of shaving type on nest box selection, nest success, or egg surface bacterial growth. We found 3-8 bacterial colony types (1-123 colony-forming units [CFU]/box) and 1-8 bacterial colony types (3-382 CFU/box) among the Georgia and Florida samples, respectively. We detected no effect from shaving type on Wood Duck reproduction or bacterial growth in the sampled nest boxes. We concluded that both shaving types are suitable nesting materials for box-nesting Wood Duck populations and the continued use of either would be a reasonable decision for managers.


Subject(s)
Ducks , Nesting Behavior , Reproduction , Animals , Ducks/microbiology , Reproduction/physiology , Bacteria/isolation & purification , Egg Shell/microbiology , Florida , Georgia , Wood/microbiology , Female
11.
Int J Biol Macromol ; 271(Pt 1): 132620, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795888

ABSTRACT

Hybrid nanohydroxyapatite/carboxymethyl chitosan (nHAp-CMC) scaffolds have garnered significant attention in the field of regenerative engineering. The current study comparatively analyzed the physicochemical and biological properties of synthetic nanohydroxyapatite (SnHA)- and eggshell-sourced nanohydroxyapatite (EnHA)- based CMC biocomposites for pulp-dentin regeneration. EnHA and CMC were synthesized through a chemical process, whereas SnHA was commercially obtained. Composite scaffolds of SnHA-CMC and EnHA-CMC (1:5 w/w) were prepared using freeze-drying method. All biomaterials were characterized by FTIR, micro-Raman, XRD, HRSEM-EDX, and TEM analyses, and their in vitro bioactivity was assessed by immersing them in simulated body fluid for 21 days. The biological properties of the composite scaffolds were evaluated by assessing cytocompatibility using MTT assay and biomineralization potential by analyzing the odontogenic gene expressions (ALP, DSPP, DMP-1 and VEGF) in human dental pulp stem cells (DPSCs) using RT-qPCR method. Characterization studies revealed that EnHA displayed higher crystallinity and superior surface morphology compared to SnHA. The composite scaffolds showed a highly interconnected porous microstructure with pore sizes ranging between 60 and 220 µm, ideal for cell seeding. All tested materials, SnHA, EnHA, and their respective composites, displayed high cytocompatibility, increased ALP activity and degree of mineralization with significant upregulation of odontogenic-related genes on DPSCs (p < 0.05). Nevertheless, the odontogenic differentiation potential of EnHA-CMC on DPSCs was significantly higher when compared to SnHA-CMC. The findings from this study highlight the potential of EnHA-CMC as a promising candidate for pulp-dentin engineering.


Subject(s)
Chitosan , Dental Pulp , Durapatite , Egg Shell , Tissue Engineering , Tissue Scaffolds , Chitosan/chemistry , Chitosan/analogs & derivatives , Tissue Engineering/methods , Dental Pulp/cytology , Egg Shell/chemistry , Humans , Durapatite/chemistry , Tissue Scaffolds/chemistry , Animals , Dentin/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Nanocomposites/chemistry , Chemical Phenomena
12.
Poult Sci ; 103(7): 103802, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749105

ABSTRACT

Although it is well known that incubation environment has a great influence on embryogenesis and post-hatching performance of birds, not much is known about how external thermal, sound and light stimuli are isolated by eggshells and perceived by embryos. In this context, this study aimed to develop, calibrate and evaluate a multilevel sensor for integrated monitoring of the external (incubator) and internal environment of eggs. The variables of interest for the external environment were air temperature and relative humidity. For the internal environment, shell temperature, internal temperature, luminosity and sound pressure level were considered. The sensor was developed with an ATmega328 microcontroller, in open-source prototyping, using electronic components which are compatible with the egg's physical structure. Calibrations were carried out in a controlled environment, comparing the multilevel sensor with commercial equipment, obtaining coefficients of determination of R 2 > 0.90 for all variables studied. The multilevel sensor was also validated, simulating a commercial incubation situation and comparing eggs with 2 shell colors (white and brown) and internal volume (intact and empty). Validation results showed that white-shelled eggs insulate less external light (P < 0.001) and full eggs presented higher internal temperatures, greater light and lower sound pressure levels compared to empty eggs (P < 0.001). The multilevel sensor developed here is an innovative proposal for monitoring, simultaneously and in real time, different variables of interest in the commercial incubation environment.


Subject(s)
Ovum , Temperature , Animals , Ovum/physiology , Chickens/physiology , Egg Shell/physiology , Incubators/veterinary , Humidity , Calibration
13.
Animal ; 18(6): 101167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762993

ABSTRACT

Eggshell color is an important visual characteristic that affects consumer preferences for eggs. Eggshell color, which has moderate to high heritability, can be effectively enhanced through molecular marker selection. Various studies have been conducted on eggshell color at specific time points. However, few longitudinal data are available on eggshell color. Therefore, the objective of this study was to investigate eggshell color using the Commission International de L'Eclairage L*a*b* system with multiple measurements at different ages (age at the first egg and at 32, 36, 40, 44, 48, 52, 56, 60, 66, and 72 weeks) within the same individuals from an F2 resource population produced by crossing White Leghorn and Dongxiang Blue chicken. Using an Affymetrix 600 single nucleotide polymorphism (SNP) array, we estimated the genetic parameters of the eggshell color trait, performed genome-wide association studies (GWASs), and screened for the potential candidate genes. The results showed that pink-shelled eggs displayed a significant negative correlation between L* values and both a* and b* values. Genetic heritability based on SNPs showed that the heritability of L*, a*, and b* values ranged from 0.32 to 0.82 for pink-shelled eggs, indicating a moderate to high level of genetic control. The genetic correlations at each time point were mostly above 0.5. The major-effect regions affecting the pink eggshell color were identified in the 10.3-13.0 Mb interval on Gallus gallus chromosome 20, and candidate genes were selected, including SLC35C2, PCIF1, and SLC12A5. Minor effect polygenic regions were identified on chromosomes 1, 6, 9, 12, and 15, revealing 11 candidate genes, including MTMR3 and SLC35E4. Members of the solute carrier family play an important role in influencing eggshell color. Overall, our findings provide valuable insights into the phenotypic and genetic aspects underlying the variation in eggshell color. Using GWAS analysis, we identified multiple quantitative trait loci (QTLs) for pink eggshell color, including a major QTL on chromosome 20. Genetic variants associated with eggshell color may be used in genomic breeding programs.


Subject(s)
Chickens , Egg Shell , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Chickens/genetics , Chickens/physiology , Genome-Wide Association Study/veterinary , Color , Female , Pigmentation/genetics , Male , Phenotype
14.
Acta Odontol Scand ; 83: 264-272, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709122

ABSTRACT

PURPOSE: The purpose of the present in vitro study is to investigate and compare the remineralising potential of Moringa Oleifera extract, eggshell, and sodium fluoride varnish on microhardness of artificially demineralised enamel of primary teeth with biomimetic minimally invasive approach following the world paradigm shift towards natural products in paediatric dentistry. MATERIAL AND METHODS: Sample size included 44 primary molars. The mineral content and surface microhardness of all specimens were initially assessed using energy dispersive x-ray examination (EDX) and Vickers microhardness. The specimens were artificially demineralised for 96 h at a temperature of 37°C and then reassessed directly after demineralisation. The demineralised enamel specimens were randomly divided into four groups according to the remineralisation regimen utilised. Group 1: Artificial saliva (control); Group 2: Sodium fluoride varnish; Group 3: Eggshell hydrogel; and Group 4: Moringa Oleifera hydrogel. The specimens were stored for 8 days and then subsequently evaluated using EDX and microhardness assessment by Vickers microhardness test and scanning electron microscope (SEM).  Results: Regarding the microhardness test, there was a significant difference between the Moringa Oleifera group and Eggshell group compared to fluoride varnish (p < 0.05). Regarding EDX analysis, there was a statistically significant difference (p < 0.05) between Moringa Oleifera group and Eggshell group compared to fluoride varnish as the highest values were for Moringa Oleifera and Eggshell. On the other hand, there was no statistically significant difference (p > 0.05) between Moringa Oleifera and Eggshell in both the measurements. CONCLUSION: Moringa Oleifera and Eggshell might be considered as a biomimetic natural material capable of guiding enamel tissue remineralisation in early carious lesion of primary teeth. CLINICAL RELEVANCE: This research demonstrated the capability for early enamel caries to be remineralised using novel materials with a naturally counterpart implicated in biomineralisation as proved to be more effective than traditionally used fluoride varnish in primary teeth.


Subject(s)
Egg Shell , Hydrogels , Moringa oleifera , Sodium Fluoride , Tooth, Deciduous , Sodium Fluoride/administration & dosage , Tooth, Deciduous/drug effects , Egg Shell/chemistry , Humans , Moringa oleifera/chemistry , Tooth Remineralization/methods , Animals , In Vitro Techniques , Fluorides, Topical/administration & dosage , Microscopy, Electron, Scanning , Dental Enamel/drug effects , Hardness/drug effects , Spectrometry, X-Ray Emission , Tooth Demineralization/prevention & control , Tooth Demineralization/drug therapy
15.
Int J Biol Macromol ; 269(Pt 2): 131879, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692527

ABSTRACT

Multifunctional polysaccharide hydrogels with strong tissue adhesion, and antimicrobial and hemostatic properties are attractive wound healing materials. In this study, a chitosan-based hydrogel (HCS) was designed, and its properties were enhanced by incorporating oxidized eggshell membrane (OEM). Hydrogel characterization and testing results showed that the hydrogel had excellent antimicrobial properties, cytocompatibility, satisfactory adhesion properties on common substrates, and wet-state adhesion capacity. A rat liver injury model confirmed the significant hemostatic effect of the hydrogel. Finally, the ability of the hydrogel to promote wound healing was verified using rat skin wound repair experiments. Our findings indicate that HCS/OEM hydrogels with added eggshell membrane fibers have better self-healing properties, mechanical strength, adhesion, hemostatic properties, and biocompatibility than HCS hydrogels, in addition to having superior repair performance in wound repair experiments. Overall, the multifunctional polysaccharide hydrogels fabricated in this study are ideal for wound repair.


Subject(s)
Egg Shell , Hydrogels , Polysaccharides , Wound Healing , Wound Healing/drug effects , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Egg Shell/chemistry , Rats , Polysaccharides/chemistry , Polysaccharides/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Powders , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats, Sprague-Dawley
16.
Biosystems ; 240: 105234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759750

ABSTRACT

Avian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers. These results not only suggest that an eggshell membrane with multiple layers and low porosity indicates high antimicrobial performance, but also imply that the fibrous network structure of the membrane might contribute to effective defense. Our simulation results aligned with experimental findings, specifically in measuring the penetration time of Escherichia coli through the eggshell membrane. We briefly discuss the significance and limitations of this pilot study, as well as the potential for these results, to serve as a foundation for the development of antimicrobial materials.


Subject(s)
Egg Shell , Escherichia coli , Egg Shell/microbiology , Animals , Escherichia coli/physiology , Computer Simulation , Models, Biological , Membranes/metabolism , Birds , Models, Theoretical
17.
Chemosphere ; 358: 142226, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704039

ABSTRACT

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Subject(s)
Egg Shell , Flame Retardants , Phytic Acid , Egg Shell/chemistry , Phytic Acid/chemistry , Animals , Fires , Cellulose/chemistry , Calcium Carbonate/chemistry , Chickens
18.
Mol Biol Rep ; 51(1): 482, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578512

ABSTRACT

BACKGROUND: Natural bone grafts are the highly preferred materials for restoring the lost bone, while being constrained of donor availability and risk of disease transmission. As a result, tissue engineering is emerging as an efficacious and competitive technique for bone repair. Bone tissue engineering (TE) scaffolds to support bone regeneration and devoid of aforesaid limitations are being vastly explored and among these the avian eggshell membrane has drawn attention for TE owing to its low immunogenicity, similarity with the extracellular matrix, and easy availability. METHODOLOGY AND RESULTS: In this study, the development of bone ingrowth support system from avian eggshell membrane derived collagen hydrolysates (Col-h) is reported. The hydrolysate, cross-linked with glutaraldehyde, was developed into hydrogels with poly-(vinyl alcohol) (PVA) by freeze-thawing and further characterized with ATR-FTIR, XRD, FESEM. The biodegradability, swelling, mechanical, anti-microbial, and biocompatibility evaluation were performed further for the suitability in bone regeneration. The presence of amide I, amide III, and -OH functional groups at 1639 cm- 1,1264 cm- 1, and 3308 cm- 1 respectively and broad peak between 16°-21° (2θ) in XRD data reinstated the composition and form. CONCLUSIONS: The maximum ratio of Col-h/PVA that produced well defined hydrogels was 50:50. Though all the hydrogel matrices alluded towards their competitive attributes and applicability towards restorative bone repair, the hydrogel with 40:60 ratios showed better mechanical strength and cell proliferation than its counterparts. The prominent E. coli growth inhibition by the hydrogel matrices was also observed, along with excellent biocompatibility with MG-63 osteoblasts. The findings indicate strongly the promising application of avian eggshell-derived Col-h in supporting bone regeneration.


Subject(s)
Egg Shell , Escherichia coli , Animals , Collagen/pharmacology , Tissue Scaffolds , Tissue Engineering/methods , Hydrogels , Bone Regeneration , Amides
19.
Biomolecules ; 14(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38672456

ABSTRACT

The chicken egg, an excellent natural source of proteins, has been an overlooked native biomaterial with remarkable physicochemical, structural, and biological properties. Recently, with significant advances in biomedical engineering, particularly in the development of 3D in vitro platforms, chicken egg materials have increasingly been investigated as biomaterials due to their distinct advantages such as their low cost, availability, easy handling, gelling ability, bioactivity, and provision of a developmentally stimulating environment for cells. In addition, the chicken egg and its by-products can improve tissue engraftment and stimulate angiogenesis, making it particularly attractive for wound healing and tissue engineering applications. Evidence suggests that the egg white (EW), egg yolk (EY), and eggshell membrane (ESM) are great biomaterial candidates for tissue engineering, as their protein composition resembles mammalian extracellular matrix proteins, ideal for cellular attachment, cellular differentiation, proliferation, and survivability. Moreover, eggshell (ES) is considered an excellent calcium resource for generating hydroxyapatite (HA), making it a promising biomaterial for bone regeneration. This review will provide researchers with a concise yet comprehensive understanding of the chicken egg structure, composition, and associated bioactive molecules in each component and introduce up-to-date tissue engineering applications of chicken eggs as biomaterials.


Subject(s)
Biocompatible Materials , Chickens , Egg Shell , Tissue Engineering , Animals , Biocompatible Materials/chemistry , Egg Shell/chemistry , Egg White/chemistry , Egg Yolk/chemistry , Ovum/chemistry , Tissue Engineering/methods
20.
Poult Sci ; 103(6): 103677, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593544

ABSTRACT

Eggshell and shank color in poultry is an intriguing topic of research due to the roles in selection, breed recognition, and environmental adaptation. This study delves into the genomics foundations of shank and eggshell pigmentation in Italian local chickens through genome-wide association studies analysis to uncover the mechanisms governing these phenotypes. To this purpose, 483 animals from 20 local breeds (n = 466) and 2 commercial lines (n = 17) were considered and evaluated for shank and eggshell color. All animals were genotyped using the Affymetrix Axiom 600 K Chicken Genotyping Array. As regards shank color, the most interesting locus was detected on chromosome Z, close to the TYRP1 gene, known to play a key role in avian pigmentation. Additionally, several novel loci and genes associated with shank pigmentation, skin pigmentation, UV protection, and melanocyte regulation were identified (e.g., MTAP, CDKN2A, CDKN2B). In eggshell, fewer significant loci were identified, including SLC7A11 and MITF on chromosomes 4 and 12, respectively, associated with melanocyte processes and pigment synthesis. This comprehensive study shed light on the genetic architecture underlying shank and eggshell color in Italian native chicken breeds, contributing to a better understanding of this phenomenon which plays a role in breed identification and conservation, and has ecological and economic implications.


Subject(s)
Chickens , Egg Shell , Pigmentation , Animals , Chickens/genetics , Chickens/physiology , Italy , Pigmentation/genetics , Egg Shell/physiology , Color , Genome-Wide Association Study/veterinary , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...