Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Mol Ecol ; 33(4): e17248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38126927

ABSTRACT

Ecological speciation within the mormyrid genus Campylomormyrus resulted in sympatric species exhibiting divergence in their feeding apparatus and electric organ discharge (EOD). This study documents the overall diet of the genus Campylomormyrus and examines the hypothesis that the Campylomormyrus radiation is caused by adaptation to different food sources. We performed diet assessment of five sympatric Campylomormyrus species (C. alces, C. compressirostris, C. curvirostris, C. tshokwe, C. numenius) and their sister taxon Gnathonemus petersii with markedly different snout morphologies and EODs using hybrid capture/HTS DNA metabarcoding of their stomach contents. Our approach allowed for high taxonomic resolution of prey items, including benthic invertebrates, allochthonous invertebrates and vegetation. Comparisons of the diet compositions using quantitative measures and diet overlap indices revealed that all species are able to exploit multiple food niches in their habitats, that is fauna at the bottom, the water surface and the water column. A major part of the diet is larvae of aquatic insects, such as dipterans, coleopterans and trichopterans, known to occur in holes and interstitial spaces of the substrate. The results indicate that different snout morphologies and the associated divergence in the EOD could translate into different prey spectra. This suggests that the diversification in EOD and/or morphology of the feeding apparatus could be under functional adaptation.


Subject(s)
Electric Fish , Animals , Electric Fish/genetics , Sympatry , Electric Organ/anatomy & histology , Diet , Water
2.
Sci Rep ; 11(1): 6193, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737620

ABSTRACT

The electric eel is a unique species that has evolved three electric organs. Since the 1950s, electric eels have generally been assumed to use these three organs to generate two forms of electric organ discharge (EOD): high-voltage EOD for predation and defense and low-voltage EOD for electrolocation and communication. However, why electric eels evolved three electric organs to generate two forms of EOD and how these three organs work together to generate these two forms of EOD have not been clear until now. Here, we present the third form of independent EOD of electric eels: middle-voltage EOD. We suggest that every form of EOD is generated by one electric organ independently and reveal the typical discharge order of the three electric organs. We also discuss hybrid EODs, which are combinations of these three independent EODs. This new finding indicates that the electric eel discharge behavior and physiology and the evolutionary purpose of the three electric organs are more complex than previously assumed. The purpose of the middle-voltage EOD still requires clarification.


Subject(s)
Animal Communication , Biological Evolution , Electric Organ/physiology , Electrophorus/physiology , Animals , Electric Organ/anatomy & histology , Electricity , Electrodes , Electrophorus/classification , Phylogeny
3.
J Comp Neurol ; 529(8): 1787-1809, 2021 06.
Article in English | MEDLINE | ID: mdl-33070328

ABSTRACT

Mochokid catfish offer a distinct opportunity to study a communication system transitioning to a new signaling channel because some produce sounds and others electric discharges. Both signals are generated using an elastic spring system (ESS), which includes a protractor muscle innervated by motoneurons within the protractor nucleus that also has a motoneuron afferent population. Synodontis grandiops and S. nigriventris produce sounds and electric discharges, respectively, and their ESSs show several morphological and physiological differences. The extent to which these differences explain different signal types remains unclear. Here, we compare ESS morphologies and behavioral phenotypes among five mochokids. S. grandiops and S. nigriventris were compared with Synodontis eupterus that is known to produce both signal types, and representative members of two sister genera, Microsynodontis cf. batesii and Mochokiella paynei, for which no data were available. We provide support for the hypothesis that peripheral and central components of the ESS are conserved among mochokids. We also show that the two nonsynodontids are only sonic, consistent with sound production being an ancestral character for mochokids. Even though the three sound producing-only species differ in some ESS characters, several are similar and likely associated with only sound production. We propose that the ability of S. eupterus to generate both electric discharges and sounds may depend on a protractor muscle intermediate in morphology between sound producing-only and electric discharge-only species, and two separate populations of protractor motoneurons. Our results further suggest that an electrogenic ESS in synodontids is an exaptation of a sound producing ESS.


Subject(s)
Animal Communication , Catfishes/anatomy & histology , Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Motor Neurons/cytology , Animals , Catfishes/physiology , Electric Fish/physiology , Electric Organ/physiology , Neurons, Afferent/cytology , Species Specificity
4.
J Comp Neurol ; 528(15): 2602-2619, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32266714

ABSTRACT

To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract-tracing, and intracellular neuronal recording, we address this question in a sound-producing and a weakly electric species of synodontid catfish, Synodontis grandiops, and Synodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species-specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa.


Subject(s)
Catfishes/physiology , Electric Fish/physiology , Electric Organ/physiology , Motor Neurons/physiology , Nerve Net/physiology , Vocalization, Animal/physiology , Animals , Catfishes/anatomy & histology , Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Electromyography/methods , Female , Male , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Nerve Net/anatomy & histology , Species Specificity
5.
J Fish Biol ; 95(1): 135-154, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31169300

ABSTRACT

Electroreception in marine fishes occurs across a variety of taxa and is best understood in the chondrichthyans (sharks, skates, rays, and chimaeras). Here, we present an up-to-date review of what is known about the biology of passive electroreception and we consider how electroreceptive fishes might respond to electric and magnetic stimuli in a changing marine environment. We briefly describe the history and discovery of electroreception in marine Chondrichthyes, the current understanding of the passive mode, the morphological adaptations of receptors across phylogeny and habitat, the physiological function of the peripheral and central nervous system components, and the behaviours mediated by electroreception. Additionally, whole genome sequencing, genetic screening and molecular studies promise to yield new insights into the evolution, distribution, and function of electroreceptors across different environments. This review complements that of electroreception in freshwater fishes in this special issue, which provides a comprehensive state of knowledge regarding the evolution of electroreception. We conclude that despite our improved understanding of passive electroreception, several outstanding gaps remain which limits our full comprehension of this sensory modality. Of particular concern is how electroreceptive fishes will respond and adapt to a marine environment that is being increasingly altered by anthropogenic electric and magnetic fields.


Subject(s)
Adaptation, Physiological , Elasmobranchii/physiology , Animals , Behavior, Animal , Ecosystem , Elasmobranchii/anatomy & histology , Elasmobranchii/genetics , Electric Organ/anatomy & histology , Electric Organ/physiology , Phylogeny , Predatory Behavior , Sensory Receptor Cells/physiology , Signal Transduction
6.
J Fish Biol ; 93(6): 1059-1068, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30246387

ABSTRACT

We describe the anatomy and histology of the accessory electric organs of several knifefish taxa. Accessory electric organs are observed among Rhamphichthyoidea in the opercular, mental and humeral regions. Within this group, some species of Brachyhypopomus possess an accessory electric organ in the opercular region. Rhamphichthyinae and Steatogenys possess accessory electric organs in the mental region of the body that differs in many aspects, such as general electrocyte shape and its number of caudal ridges. Steatogenys, Hypopygus and Rhamphichthys possess an accessory electric organ in the humeral region that differs in position, electrocyte configuration and shape. Electrocytes of both humeral and mental accessory electric organs in Steatogenys share a number of common features (e.g., electrocyte shape and innervation pattern), which distinguishes them from the electric organs of related groups. Rhamphichthys has an accessory electric organ in the humeral (specifically subpectoral) region, which has not previously been reported in the literature and differs in arrangement and electrocyte shape from those previously described electric organs of other taxa. Homology of these accessory electric organs is discussed in the context of hypothesized relationships among rhamphichthyoid taxa, indicating that accessory electric organs originated multiple times with apparently no subsequent losses.


Subject(s)
Electric Organ/anatomy & histology , Gymnotiformes/anatomy & histology , Animals , Body Size , Electric Organ/physiology , Female , Gymnotiformes/physiology , Male
7.
J R Soc Interface ; 15(138)2018 01.
Article in English | MEDLINE | ID: mdl-29367237

ABSTRACT

Sensory systems encode environmental information that is necessary for adaptive behavioural choices, and thus greatly influence the evolution of animal behaviour and the underlying neural circuits. Here, we evaluate how the quality of sensory information impacts the jamming avoidance response (JAR) in weakly electric fish. To sense their environment, these fish generate an oscillating electric field: the electric organ discharge (EOD). Nearby fish with similar EOD frequencies perform the JAR to increase the difference between their EOD frequencies, i.e. their difference frequency (DF). The fish determines the sign of the DF: when it has a lower frequency (DF > 0), EOD frequency is decreased and vice versa. We study the sensory basis of the JAR in two species: Apteronotus leptorhynchus have a high frequency (ca 1000 Hz), spatio-temporally heterogeneous electric field, whereas Eigenmannia sp. have a low frequency (ca 300 Hz), spatially uniform field. We show that the increased complexity of the Apteronotus field decreases the reliability of sensory cues used to determine the DF. Interestingly, Apteronotus responds to all JAR stimuli by increasing EOD frequency, having lost the neural pathway that produces JAR-related decreases in EOD frequency. Our results suggest that electric field complexity may have influenced the evolution of the JAR by degrading the related sensory information.


Subject(s)
Avoidance Learning/physiology , Behavior, Animal/physiology , Electric Organ/physiology , Gymnotiformes/physiology , Neurons/physiology , Animals , Electric Organ/anatomy & histology , Gymnotiformes/anatomy & histology , Neural Pathways/physiology
8.
Article in English | MEDLINE | ID: mdl-25752300

ABSTRACT

The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.


Subject(s)
Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Animals , Electric Fish/growth & development , Electric Fish/physiology , Electric Organ/growth & development , Electric Organ/physiology , Electrodes , Female , Male , Photomicrography , Species Specificity
9.
J Physiol Paris ; 108(2-3): 71-83, 2014.
Article in English | MEDLINE | ID: mdl-25088503

ABSTRACT

This is a first communication on the self-activation pattern of the electrosensory lobe in the pulse weakly electric fish Gymnotus omarorum. Field potentials in response to the fish's own electric organ discharge (EOD) were recorded along vertical tracks (50µm step) and on a transversal lattice array across the electrosensory lobe (resolution 50µm×100µm). The unitary activity of 82 neurons was recorded in the same experiments. Field potential analysis indicates that the slow electrosensory path shows a characteristic post-EOD pattern of activity marked by three main events: (i) a small and early component at about 7ms, (ii) an intermediate peak about 13ms and (iii) a late broad component peaking after 20ms. Unit firing rate showed a wide range of latencies between 3 and 30ms and a variable number of spikes (median 0.28units/EOD). Conditional probability analysis showed monomodal and multimodal post-EOD histograms, with the peaks of unit activity histograms often matching the timing of the main components of the field potentials. Monomodal responses were sub-classified as phase locked monomodal (variance smaller than 1ms), early monomodal (intermediate variance, often firing in doublets, peaking range 10-17ms) and late monomodal (large variance, often firing two spikes separated about 10ms, peaking beyond 17ms). The responses of multimodal units showed that their firing probability was either enhanced, or depressed just after the EOD. In this last (depressed) subtype of unit the probability stepped down just after the EOD. Early inhibition and the presence of early phase locked units suggest that the observed pattern may be influenced by a fast feed forward inhibition. We conclude that the ELL in pulse gymnotiformes is activated in a complex sequence of events that reflects the ELL network connectivity.


Subject(s)
Electric Fish/physiology , Electric Organ/physiology , Neural Pathways/physiology , Action Potentials/physiology , Animals , Decerebrate State , Electric Organ/anatomy & histology , Electric Organ/innervation , Electrophysiological Phenomena
10.
Science ; 344(6191): 1522-5, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24970089

ABSTRACT

Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs.


Subject(s)
Biological Evolution , Electric Fish/genetics , Electric Organ/cytology , Electric Organ/physiology , Electrophorus/anatomy & histology , Electrophorus/genetics , Animals , Catfishes/anatomy & histology , Catfishes/genetics , Catfishes/physiology , Cell Differentiation , Electric Fish/anatomy & histology , Electric Fish/physiology , Electric Organ/anatomy & histology , Electrophorus/physiology , Gene Expression Regulation , Gene Regulatory Networks , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
11.
Adv Physiol Educ ; 38(1): 12-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24585464

ABSTRACT

Decades of behavioral observations have shown that invertebrate and vertebrate species have the ability to distinguish between self-generated afferent inputs versus those that are generated externally. In the present article, I describe activities focused around the discussion of a classic American Physiological Society paper by Curtis C. Bell that lays the foundation for students to investigate the neural substrate underlying this ability. Students will leave this activity being able to 1) describe the technical aspects and limitations of an electric fish preparation commonly used to acquire single unit (extracellular) neurophysiological data, 2) provide physiological evidence showing that the activity of principal cells in the posterior lateral line lobe of the electric fish brain reflects that of a reafference comparator that could be used in dissociating self-generated versus externally generated sensory signals, and 3) knowledgeably discuss hypotheses concerning the role of corollary discharge and cerebellar-like structures in vertebrate and invertebrate species. The skills and background knowledge gained in this activity lay the platform for advanced study of scientific investigations into sensory, motor, and cognitive processes in undergraduate, graduate, or medical school curricula.


Subject(s)
Cerebellum/physiology , Electric Fish/physiology , Electric Organ/physiology , Motor Activity , Neurophysiology/education , Periodicals as Topic , Sensation , Teaching/methods , Action Potentials , Animals , Cerebellum/anatomy & histology , Comprehension , Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Electric Stimulation , Group Processes , Humans , Learning , Models, Animal , Neural Pathways/physiology
12.
Brain Behav Evol ; 81(4): 226-35, 2013.
Article in English | MEDLINE | ID: mdl-23817033

ABSTRACT

Quantitative studies of sensory axons provide invaluable insights into the functional significance and relative importance of a particular sensory modality. Despite the important role electroreception plays in the behaviour of elasmobranchs, to date, there have been no studies that have assessed the number of electrosensory axons that project from the peripheral ampullae to the central nervous system (CNS). The complex arrangement and morphology of the peripheral electrosensory system has a significant influence on its function. However, it is not sufficient to base conclusions about function on the peripheral system alone. To fully appreciate the function of the electrosensory system, it is essential to also assess the neural network that connects the peripheral system to the CNS. Using stereological techniques, unbiased estimates of the total number of axons were obtained for both the electrosensory bundles exiting individual ampullary organs and those entering the CNS (via the dorsal root of the anterior lateral line nerve, ALLN) in males and females of different sizes. The dorsal root of the ALLN consists solely of myelinated electrosensory axons and shows both ontogenetic and sexual dimorphism. In particular, females exhibit a greater abundance of electrosensory axons, which may result in improved sensitivity of the electrosensory system and may facilitate mate identification for reproduction. Also presented are detailed morphological data on the peripheral electrosensory system to allow a complete interpretation of the functional significance of the sexual dimorphism found in the ALLN.


Subject(s)
Axons/ultrastructure , Electric Organ/cytology , Lateral Line System/cytology , Sex Characteristics , Animals , Electric Fish , Electric Organ/anatomy & histology , Electric Organ/ultrastructure , Female , Lateral Line System/anatomy & histology , Lateral Line System/ultrastructure , Male , Nerve Fibers/ultrastructure
13.
J Exp Biol ; 216(Pt 13): 2365-79, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761462

ABSTRACT

The coding of stimulus information into patterns of spike times occurs widely in sensory systems. Determining how temporally coded information is decoded by central neurons is essential to understanding how brains process sensory stimuli. Mormyrid weakly electric fishes are experts at time coding, making them an exemplary organism for addressing this question. Mormyrids generate brief, stereotyped electric pulses. Pulse waveform carries information about sender identity, and it is encoded into submillisecond-to-millisecond differences in spike timing between receptors. Mormyrids vary the time between pulses to communicate behavioral state, and these intervals are encoded into the sequence of interspike intervals within receptors. Thus, the responses of peripheral electroreceptors establish a temporally multiplexed code for communication signals, one consisting of spike timing differences between receptors and a second consisting of interspike intervals within receptors. These signals are processed in a dedicated sensory pathway, and recent studies have shed light on the mechanisms by which central circuits can extract behaviorally relevant information from multiplexed temporal codes. Evolutionary change in the anatomy of this pathway is related to differences in electrosensory perception, which appears to have influenced the diversification of electric signals and species. However, it remains unknown how this evolutionary change relates to differences in sensory coding schemes, neuronal circuitry and central sensory processing. The mormyrid electric communication pathway is a powerful model for integrating mechanistic studies of temporal coding with evolutionary studies of correlated differences in brain and behavior to investigate neural mechanisms for processing temporal codes.


Subject(s)
Animal Communication , Electric Fish/physiology , Electric Organ/physiology , Animals , Biological Evolution , Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Female , Male , Nerve Net/anatomy & histology , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/physiology
14.
J Exp Biol ; 216(Pt 13): 2442-50, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761469

ABSTRACT

Sensory neurons continually adapt their processing properties in response to changes in the sensory environment or the brain's internal state. Neuromodulators are thought to mediate such adaptation through a variety of receptors and their action has been implicated in processes such as attention, learning and memory, aggression, reproductive behaviour and state-dependent mechanisms. Here, we review recent work on neuromodulation of electrosensory processing by acetylcholine and serotonin in the weakly electric fish Apteronotus leptorhynchus. Specifically, our review focuses on how experimental application of these neuromodulators alters excitability and responses to sensory input of pyramidal cells within the hindbrain electrosensory lateral line lobe. We then discuss current hypotheses on the functional roles of these two neuromodulatory pathways in regulating electrosensory processing at the organismal level and the need for identifying the natural behavioural conditions that activate these pathways.


Subject(s)
Acetylcholine/metabolism , Electric Fish/physiology , Neurotransmitter Agents/metabolism , Serotonin/metabolism , Animals , Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Electric Organ/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Rhombencephalon/anatomy & histology , Rhombencephalon/cytology , Rhombencephalon/physiology , Sensation
15.
J Exp Biol ; 216(Pt 13): 2523-41, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23761477

ABSTRACT

A complete understanding of animal signal evolution necessitates analyses of both the proximate (e.g. anatomical and physiological) mechanisms of signal generation and reception, and the ultimate (i.e. evolutionary) mechanisms underlying adaptation and diversification. Here we summarize the results of a synthetic study of electric diversity in the species-rich neotropical electric fish genus Gymnotus. Our study integrates two research directions. The first examines the proximate causes of diversity in the electric organ discharge (EOD) - which is the carrier of both the communication and electrolocation signal of electric fishes - via descriptions of the intrinsic properties of electrocytes, electrocyte innervation, electric organ anatomy and the neural coordination of the discharge (among other parameters). The second seeks to understand the ultimate causes of signal diversity - via a continent-wide survey of species diversity, species-level phylogenetic reconstructions and field-recorded head-to-tail EOD (ht-EOD) waveforms (a common procedure for characterizing the communication component of electric fish EODs). At the proximate level, a comparative morpho-functional survey of electric organ anatomy and the electromotive force pattern of the EOD for 11 species (representing most major clades) revealed four distinct groups of species, each corresponding to a discrete area of the phylogeny of the genus and to a distinct type of ht-EOD waveform. At the ultimate level, our analyses (which emphasize the ht-EOD) allowed us to conclude that selective forces from the abiotic environment have had minimal impact on the communication component of the EOD. In contrast, selective forces of a biotic nature - imposed by electroreceptive predators, reproductive interference from heterospecific congeners, and sexual selection - may be important sources of diversifying selection on Gymnotus signals.


Subject(s)
Gymnotiformes/physiology , Animal Communication , Animals , Biological Evolution , Electric Organ/anatomy & histology , Electric Organ/physiology , Gymnotiformes/anatomy & histology , Gymnotiformes/classification , Gymnotiformes/genetics , Phylogeny
16.
J Exp Biol ; 216(Pt 8): 1501-15, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23264494

ABSTRACT

Previous studies describe six factors accounting for interspecific diversity of electric organ discharge (EOD) waveforms in Gymnotus. At the cellular level, three factors determine the locally generated waveforms: (1) electrocyte geometry and channel repertoire; (2) the localization of synaptic contacts on electrocyte surfaces; and (3) electric activity of electromotor axons preceding the discharge of electrocytes. At the organismic level, three factors determine the integration of the EOD as a behavioral unit: (4) the distribution of different types of electrocytes and specialized passive tissue forming the electric organ (EO); (5) the neural mechanisms of electrocyte discharge coordination; and (6) post-effector mechanisms. Here, we reconfirm the importance of the first five of these factors based on comparative studies of a wider diversity of Gymnotus than previously investigated. Additionally, we report a hitherto unseen aspect of EOD diversity in Gymnotus. The central region of the EO (which has the largest weight on the conspecific-received field) usually exhibits a negative-positive-negative pattern where the delay between the early negative and positive peaks (determined by neural coordination mechanisms) matches the delay between the positive and late negative peaks (determined by electrocyte responsiveness). Because delays between peaks typically determine the peak power frequency, this matching implies a co-evolution of neural and myogenic coordination mechanisms in determining the spectral specificity of the intraspecific communication channel. Finally, we define four functional species groups based on EO/EOD structure. The first three exhibit a heterogeneous EO in which doubly innervated electrocytes are responsible for a main triphasic complex. Group I species exhibit a characteristic cephalic extension of the EO. Group II species exhibit an early positive component of putative neural origin, and strong EO auto-excitability. Group III species exhibit an early, slow, negative wave of abdominal origin, and variation in EO auto-excitability. Representatives of Group IV generate a unique waveform comprising a main positive peak followed by a small, load-dependent negative component.


Subject(s)
Electric Organ/anatomy & histology , Electric Organ/physiology , Gymnotiformes/anatomy & histology , Gymnotiformes/physiology , Animals , Biological Evolution , Electric Organ/cytology , Electric Organ/innervation , Species Specificity
17.
J Exp Biol ; 215(Pt 14): 2479-94, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22723488

ABSTRACT

Electric organs (EOs) have evolved independently in vertebrates six times from skeletal muscle (SM). The transcriptional changes accompanying this developmental transformation are not presently well understood. Mormyrids and gymnotiforms are two highly convergent groups of weakly electric fish that have independently evolved EOs: while much is known about development and gene expression in gymnotiforms, very little is known about development and gene expression in mormyrids. This lack of data limits prospects for comparative work. We report here on the characterization of 28 differentially expressed genes between SM and EO tissues in the mormyrid Brienomyrus brachyistius, which were identified using suppressive subtractive hybridization (SSH). Forward and reverse SSH was performed on tissue samples of EO and SM resulting in one cDNA library enriched with mRNAs expressed in EO, and a second library representing mRNAs unique to SM. Nineteen expressed sequence tags (ESTs) were identified in EO and nine were identified in SM using BLAST searching of Danio rerio sequences available in NCBI databases. We confirmed differential expression of all 28 ESTs using RT-PCR. In EO, these ESTs represent four classes of proteins: (1) ion pumps, including the α- and ß-subunits of Na(+)/K(+)-ATPase, and a plasma membrane Ca(2+)-ATPase; (2) Ca(2+)-binding protein S100, several parvalbumin paralogs, calcyclin-binding protein and neurogranin; (3) sarcomeric proteins troponin I, myosin heavy chain and actin-related protein complex subunit 3 (Arcp3); and (4) the transcription factors enhancer of rudimentary homolog (ERH) and myocyte enhancer factor 2A (MEF2A). Immunohistochemistry and western blotting were used to demonstrate the translation of seven proteins (myosin heavy chain, Na(+)/K(+)-ATPase, plasma membrane Ca(2+)-ATPase, MEF2, troponin and parvalbumin) and their cellular localization in EO and SM. Our findings suggest that mormyrids express several paralogs of muscle-specific genes and the proteins they encode in EOs, unlike gymnotiforms, which may post-transcriptionally repress several sarcomeric proteins. In spite of the similarity in the physiology and function of EOs in mormyrids and gymnotiforms, this study indicates that the mechanisms of development in the two groups may be considerably different.


Subject(s)
Electric Fish/genetics , Electric Organ/metabolism , Fish Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation , Muscle, Skeletal/metabolism , Animals , Blotting, Western , Electric Fish/growth & development , Electric Organ/anatomy & histology , Expressed Sequence Tags , Fish Proteins/metabolism , Gymnotiformes/genetics , Gymnotiformes/growth & development , Immunohistochemistry , MEF2 Transcription Factors , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sarcomeres/metabolism
18.
J Morphol ; 273(6): 629-38, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22234965

ABSTRACT

The nocturnally active weakly electric fish Gnathonemus petersii is known to employ active electrolocation for the detection of objects and for orientation in its environment. The fish emits pulse-type electric signals with an electric organ and perceives these signals with more than 3,000 epidermal electroreceptor organs, the mormyromasts, which are distributed over the animal's skin surface. In this study, we measured the metric dimensions of the mormyromasts from different body regions to find structural and functional specialization of the various body parts. We focused on the two foveal regions of G. petersii, which are located at the elongated and movable chin (the Schnauzenorgan; SO) and at the nasal region (NR), the skin region between the mouth and the nares. These two foveal regions were compared to the dorsal part (back) of the fish, which contains typical nonfoveal mormyromasts. While the gross anatomy of the mormyromasts from all skin regions is similar, the metric dimensions of the main substructures differed. The mormyromasts at the SO are the smallest and contain the smallest receptor cells. In addition, the number of receptor cells per organ is lowest at the SO. In contrast, at the back the biggest receptor organs with the highest amount of receptor cells per organ occur. The mormyromasts at the NR are in several respects intermediate between those from the back and the SO. However, mormyromasts at the NR are longer than those at all other skin regions, the canal leading from the receptor pore to the inner chambers were the longest and the overlaying epidermal layers are the thickest. These results show that mormyromasts and the epidermis they are embedded in at both foveal regions differ specifically from those found on the rest of the body. The morphological specializations lead to functional specialization of the two foveae.


Subject(s)
Electric Fish/anatomy & histology , Electric Organ/anatomy & histology , Animals , Back/anatomy & histology , Electric Fish/physiology , Electric Organ/cytology , Electric Organ/physiology , Perception , Sensory Receptor Cells , Skin/anatomy & histology , Torso
19.
Zh Obshch Biol ; 72(3): 198-213, 2011.
Article in Russian | MEDLINE | ID: mdl-21786662

ABSTRACT

Function of weak electric discharges is conclusively proved only for two fish orders - Mormyriformes and Gymnotiformes. Every specimen of the two groups emits electric discharges continuously or quite regularly for location, orientation and communication. The function of weak episodic electric discharges in other groups of weakly electric fish - Rajiformes, Uranoscopidae and Siluriformes, remains the puzzle since Darwin. Recent experiments made it possible to expand the list of weakly electric fish with episodic discharges. The range of behavioral situations accompanied with electric emission has been expanded as well. For instance, Asian catfish, Clarias macrocephalus, emit episodic discharges while in aggressive and spawning behavior. Asian catfish females emit the special burst of electrical discharges as a part of mating ritual. This burst cannot serve as an invitation to spawning or synchronization of reproductive products release, because females emit it after the sperm ejection. If females would need males' help for eggs release, it could be suggested that discharges assist in their mutual efforts. Since the electric field strength near fish is higher than fish's non-specialized electrical sensitivity thresholds, other hypotheses are possible. For example, it could be suggested that electric fields would make sperm or eggs more active. To proceed in our conception about episodic discharges function, new hardware and software are needed.


Subject(s)
Catfishes/physiology , Electric Fish/physiology , Sexual Behavior, Animal/physiology , Aggression , Animals , Asia , Electric Organ/anatomy & histology , Electric Organ/physiology , Electricity , Female , Male , Orientation
20.
Article in English | MEDLINE | ID: mdl-21505877

ABSTRACT

We describe patterns of geographic variation in electric signal waveforms among populations of the mormyrid electric fish species Paramormyrops kingsleyae. This analysis includes study of electric organs and electric organ discharge (EOD) signals from 553 specimens collected from 12 localities in Gabon, West-Central Africa from 1998 to 2009. We measured time, slope, and voltage values from nine defined EOD "landmarks" and determined peak spectral frequencies from each waveform; these data were subjected to principal components analysis. The majority of variation in EODs is explained by two factors: the first related to EOD duration, the second related to the magnitude of the weak head-negative pre-potential, P0. Both factors varied clinally across Gabon. EODs are shorter in eastern Gabon and longer in western Gabon. Peak P0 is slightly larger in northern Gabon and smaller in southern Gabon. P0 in the EOD is due to the presence of penetrating-stalked (Pa) electrocytes in the electric organ while absence is due to the presence of non-penetrating stalked electrocytes (NPp). Across Gabon, the majority of P. kingsleyae populations surveyed have only individuals with P0-present EODs and Pa electrocytes. We discovered two geographically distinct populations, isolated from others by barriers to migration, where all individuals have P0-absent EODs with NPp electrocytes. At two sites along a boundary between P0-absent and P0-present populations, P0-absent and P0-present individuals were found in sympatry; specimens collected there had electric organs of intermediate morphology. This pattern of geographic variation in EODs is considered in the context of current phylogenetic work. Multiple independent paedomorphic losses of penetrating stalked electrocytes have occurred within five Paramormyrops species and seven genera of mormyrids. We suggest that this key anatomical feature in EOD signal evolution may be under a simple mechanism of genetic control, and may be easily influenced by selection or drift throughout the evolutionary history of mormyrids.


Subject(s)
Biological Evolution , Electric Fish/anatomy & histology , Electric Fish/physiology , Electric Organ/physiology , Signal Transduction/physiology , Action Potentials/physiology , Africa, Central , Animals , Electric Fish/classification , Electric Organ/anatomy & histology , Electrophysiology , Geography , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...