Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49.744
Filter
1.
Sci Rep ; 14(1): 15066, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956113

ABSTRACT

Living cells have spontaneous ultraweak photon emission derived from metabolic reactions associated with physiological conditions. The ORCA-Quest CMOS camera (Hamamatsu Photonics, Japan) is a highly sensitive and essential tool for photon detection; its use with a microscope incubator (Olympus) enables the detection of photons emitted by embryos with the exclusion of harmful visible light. With the application of the second law of thermodynamics, the low-entropy energy absorbed and used by embryos can be distinguished from the higher-entropy energy released and detectable in their environment. To evaluate higher-entropy energy data from embryos, we developed a unique algorithm for the calculation of the entropy-weighted spectral fractal dimension, which demonstrates the self-similar structure of the energy (photons) released by embryos. Analyses based on this structure enabled the distinction of living and degenerated mouse embryos, and of frozen and fresh embryos and the background. This novel detection of ultra-weak photon emission from mouse embryos can provide the basis for the development of a photon emission embryo control system. The ultraweak photon emission fingerprints of embryos may be used for the selection of viable specimens in an ideal dark environment.


Subject(s)
Algorithms , Embryo, Mammalian , Photons , Animals , Mice , Female
2.
Methods Mol Biol ; 2805: 171-186, 2024.
Article in English | MEDLINE | ID: mdl-39008182

ABSTRACT

Biophysical factors, including changes in mechanical stiffness, have been shown to influence the morphogenesis of developing organs. There is a lack of experimental techniques, however, that can probe the mechanical properties of embryonic tissues-especially those which are not mechanically or optically accessible, such as the visceral organs of the developing mouse embryo. Here, using the embryonic kidney as a model system, we describe a method to use microindentation to quantify tissue-level regional differences in the mechanical properties of an embryonic organ. This technique is generalizable and can be used to quantify patterns of tissue stiffness within other developing organ systems. Going forward, these data will enable new experimental studies of the role of biophysical cues during organogenesis.


Subject(s)
Kidney , Animals , Mice , Kidney/embryology , Kidney/cytology , Biomechanical Phenomena , Organogenesis , Embryo, Mammalian/cytology , Embryo, Mammalian/physiology
3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000535

ABSTRACT

The receptive phase of the uterus is marked by structural and functional maturation of the endometrium. During this limited time span, the blastocyst competency is superimposed on the receptive endometrium. It is a well-known fact that lipid signalling in early-stage pregnancy has a crucial role in successful embryogenesis. In our study, CD-1 mouse uteri after normal and in vitro fertilization (IVF) were investigated at 6.5, 8.5, and 10.5 days of pregnancy. Matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry and liquid chromatography coupled tandem mass spectrometry were used for identification of phosphatidylcholine (PC) lipid structures. In the embryonal tissues, PC 32:0 and PC 34:0 were increased, while in the antemesometrial (AM) decidua the two 20:4-containing PCs, PC 36:4 and PC 38:4 were increased. In transferred uterus samples, higher expressions of PC 34:0, PC 34:1, PC 34:2, PC 36:1, and PC 36:2 in mesometrial decidua were seen, whereas the two 20:4-containing PCs, PC 36:4 and PC 38:4 showed increased expression in the AM and lateral decidua. This paper shows a significant spatio-temporal change in lipid metabolism during IVF procedures for the first time.


Subject(s)
Fertilization in Vitro , Phosphatidylcholines , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Female , Animals , Mice , Phosphatidylcholines/metabolism , Phosphatidylcholines/analysis , Fertilization in Vitro/methods , Pregnancy , Embryo, Mammalian/metabolism , Embryonic Development , Uterus/metabolism , Blastocyst/metabolism
4.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997724

ABSTRACT

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Subject(s)
Cryopreservation , Embryo Transfer , Placenta , Cryopreservation/methods , Female , Pregnancy , Animals , Mice , Embryo Transfer/methods , Placenta/metabolism , Embryo, Mammalian , Embryo Implantation/genetics , Fetal Development/genetics , Blastocyst/metabolism
5.
Phys Rev Lett ; 132(24): 248401, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949349

ABSTRACT

Cellular Potts models are broadly applied across developmental biology and cancer research. We overcome limitations of the traditional approach, which reinterprets a modified Metropolis sampling as ad hoc dynamics, by introducing a physical timescale through Poissonian kinetics and by applying principles of stochastic thermodynamics to separate thermal and relaxation effects from athermal noise and nonconservative forces. Our method accurately describes cell-sorting dynamics in mouse-embryo development and identifies the distinct contributions of nonequilibrium processes, e.g., cell growth and active fluctuations.


Subject(s)
Models, Biological , Stochastic Processes , Animals , Mice , Kinetics , Thermodynamics , Embryonic Development/physiology , Embryo, Mammalian/cytology
7.
Am J Reprod Immunol ; 92(1): e13891, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38958250

ABSTRACT

PROBLEM: The decidualization process conditions monocytes to the immunosuppressive and tolerogenic dendritic cell (DC)-10 profile, a DC subset with high IL-10 production. Since the implantation process implies an embryo-endometrium-immune crosstalk, here we focused on the ability of embryonic soluble factors to modify decidual DC conditioning accordingly with its quality. METHOD OF STUDY: Human endometrial stromal cell line (HESC) decidualized with medroxyprogesterone and dibutyryl-cAMP (Dec) was stimulated with human embryo-conditioned media (ECM), classified as normal (ND) or impaired developed (ID) for 48 h (n = 18/group). Monocytes isolated from six healthy women were differentiated to DCs with rhGM-CSF+rhIL-4 in the presence/absence of conditioned media (CM) from decidualized cells stimulated with ECM or nontreated. RESULTS: We found that decidualized cells stimulated with ECM sustain a myeloid regulatory cell profile on monocyte-derived culture with increased frequency of CD1a-CD14+ and CD83+CD86low cells. ND-Dec sustained the higher expression of the DC-10 markers, HLA-G and IL-10 whereas ID-Dec diminished IL-10 production (ID-Dec: 135 ± 37.4 vs. Dec: 223.3 ± 49.9 pg/mL, p < 0.05). The treatment with ECM-Dec sustained a higher IL-10 production and prevented the increase of CD83/CD86 after LPS challenge regardless of embryo quality. Notably, TNF-α production increased in ID-Dec cultures (ID-Dec: 475.1 ± 134.7 vs. Dec: 347.5 ± 98 pg/mL, p < 0.05). CONCLUSIONS: Although remaining in a tolerogenic profile compatible with DC-10, DCs can differentially respond to decidual secreted factors based on embryo quality, changing their secretome. These results suggest that in the presence of arrested embryo, DCs could differentially shape the immunological microenvironment, contributing to arrested embryo clearance during the menstrual phase.


Subject(s)
Decidua , Dendritic Cells , Embryo Implantation , Immune Tolerance , Humans , Female , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Embryo Implantation/immunology , Decidua/immunology , Decidua/cytology , Cell Differentiation , Culture Media, Conditioned , Interleukin-10/metabolism , Adult , Stromal Cells/immunology , Stromal Cells/metabolism , Cells, Cultured , Embryo, Mammalian , Endometrium/immunology , Endometrium/cytology , Cell Line , Monocytes/immunology , Pregnancy
8.
J Vis Exp ; (208)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949298

ABSTRACT

Over the last decade, single-cell approaches have become the gold standard for studying gene expression dynamics, cell heterogeneity, and cell states within samples. Before single-cell advances, the feasibility of capturing the dynamic cellular landscape and rapid cell transitions during early development was limited. In this paper, a robust pipeline was designed to perform single-cell and nuclei analysis on mouse embryos from embryonic day E6.5 to E8, corresponding to the onset and completion of gastrulation. Gastrulation is a fundamental process during development that establishes the three germinal layers: mesoderm, ectoderm, and endoderm, which are essential for organogenesis. Extensive literature is available on single-cell omics applied to wild-type perigastrulating embryos. However, single-cell analysis of mutant embryos is still scarce and often limited to FACS-sorted populations. This is partially due to the technical constraints associated with the need for genotyping, timed pregnancies, the count of embryos with desired genotypes per pregnancy, and the number of cells per embryo at these stages. Here, a methodology is presented designed to overcome these limitations. This method establishes breeding and timed pregnancy guidelines to achieve a higher chance of synchronized pregnancies with desired genotypes. Optimization steps in the embryo isolation process coupled with a same-day genotyping protocol (3 h) allow for microdroplet-based single-cell to be performed on the same day, ensuring the high viability of cells and robust results. This method further includes guidelines for optimal nuclei isolations from embryos. Thus, these approaches increase the feasibility of single-cell approaches of mutant embryos at the gastrulation stage. We anticipate that this method will facilitate the analysis of how mutations shape the cellular landscape of the gastrula.


Subject(s)
Gastrulation , Single-Cell Analysis , Animals , Mice , Single-Cell Analysis/methods , Gastrulation/genetics , Female , Embryo, Mammalian , Germ Layers/cytology , Sequence Analysis, RNA/methods , Pregnancy
9.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958026

ABSTRACT

Thymic epithelial cells (TECs) are crucial to the ability of the thymus to generate T cells for the adaptive immune system in vertebrates. However, no in vitro system for studying TEC function exists. Overexpressing the transcription factor FOXN1 initiates transdifferentiation of fibroblasts into TEC-like cells (iTECs) that support T-cell differentiation in culture or after transplant. In this study, we have characterized iTEC programming at the cellular and molecular level in mouse to determine how it proceeds, and have identified mechanisms that can be targeted for improving this process. These data show that iTEC programming consists of discrete gene expression changes that differ early and late in the process, and that iTECs upregulate markers of both cortical and medullary TEC (cTEC and mTEC) lineages. We demonstrate that promoting proliferation enhances iTEC generation, and that Notch inhibition allows the induction of mTEC differentiation. Finally, we show that MHCII expression is the major difference between iTECs and fetal TECs. MHCII expression was improved by co-culturing iTECs with fetal double-positive T-cells. This study supports future efforts to improve iTEC generation for both research and translational uses.


Subject(s)
Cell Differentiation , Epithelial Cells , Fibroblasts , Forkhead Transcription Factors , Thymus Gland , Animals , Epithelial Cells/metabolism , Epithelial Cells/cytology , Thymus Gland/cytology , Thymus Gland/metabolism , Thymus Gland/embryology , Fibroblasts/metabolism , Fibroblasts/cytology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Cell Proliferation , Cell Transdifferentiation , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Coculture Techniques , Receptors, Notch/metabolism
10.
J Assist Reprod Genet ; 41(7): 1733-1737, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967708

ABSTRACT

This paper critiques the restrictive criteria for germline genome editing recently proposed by Chin, Nguma, and Ahmad in this journal. While praising the authors for resisting fervent calls for an outright ban on clinical applications of the technology, this paper argues that their approach is nevertheless unduly restrictive, and may thus hinder technological progress. This response advocates for weighing potential benefits against risks without succumbing to excessive caution, proposing that ethical oversight combined with genetic scrutiny at the embryo stage post-editing can enable responsible use of the technology, ultimately reducing the burden of genetic diseases and enhancing human health, akin to how IVF transformed reproductive medicine despite strong initial opposition.


Subject(s)
Fertilization in Vitro , Gene Editing , Germ Cells , Humans , Fertilization in Vitro/methods , Gene Editing/ethics , Gene Editing/methods , Female , Embryo, Mammalian
11.
Theriogenology ; 226: 294-301, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38959839

ABSTRACT

Integrating in vitro embryo production with embryonic microsurgery facilitates the generation of monozygotic twins. However, despite their potential benefits, these methods have not been widely adopted in commercial settings because of their substantial costs. Hence, there is a need to streamline the bisection procedure while ensuring efficient production of viable demi-embryos. In this study, we investigated the impact of different orientations of microsurgical incisions in relation to inner cell mass on embryonic development, morphology, viability, and expression of cell fate protein markers using a simplified microsurgery approach. Ovaries were transported from the slaughterhouse to the laboratory and aspirated to obtain oocytes that were selected and subjected to in vitro embryo production. The selected expanded blastocysts (n = 204) underwent microsurgery. The blastocysts were immobilized to facilitate incision using an adapted microblade, yielding demi-embryos (vertical incision) and viable embryonic fragments (transverse incision). The structures were then re-cultured for 12 h. Viability was assessed by measuring the re-expansion rate after re-culture, followed by immunofluorescence analysis of proteins (CDX2 and NANOG) and apoptosis analysis using terminal deoxynucleotyl transferase dUTP nick end-labeling (TUNEL). Microsurgically derived embryos exhibited remarkable plasticity, as evidenced by a slight reduction (P < 0.05) in the re-expansion rate (transverse 64.2 % and vertical 57.2 %) compared to that of the control group (blastocysts without microsurgery) (86.7 %). They also demonstrated the ability of morphological reconstitution after culturing. Despite the anticipated decrease (P < 0.05) in the total number of cells and embryo volume, microsurgery did not result in a significant increase (P > 0.05) in the number of apoptotic cells. Furthermore, microsurgery led to higher (P < 0.05) expression of markers associated with pluripotency, indicating its efficiency in preserving regenerative capacity. Moreover, microsurgery, whether followed by immunosurgery or not, made the isolation of embryonic cells easier. In conclusion, both transverse and vertical microsurgery incisions enabled the production of identical demi-embryos and served as tools for isolating embryonic cells without compromising the resumption of development and the apoptotic index.


Subject(s)
Embryo Culture Techniques , Microsurgery , Animals , Microsurgery/methods , Microsurgery/veterinary , Embryo Culture Techniques/veterinary , Fertilization in Vitro/veterinary , Embryonic Development , Female , Embryo, Mammalian/physiology , Blastocyst/physiology , Cattle/embryology
12.
Theriogenology ; 226: 378-386, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38972169

ABSTRACT

METTL3-mediated N6-methyladenosine (m6A) modification is critical for gametogenesis and early embryonic development. However, the function of METTL3-mediated m6A modification in the early development of somatic nuclear transfer embryos (SCNT) remains unclear. Here, we found that METTL3 mRNA and protein levels exhibit dynamic changes during the early development of porcine SCNT embryos. The levels of METTL3 mRNA and protein in SCNT embryos at specific developmental stages differ from those in parthenogenetic activation (PA) counterparts. SiRNA injection effectively reduced the levels of METTL3 mRNA and protein in 4-cell embryos and blastocysts. METTL3 knockdown significantly reduced the cleavage and blastocyst rates of SCNT embryos. METTL3 knockdown significantly reduced the number of total cells and trophectoderm (TE) cells in the resulting blastocysts and perturbed cell lineage allocation. In addition, METTL3 knockdown reduced the levels of m6A modification in 4-cell embryos and blastocysts. Importantly, METTL3 knockdown decreased the expression levels of CDX2, GATA3, NANOG and YAP, and increased the expression levels of SOX2 and OCT4. Taken together, these results demonstrate that METTL3-mediated m6A modification regulates early development and lineage differentiation of porcine SCNT embryos.


Subject(s)
Cloning, Organism , Embryonic Development , Gene Expression Regulation, Developmental , Methyltransferases , Animals , Swine/embryology , Swine/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Cloning, Organism/veterinary , Cloning, Organism/methods , Nuclear Transfer Techniques/veterinary , Adenosine/analogs & derivatives , Adenosine/metabolism , Methylation , Gene Knockdown Techniques , Blastocyst/metabolism , Embryo, Mammalian/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
13.
Anal Chem ; 96(29): 11832-11844, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38979898

ABSTRACT

An effective tool to assess embryo quality in the assisted reproduction clinical practice will enhance successful implantation rates and mitigate high risks of multiple pregnancies. Potential biomarkers secreted into culture medium (CM) during embryo development enable rapid and noninvasive methods of assessing embryo quality. However, small volumes, low biomolecule concentrations, and impurity interference collectively preclude the identification of quality-related biomarkers in single blastocyst CM. Here, we developed a noninvasive trace multiomics approach to screen for potential markers in individual human blastocyst CM. We collected 84 CM samples and divided them into high-quality (HQ) and low-quality (LQ) groups. We evaluated the differentially expressed proteins (DEPs) and metabolites (DEMs) in HQ and LQ CM. A total of 504 proteins and 189 metabolites were detected in individual blastocyst CM. Moreover, 9 DEPs and 32 DEMs were identified in different quality embryo CM. We also categorized HQ embryos into positive implantation (PI) and negative implantation (NI) groups based on ultrasound findings on day 28. We identified 41 DEPs and 4 DEMs associated with clinical implantation outcomes in morphologically HQ embryos using a multiomics analysis approach. This study provides a noninvasive multiomics analysis technique and identifies potential biomarkers for clinical embryo developmental quality assessment.


Subject(s)
Biomarkers , Culture Media , Metabolomics , Proteomics , Humans , Biomarkers/metabolism , Biomarkers/analysis , Proteomics/methods , Metabolomics/methods , Culture Media/chemistry , Culture Media/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Embryo Culture Techniques , Embryo, Mammalian/metabolism , Multiomics
14.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38991843

ABSTRACT

Pronuclear transfer has been successfully used in human-assisted reproduction to suppress the adverse effects of a defective oocyte cytoplasm or to bypass an idiopathic developmental arrest. However, the effects of the initial parental genome remodelling in a defective cytoplasm on the subsequent development after pronucleus transfer have not been systematically studied. By performing pronuclear transfer in pre-replication and post-replication mouse embryos, we show that the timing of the procedure plays a critical role. Although apparently morphologically normal blastocysts were obtained in both pre- and post-replication pronuclear transfer groups, post-replication pronuclear transfer led to a decrease in developmental competence and profound changes in embryonic gene expression. By inhibiting the replication in the abnormal cytoplasm before pronuclear transfer into a healthy cytoplasm, the developmental potential of embryos could be largely restored. This shows that the conditions under which the first embryonic replication occurs strongly influence developmental potential. Although pronuclear transfer is the method of choice for mitigating the impact of a faulty oocyte cytoplasm on early development, our results show that the timing of this intervention should be restricted to the pre-replication phase.


Subject(s)
Blastocyst , Embryonic Development , Nuclear Transfer Techniques , Animals , Mice , Female , Blastocyst/metabolism , Blastocyst/cytology , Cytoplasm/metabolism , Oocytes/metabolism , Oocytes/cytology , Cell Nucleus/metabolism , Gene Expression Regulation, Developmental , Time Factors , Embryo, Mammalian
17.
Nat Cell Biol ; 26(7): 1200-1211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38977846

ABSTRACT

Organogenesis is a highly complex and precisely regulated process. Here we profiled the chromatin accessibility in >350,000 cells derived from 13 mouse embryos at four developmental stages from embryonic day (E) 10.5 to E13.5 by SPATAC-seq in a single experiment. The resulting atlas revealed the status of 830,873 candidate cis-regulatory elements in 43 major cell types. By integrating the chromatin accessibility atlas with the previous transcriptomic dataset, we characterized cis-regulatory sequences and transcription factors associated with cell fate commitment, such as Nr5a2 in the development of gastrointestinal tract, which was preliminarily supported by the in vivo experiment in zebrafish. Finally, we integrated this atlas with the previous single-cell chromatin accessibility dataset from 13 adult mouse tissues to delineate the developmental stage-specific gene regulatory programmes within and across different cell types and identify potential molecular switches throughout lineage development. This comprehensive dataset provides a foundation for exploring transcriptional regulation in organogenesis.


Subject(s)
Chromatin , Gene Expression Regulation, Developmental , Organogenesis , Single-Cell Analysis , Zebrafish , Animals , Organogenesis/genetics , Chromatin/metabolism , Chromatin/genetics , Zebrafish/genetics , Zebrafish/embryology , Zebrafish/metabolism , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Lineage/genetics , Transcriptome/genetics , Embryo, Mammalian/metabolism , Female , Mice, Inbred C57BL
18.
Nat Commun ; 15(1): 6048, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025895

ABSTRACT

With the flourishing of spatial omics technologies, alignment and stitching of slices becomes indispensable to decipher a holistic view of 3D molecular profile. However, existing alignment and stitching methods are unpractical to process large-scale and image-based spatial omics dataset due to extreme time consumption and unsatisfactory accuracy. Here we propose SANTO, a coarse-to-fine method targeting alignment and stitching tasks for spatial omics. SANTO firstly rapidly supplies reasonable spatial positions of two slices and identifies the overlap region. Then, SANTO refines the positions of two slices by considering spatial and omics patterns. Comprehensive experiments demonstrate the superior performance of SANTO over existing methods. Specifically, SANTO stitches cross-platform slices for breast cancer samples, enabling integration of complementary features to synergistically explore tumor microenvironment. SANTO is then applied to 3D-to-3D spatiotemporal alignment to study development of mouse embryo. Furthermore, SANTO enables cross-modality alignment of spatial transcriptomic and epigenomic data to understand complementary interactions.


Subject(s)
Breast Neoplasms , Animals , Mice , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Transcriptome/genetics , Tumor Microenvironment/genetics , Epigenomics/methods , Genomics/methods , Algorithms , Embryo, Mammalian/metabolism , Imaging, Three-Dimensional/methods
19.
Curr Top Dev Biol ; 160: 31-64, 2024.
Article in English | MEDLINE | ID: mdl-38937030

ABSTRACT

Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.


Subject(s)
Embryonic Development , Animals , Humans , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Biomechanical Phenomena
20.
Cell ; 187(13): 3194-3219, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906095

ABSTRACT

Developing functional organs from stem cells remains a challenging goal in regenerative medicine. Existing methodologies, such as tissue engineering, bioprinting, and organoids, only offer partial solutions. This perspective focuses on two promising approaches emerging for engineering human organs from stem cells: stem cell-based embryo models and interspecies organogenesis. Both approaches exploit the premise of guiding stem cells to mimic natural development. We begin by summarizing what is known about early human development as a blueprint for recapitulating organogenesis in both embryo models and interspecies chimeras. The latest advances in both fields are discussed before highlighting the technological and knowledge gaps to be addressed before the goal of developing human organs could be achieved using the two approaches. We conclude by discussing challenges facing embryo modeling and interspecies organogenesis and outlining future prospects for advancing both fields toward the generation of human tissues and organs for basic research and translational applications.


Subject(s)
Chimera , Organogenesis , Animals , Humans , Chimera/embryology , Embryo Implantation , Embryo, Mammalian/cytology , Embryonic Development , Embryonic Stem Cells , Models, Biological , Organoids , Regenerative Medicine , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL