ABSTRACT
Congenital heart disease (CHD) can be complicated by pulmonary arterial hypertension (PAH). Cardiopulmonary bypass (CPB) for corrective surgery may cause endothelial dysfunction, involving endothelin-1 (ET-1), circulating endothelial cells (CECs), and endothelial progenitor cells (EPCs). These markers can gauge disease severity, but their levels in children's peripheral blood still lack consensus for prognostic value. The aim of our study was to investigate changes in ET-1, cytokines, and the absolute numbers (Æ) of CECs and EPCs in children 24 h before and 48 h after CPB surgery to identify high-risk patients of complications. A cohort of 56 children was included: 41 cases with CHD-PAH (22 with high pulmonary flow and 19 with low pulmonary flow) and 15 control cases. We observed that Æ-CECs increased in both CHD groups and that Æ-EPCs decreased in the immediate post-surgical period, and there was a strong negative correlation between ET-1 and CEC before surgery, along with significant changes in ET-1, IL8, IL6, and CEC levels. Our findings support the understanding of endothelial cell precursors' role in endogenous repair and contribute to knowledge about endothelial dysfunction in CHD.
Subject(s)
Cardiopulmonary Bypass , Cytokines , Endothelial Cells , Endothelial Progenitor Cells , Endothelin-1 , Heart Defects, Congenital , Humans , Endothelin-1/blood , Endothelin-1/metabolism , Endothelial Progenitor Cells/metabolism , Heart Defects, Congenital/surgery , Heart Defects, Congenital/blood , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Male , Female , Cardiopulmonary Bypass/adverse effects , Endothelial Cells/metabolism , Cytokines/blood , Cytokines/metabolism , Child , Child, Preschool , Infant , Biomarkers/blood , Case-Control StudiesABSTRACT
Among sickle cell anemia (SCA) complications, proliferative sickle cell retinopathy (PSCR) is one of the most important, being responsible for visual impairment in 10-20% of affected eyes. The aim of this study was to identify differentially expressed genes (DEGs) present in pathways that may be implicated in the pathophysiology of PSCR from the transcriptome profile analysis of endothelial progenitor cells. RNA-Seq was used to compare gene expression profile of circulating endothelial colony-forming cells (ECFCs) from HbSS patients with and without PSCR. Furthermore, functional enrichment analysis and protein-protein interaction (PPI) networks were performed to gain further insights into biological functions. The differential expression analysis identified 501 DEGs, when comparing the groups with and without PSCR. Furthermore, functional enrichment analysis showed associations of the DEGs in 200 biological processes. Among these, regulation of mitogen-activated protein (MAP) kinase activity, positive regulation of phosphatidylinositol 3-kinase (PI3K), and positive regulation of Signal Transducer and Activator of Transcription (STAT) receptor signaling pathway were observed. These pathways are associated with angiogenesis, cell migration, adhesion, differentiation, and proliferation, important processes involved in PSCR pathophysiology. Moreover, our results showed an over-expression of VEGFC (vascular endothelial growth factor-C) and FLT1 (Fms-Related Receptor Tyrosine Kinase 1) genes, when comparing HbSS patients with and without PSCR. These results may indicate a possible association between VEGFC and FLT1 receptor, which may activate signaling pathways such as PI3K/AKT and MAPK/ERK and contribute to the mechanisms implicated in neovascularization. Thus, our findings contain preliminary results that may guide future studies in the field, since the molecular mechanisms of PSCR are still poorly understood.
Subject(s)
Endothelial Progenitor Cells , Retinal Diseases , Humans , Endothelial Progenitor Cells/metabolism , Transcriptome/genetics , Vascular Endothelial Growth Factor C/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression ProfilingABSTRACT
Endothelial progenitor cells (EPCs) are stem cells mainly derived from bone marrow; from where they migrate to repair and regenerate damaged tissues. eEPCs have been classified into two sub-populations, early (eEPC) and late EPCs (lEPC), depending on maturation stages in vitro. In addition, eEPC release endocrine mediators, including small extracellular vesicles (sEVs), which in turn may enhance the eEPC-mediated wound healing properties. Nevertheless, adenosine contributes to angiogenesis by recruiting eEPC at the injury site. However, whether ARs may enhance the secretome of eEPC, including sEVs, is unknown. Therefore, we aimed to investigate whether AR activation increase the release of sEVs in eEPC, which in turn has paracrine effects on recipient endothelial cells. Results shown that 5'-N-ethylcarboxamidoadenosine (NECA), a non-selective agonist, increase both the protein levels of the vascular endothelial growth factor (VEGF), and the number of sEVs released to the conditioned medium (CM) in primary culture of eEPC. Importantly, CM and EVs harvested from NECA-stimulated eEPC promote in vitro angiogenesis, without changes in cell proliferation, in recipient ECV-304 endothelial cells. This constitutes the first evidence showing that adenosine enhances sEVs release from eEPC, which has pro-angiogenic capacity on recipient endothelial cells.
Subject(s)
Endothelial Progenitor Cells , Humans , Endothelial Progenitor Cells/metabolism , Adenosine/pharmacology , Adenosine/metabolism , Adenosine-5'-(N-ethylcarboxamide)/metabolism , Vascular Endothelial Growth Factor A/metabolism , Stem Cells/metabolism , Culture Media, Conditioned/metabolismABSTRACT
Oxidized low-density lipoprotein (ox-LDL) is the most harmful form of cholesterol associated with vascular atherosclerosis and hepatic injury, mainly due to inflammatory cell infiltration and subsequent severe tissue injury. Lox-1 is the central ox-LDL receptor expressed in endothelial and immune cells, its activation regulating inflammatory cytokines and chemotactic factor secretion. Recently, a Lox-1 truncated protein isoform lacking the ox-LDL binding domain named LOXIN has been described. We have previously shown that LOXIN overexpression blocked Lox-1-mediated ox-LDL internalization in human endothelial progenitor cells in vitro. However, the functional role of LOXIN in targeting inflammation or tissue injury in vivo remains unknown. In this study, we investigate whether LOXIN modulated the expression of Lox-1 and reduced the inflammatory response in a high-fat-diet mice model. Results indicate that human LOXIN blocks Lox-1 mediated uptake of ox-LDL in H4-II-E-C3 cells. Furthermore, in vivo experiments showed that overexpression of LOXIN reduced both fatty streak lesions in the aorta and inflammation and fibrosis in the liver. These findings were associated with the down-regulation of Lox-1 in endothelial cells. Then, LOXIN prevents hepatic and aortic tissue damage in vivo associated with reduced Lox-1 expression in endothelial cells. We encourage future research to understand better the underlying molecular mechanisms and potential therapeutic use of LOXIN.
Subject(s)
Atherosclerosis , Endothelial Progenitor Cells , Phthalazines , Animals , Aorta/metabolism , Aorta/pathology , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cells, Cultured , Diet, High-Fat/adverse effects , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipoproteins, LDL/metabolism , Liver/metabolism , Mice , Phthalazines/pharmacology , Scavenger Receptors, Class E/genetics , Scavenger Receptors, Class E/metabolismABSTRACT
BACKGROUND: Endothelial progenitor cells (EPCs) are immature cells able to proliferate and contribute to endothelial repair, vascular homeostasis, neovascularization, and angiogenesis. It therefore seems likely that circulating EPCs have therapeutic potential in ischemic and vascular diseases. In this study we evaluated the efficiency of EPC mobilization and collection by large volume leukapheresis in subjects with hematological diseases, treated with plerixafor in association with G-CSF. METHODS: Twenty-two patients with lymphoid malignancies underwent rHuG-CSF and plerixafor treatment followed by leukapheresis. Blood samples before and after treatment and apheresis liquid sample were taken and analyzed by flow cytometry in order to quantified EPC. RESULTS: The percentage of CD34+ cells and EPCs among circulating total nuclear cells (TNCs) increased significantly by approximately 2-fold and 3-fold, respectively, after plerixafor treatment. Consequently, the absolute number of CD34+ cells and EPCs were increased 4-fold after plerixafor treatment. The median PB concentration of EPCs before and after treatment were 0.77/µL (0.31-2.15) and 3.41/µL (1.78-4.54), respectively, P < .0001. The total EPCs collected per patient were 3.3×107 (0.8×107 -6.8×107 ). CONCLUSION: We have shown that plerixafor in combination with G-CSF allows the mobilization and collection of large amounts of EPCs along with CD34+ cells in lymphoid neoplasm patients. The possibility to collect and to store these cells could represent a promising therapeutic tool for the treatment of ischemic complications without the need of in vitro expansion.
Subject(s)
Blood Component Removal , Cyclams , Endothelial Progenitor Cells , Heterocyclic Compounds , Antigens, CD34/metabolism , Benzylamines , Endothelial Progenitor Cells/metabolism , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/therapeutic use , Hematopoietic Stem Cell Mobilization , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , HumansABSTRACT
Patients presenting with classical cardiovascular risk factors within acceptable or average value ranges often develop cardiovascular disease, suggesting that other risk factors need to be considered. Considering that endothelial progenitor cells (EPCs) contribute to endothelial repair, we investigated whether EPCs might be such a factor. We compared the ability of peripheral blood EPCs to attach to extracellular matrix proteins and to grow and function in culture, between controlled hypertensive patients exhibiting a Framingham score (FS) of <10% while showing severe vascular impairment (intima-media thickness/diameter, carotid-femoral pulse wave velocity, brachial artery flow-mediated dilation, carotid and femoral atherosclerotic plaque presence; vulnerable group, N = 30) and those with an FS of ≥10% and scarce vascular changes (protected group, N = 30). When compared with vulnerable patients, protected patients had significantly higher early and late-EPC and early and late-tunneling nanotube (TNT) numbers. Significant negative associations were found between vascular damage severity and early EPC, late-EPC, or late-TNT numbers, whereas EPC or TNT numbers and patient characteristics or cardiovascular risk factors were not associated. Except for protected patients, in all controlled hypertensive patients, early and late-EPC and early and late-TNT counts were significantly lower than those in the normotensive subjects studied (N = 30). We found that the disparity in vascular status between patients presenting with both an FS of ≥10% and scarce vascular changes and those presenting with both an FS of <10% and severe vascular impairment is related to differences in peripheral blood EPC and TNT numbers. These observations support the role of EPCs as contributors to vascular injury repair and suggest that EPC numbers may be a potential cardiovascular risk factor to be included in the FS calculation.NEW & NOTEWORTHY As individuals who present with risk factors within acceptable or average value ranges often develop cardiovascular (CV) disease, it has been suggested that other CV risk factors need to be considered in addition to those that are commonly combined in the Framingham score (FS) to estimate the risk of general CV disease. We investigated whether peripheral endothelial progenitor cells (EPCs) and tunneling nanotubes (TNTs) deserve to be considered. Here we report that EPCs and TNTs are significantly lower in controlled hypertensive patients versus normotensive subjects and that the disparity in vascular status between patients presenting with an FS of ≥10% with scarce vascular changes and those presenting with an FS of <10% with severe vascular impairment is related to differences in EPC and TNT numbers. These data point to EPC and TNT numbers as potential CV risk factors to be included in the FS calculation.
Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Cell Proliferation , Endothelial Progenitor Cells/pathology , Endothelium, Vascular/pathology , Hypertension/drug therapy , Regeneration , Adult , Aged , Cells, Cultured , Endothelial Progenitor Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Humans , Hypertension/metabolism , Hypertension/pathology , Hypertension/physiopathology , Male , Middle Aged , Young AdultABSTRACT
OBJECTIVE: The inability of the organism to appropriately respond to hypoxia results in abnormal cell metabolism and function. Hypoxia-induced angiogenesis seems to be suppressed in experimental models of hypertension; however, this hypothesis has not been tested in humans. We examined changes in endothelial biomarkers and vascular chemoattraction/angiogenic capacity in response to isocapnic hypoxia in hypertensive men. METHODS: Twelve normotensive (38â±â10 years) and nine hypertensive men (45â±â11 years) were exposed to 5-min trials of normoxia (21% O2) and isocapnic hypoxia (10% O2). During the last minute of each trial, venous blood was drawn. Endothelial progenitor cells (EPCs; CD45/CD34/VEGFR2), endothelial microvesicles (apoptotic EMVs, CD42b/CD31/AnnexinV; endothelial activation, CD62E/CD144), nitrite, vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1) were measured. RESULTS: During normoxia, EPCs, nitrite, endothelial activation, and SDF-1 were similar between groups, whereas VEGF was lower (Pâ=â0.02) and apoptotic EMVs tended to increase (Pâ=â0.07) in hypertensive men. During isocapnic hypoxia, endothelial activation increased in both groups (normotensive, Pâ=â0.007 vs. normoxia; hypertensive, Pâ=â0.006 vs. normoxia), whereas EMVs were higher only in the hypertensive group (Pâ=â0.03 vs. normotensive). EPCs (Pâ=â0.01 vs. normoxia; Pâ=â0.03 vs. hypertensive men), NO (Pâ=â0.01 vs. normoxia; Pâ=â0.04 vs. hypertensive), and VEGF (Pâ=â0.02 vs. normoxia; Pâ=â0.0005 vs. hypertensive) increased only in normotensive individuals in response to isocapnic hypoxia. SDF-1 did not change in either group. CONCLUSION: These results suggest that hypertension-induced impairment in angiogenesis in response to isocapnic hypoxia is related to disrupted NO bioavailability, VEGF chemotactic signaling, and EPC mobilization.
Subject(s)
Hypertension , Hypoxia/metabolism , Neovascularization, Physiologic/physiology , Adult , Endothelial Progenitor Cells/metabolism , Humans , Hypertension/metabolism , Hypertension/physiopathology , Male , Middle Aged , Nitric Oxide/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolismABSTRACT
BACKGROUND: Extracellular vesicles (EVs) are promising therapeutics for cardiovascular disease, but poorly-timed delivery might hinder efficacy. We characterized the time-dependent response to endothelial progenitor cell (EPC)-EVs within an injectable shear-thinning hydrogel (STG+EV) post-myocardial infarction (MI) to identify when an optimal response is achieved. METHODS: The angiogenic effects of prolonged hypoxia on cell response to EPC-EV therapy and EV uptake affinity were tested in vitro. A rat model of acute MI via left anterior descending artery ligation was created and STG+EV was delivered via intramyocardial injections into the infarct border zone at time points corresponding to phases of post-MI inflammation: 0 hours (immediate), 3 hours (acute inflammation), 4 days (proliferative), and 2 weeks (fibrosis). Hemodynamics 4 weeks post-treatment were compared across treatment and control groups (phosphate buffered saline [PBS], shear-thinning gel). Scar thickness and ventricular diameter were assessed histologically. The primary hemodynamic end point was end systolic elastance. The secondary end point was scar thickness. RESULTS: EPC-EVs incubated with chronically versus acutely hypoxic human umbilical vein endothelial cells resulted in a 2.56 ± 0.53 versus 1.65 ± 0.15-fold increase (P = .05) in a number of vascular meshes and higher uptake of EVs over 14 hours. End systolic elastance improved with STG+EV therapy at 4 days (0.54 ± 0.08) versus PBS or shear-thinning gel (0.26 ± 0.03 [P = .02]; 0.23 ± 0.02 [P = .01]). Preservation of ventricular diameter (6.20 ± 0.73 mm vs 8.58 ± 0.38 mm [P = .04]; 9.13 ± 0.25 mm [P = .01]) and scar thickness (0.89 ± 0.05 mm vs 0.62 ± 0.03 mm [P < .0001] and 0.58 ± 0.05 mm [P < .0001]) was significantly greater at 4 days, compared wit PBS and shear-thinning gel controls. CONCLUSIONS: Delivery of STG+EV 4 days post-MI improved left ventricular contractility and preserved global ventricular geometry, compared with controls and immediate therapy post-MI. These findings suggest other cell-derived therapies can be optimized by strategic timing of therapeutic intervention.
Subject(s)
Endothelial Progenitor Cells/transplantation , Extracellular Vesicles/transplantation , Hemodynamics , Myocardial Infarction/surgery , Myocardium/pathology , Neovascularization, Physiologic , Time-to-Treatment , Adamantane/chemistry , Animals , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Endothelial Progenitor Cells/metabolism , Extracellular Vesicles/metabolism , Fibrosis , Gels , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hyaluronic Acid/chemistry , Inflammation Mediators/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Rats, Wistar , Time Factors , beta-Cyclodextrins/chemistryABSTRACT
BACKGROUND AND AIMS: The purpose of this study was to investigate whether an intervention with physical activity (PA) would promote positive effects on the angiogenic factors, mobilization, and functionality of circulating endothelial progenitor cells (EPCs) in children with low birth weight (LBW). METHODS AND RESULTS: Thirty-five children participated in a 10-week PA program (intensity: 75-85% of heart rate reserve, frequency: four times/week, and duration: 45 min). Before and after the PA program, we evaluated anthropometric parameters, blood pressure levels, biochemical profile, number of EPCs, number of EPC colony forming units, and plasma levels of vascular endothelial growth factor-A (VEGF-A), nitric oxide (NO), and matrix metalloproteinases (MMPs) 2 and 9. We found a significant main effect of the PA program on waist circumference (ηp2 = 0.489), cardiorespiratory fitness (ηp2 = 0.463), and MMP-9 (ηp2 = 0.582). Birth weight or the PA program produced significant independent effects on systolic blood pressure (birth weight: ηp2 = 0.431; PA program: ηp2 = 0.615) and EPC colony forming units (birth weight: ηp2 = 0.541; PA program: ηp2 = 0.698) with no significant interactions. The combination of birth weight and the PA program produced a significant interaction effect on the number of circulating EPCs (ηp2 = 0.123), NO (ηp2 = 0.258), and VEGF-A (ηp2 = 0.175). The variation in the number of EPCs from baseline to 10 weeks of the PA program correlated positively with the change in NO (P = 0.002) and VEGF-A (P = 0.004). CONCLUSIONS: A 10-week PA program attenuates the adverse effect of LBW on the number and functionality of EPCs; this effect occurs through an improvement in circulating levels of NO and VEGF-A. CLINICAL TRIALS: https://www.clinicaltrials.gov. Unique Identifier: NCT02982967. Date: December/2016.
Subject(s)
Cell Proliferation , Endothelial Progenitor Cells/metabolism , Exercise Therapy , Infant, Low Birth Weight , Nitric Oxide/blood , Vascular Endothelial Growth Factor A/blood , Adolescent , Adolescent Development , Age Factors , Biomarkers/blood , Birth Weight , Blood Pressure , Brazil , Cardiorespiratory Fitness , Child , Child Development , Female , Humans , Infant, Newborn , Male , Matrix Metalloproteinase 2/blood , Matrix Metalloproteinase 9/blood , Time Factors , Treatment Outcome , Waist CircumferenceABSTRACT
Arterial hypertension is a condition associated with endothelial dysfunction, accompanied by an imbalance in the production of reactive oxygen species (ROS) and NO. The aim of this study was to investigate and elucidate the possible mechanisms of sildenafil, a selective phosphodiesterase-5 inhibitor, actions on endothelial function in aortas from spontaneously hypertensive rats (SHR). SHR treated with sildenafil (40â¯mg/kg/day, p.o., 3â¯weeks) were compared to untreated SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and vascular reactivity was determined in isolated rat aortic rings. Circulating endothelial progenitor cells and systemic ROS were measured by flow cytometry. Plasmatic total antioxidant capacity, NO production and aorta lipid peroxidation were determined by spectrophotometry. Scanning electron microscopy was used for structural analysis of the endothelial surface. Sildenafil reduced high SBP and partially restored the vasodilator response to acetylcholine and sodium nitroprusside in SHR aortic rings. Using selective inhibitors, our experiments revealed an augmented participation of NO, with a simultaneous decrease of oxidative stress and of cyclooxygenase-1 (COX-1)-derived prostanoids contribution in the endothelium-dependent vasodilation in sildenafil-treated SHR compared to non-treated SHR. Also, the relaxant responses to sildenafil and 8-Br-cGMP were normalized in sildenafil-treated SHR and sildenafil restored the pro-oxidant/antioxidant balance and the endothelial architecture. In conclusion, sildenafil reverses endothelial dysfunction in SHR by improving vascular relaxation to acetylcholine with increased NO bioavailability, reducing the oxidative stress and COX-1 prostanoids, and improving cGMP/PKG signaling. Also, sildenafil reduces structural endothelial damage. Thus, sildenafil is a promising novel pharmacologic strategy to treat endothelial dysfunction in hypertensive states reinforcing its potential role as adjuvant in the pharmacotherapy of cardiovascular diseases.
Subject(s)
Antihypertensive Agents/pharmacology , Aorta/drug effects , Blood Pressure/drug effects , Cyclooxygenase 1/metabolism , Endothelium, Vascular/drug effects , Hypertension/drug therapy , Membrane Proteins/metabolism , NADP/metabolism , Nitric Oxide/metabolism , Sildenafil Citrate/pharmacology , Vasodilator Agents/pharmacology , Animals , Aorta/enzymology , Aorta/physiopathology , Aorta/ultrastructure , Cyclic GMP/metabolism , Disease Models, Animal , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/ultrastructure , Endothelium, Vascular/enzymology , Endothelium, Vascular/physiopathology , Endothelium, Vascular/ultrastructure , Hypertension/enzymology , Hypertension/pathology , Hypertension/physiopathology , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Phosphodiesterase 5 Inhibitors/pharmacology , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Vasodilation/drug effectsABSTRACT
Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.
Subject(s)
Endothelial Progenitor Cells/metabolism , Exosomes/transplantation , Interleukin-10/genetics , Myocardial Infarction/therapy , Protein Serine-Threonine Kinases/metabolism , Wound Healing , Animals , Cells, Cultured , Exosomes/metabolism , Interleukin-10/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Ventricular Function, LeftABSTRACT
BACKGROUND: Behçet's disease is a multisystemic vasculitis, associated with vascular endothelial dysfunction. Currently, the prognosis is unpredictable, because there is still no valid laboratory marker indicating the disease activity in Behçet's disease. Endothelial progenitor cells and circulating endothelial cells are newly introduced hematological markers which are presumed to take part in the pathogenesis of vasculitis. OBJECTIVES: To evaluate the levels of endothelial progenitor cells and subtypes and circulating endothelial cells in patients with Behçet's disease and to describe their relationship with the disease activity. METHODS: A total of 45 patients with Behçet's disease and 28 healthy controls were included in the study. Endothelial progenitor cells (CD34+CD133+KDR+ as early endothelial progenitor cells and CD34+KDR+ as late endothelial progenitor cells), and circulating endothelial cells (CD34+CD133+) were measured by flow cytometry. RESULTS: The mean plasma level of endothelial progenitor cells and circulating endothelial cells, vascular endothelial growth factor, matrix metalloproteinase-9, C-reactive protein, and erythrocyte sedimentation rate were significantly higher in patients with Behçet's disease. All of these parameters except circulating endothelial cells were also found to be higher in patients with active disease than in patients with inactive disease. Early endothelial progenitor cells showed significant correlations with C-reactive protein and circulating endothelial cells. STUDY LIMITATIONS: The cross-sectional nature of the study and patient characteristics such as being under treatment, which can affect endothelial progenitor cells numbers. CONCLUSION: The increase in endothelial progenitor cells may play an essential role in the repair of endothelial injury in Behçet's disease, especially in the active period of the disease. Thus, endothelial progenitor cells can indicate the disease activity. In addition, endothelial progenitor cells and circulating endothelial cells can be used as endothelial repair and injury markers for Behçet's disease, respectively.
Subject(s)
Behcet Syndrome/blood , Biomarkers/blood , Endothelial Progenitor Cells/metabolism , Adult , Behcet Syndrome/complications , C-Reactive Protein/analysis , Case-Control Studies , Cell Count , Cross-Sectional Studies , Female , Flow Cytometry , Humans , Male , Middle Aged , Vascular Endothelial Growth Factor A/blood , VasculitisABSTRACT
Abstract: Background: Behçet's disease is a multisystemic vasculitis, associated with vascular endothelial dysfunction. Currently, the prognosis is unpredictable, because there is still no valid laboratory marker indicating the disease activity in Behçet's disease. Endothelial progenitor cells and circulating endothelial cells are newly introduced hematological markers which are presumed to take part in the pathogenesis of vasculitis. Objectives: To evaluate the levels of endothelial progenitor cells and subtypes and circulating endothelial cells in patients with Behçet's disease and to describe their relationship with the disease activity. Methods: A total of 45 patients with Behçet's disease and 28 healthy controls were included in the study. Endothelial progenitor cells (CD34+CD133+KDR+ as early endothelial progenitor cells and CD34+KDR+ as late endothelial progenitor cells), and circulating endothelial cells (CD34+CD133+) were measured by flow cytometry. Results: The mean plasma level of endothelial progenitor cells and circulating endothelial cells, vascular endothelial growth factor, matrix metalloproteinase-9, C-reactive protein, and erythrocyte sedimentation rate were significantly higher in patients with Behçet's disease. All of these parameters except circulating endothelial cells were also found to be higher in patients with active disease than in patients with inactive disease. Early endothelial progenitor cells showed significant correlations with C-reactive protein and circulating endothelial cells. Study Limitations: The cross-sectional nature of the study and patient characteristics such as being under treatment, which can affect endothelial progenitor cells numbers. Conclusion: The increase in endothelial progenitor cells may play an essential role in the repair of endothelial injury in Behçet's disease, especially in the active period of the disease. Thus, endothelial progenitor cells can indicate the disease activity. In addition, endothelial progenitor cells and circulating endothelial cells can be used as endothelial repair and injury markers for Behçet's disease, respectively.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Biomarkers/blood , Behcet Syndrome/blood , Endothelial Progenitor Cells/metabolism , Vasculitis , C-Reactive Protein/analysis , Case-Control Studies , Cell Count , Behcet Syndrome/complications , Cross-Sectional Studies , Vascular Endothelial Growth Factor A , Flow CytometryABSTRACT
BACKGROUND: Endothelial progenitor cells (EPCs) are circulating progenitor cells that can play an essential role in vascular remodelling. In this work, we compared the role of two EPCs cultivated with different mediums in the resolution of the arterial thrombus induced by FeCl3 lesion and in vessel re-endothelization in the mouse carotid artery. METHODS: Mice mononuclear cells were differentiated into EPCs using Dulbecco's Modified Eagle's Medium (DMEM) and vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and IGF (Insulin Growth Factor) called EPCs--M1) or with EGM2(endothelial growth medium) (media supplemented with growth factors from Lonza called (EPCs-M2) for 30days and characterized using flow cytometry. The animals received three EPC injections post-lesion, and we analyzed thrombosis time, vessel re-endothelization, metalloproteinases activities, eNOS (endothelial Nitric oxide synthase) presence and SDF-1(Stromal Derived Factor- 1) levels in circulation. RESULTS: EPC-M1 presented a more immature progenitor profile than EPC-M2 cells. The injection of EPC-M1 prolonged the thrombosis time, and the treatment with the different EPCs increased eNOS expression and MMP2 (Metalloproteinase 2) activity and decreased SDF-1 in plasma. Only EPC-M1 treatment increased both MMP2 and MMP9 and reduced thrombus after 7days. Also, both EPCs decreased platelet aggregation in vitro. CONCLUSIONS: EPCs-M1 were more efficient in all of the analyzed assays. EPCsM2 may be a more mature EPC, proliferating less and promoting a less significant matrix remodelling. EPCs can promote vascular remodelling by inhibiting thrombosis and stimulating vascular wall remodelling and the treatment with a more immature progenitor may be more efficient in this process.
Subject(s)
Endothelial Progenitor Cells/transplantation , Thrombosis/therapy , Animals , Arteries/pathology , Cell Differentiation , Cells, Cultured , Chemokine CXCL12/metabolism , Embolization, Therapeutic , Endothelial Progenitor Cells/metabolism , Gelatinases/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Platelet Aggregation , Thrombosis/enzymology , Thrombosis/pathology , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Cell migration initiates by traction generation through reciprocal actomyosin tension and focal adhesion reinforcement, but continued motility requires adaptive cytoskeletal remodeling and adhesion release. Here, we asked whether de novo gene expression contributes to this cytoskeletal feedback. We found that global inhibition of transcription or translation does not impair initial cell polarization or migration initiation, but causes eventual migratory arrest through excessive cytoskeletal tension and over-maturation of focal adhesions, tethering cells to their matrix. The transcriptional coactivators YAP and TAZ mediate this feedback response, modulating cell mechanics by limiting cytoskeletal and focal adhesion maturation to enable persistent cell motility and 3D vasculogenesis. Motile arrest after YAP/TAZ ablation was partially rescued by depletion of the YAP/TAZ-dependent myosin phosphatase regulator, NUAK2, or by inhibition of Rho-ROCK-myosin II. Together, these data establish a transcriptional feedback axis necessary to maintain a responsive cytoskeletal equilibrium and persistent migration.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Movement , Cytoskeleton/metabolism , Endothelial Progenitor Cells/metabolism , Focal Adhesions/metabolism , Mechanotransduction, Cellular , Neovascularization, Physiologic , Trans-Activators/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cytoskeleton/genetics , Feedback, Physiological , Focal Adhesions/genetics , Kinetics , Mice, Inbred C57BL , Mice, Knockout , Myosin Type II/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/deficiency , Trans-Activators/genetics , Transcription, Genetic , YAP-Signaling Proteins , rho GTP-Binding Proteins/metabolism , rho-Associated Kinases/metabolismABSTRACT
Hyperbaric oxygen is a clinical treatment that contributes to wound healing by increasing fibroblasts proliferation, collagen synthesis, and production of growth factors, inducing angiogenesis and inhibiting antimicrobial activity. It also has been shown that hyperbaric oxygen treatment (HBO), through the activation of nitric oxide synthase promotes an increase in the nitric oxide levels that may improve endothelial progenitor cells (EPC) mobilization from bone marrow to the peripheral blood and stimulates the vessel healing process. However, cellular mechanisms involved in cell proliferation and activation of EPC after HBO treatment remain unknown. Therefore, the present work aimed to analyze the effect of HBO on the proliferation of pre-treated bone marrow-derived EPC with TNF-alpha. Also, we investigated the expression of ICAM and eNOS by immunochemistry, the production of reactive species of oxygen and performed an in vitro wound healing. Although 1h of HBO treatment did not alter the rate of in vitro wound closure or cell proliferation, it increased eNOS expression and decreased ICAM expression and reactive oxygen species production in cells pre-treated with TNF-alpha. These results indicate that HBO can decrease the inflammatory response in endothelial cells mediated by TNF-alpha, and thus, promote vascular recovery after injury.
Subject(s)
Cell Proliferation/drug effects , Endothelial Progenitor Cells/metabolism , Oxygen/pharmacology , Animals , Bone Marrow Cells/cytology , Cell Movement/drug effects , Cells, Cultured , Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/drug effects , Intercellular Adhesion Molecule-1/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/pharmacologyABSTRACT
OBJECTIVE: Endothelial progenitor cells (EPCs) are produced in the bone marrow and mobilized to the peripheral blood playing a key role in endothelial repair. The objective of this study was to evaluate circulating EPC before and after percutaneous coronary intervention (PCI) with stent implantation and their associations with coronary restenosis and adverse cardiovascular events. Venous blood was obtained before and the day after PCI. Quantification of total white blood count and identification of EPCs (CD45-CD34+CD31+CD133/2+CD309+) through immunophenotyping by flow cytometry was performed. The primary outcome was either restenosis detected by new coronary angiography or angina with myocardial ischemia at the territory of the stented coronary artery. Secondary outcomes were angina without demonstrable myocardial ischemia, acute coronary syndrome or all-cause death. RESULTS: 37 patients were followed for 1 year. The median EPC count before PCI was 320 cells/mcl and after PCI 286 cells/mcl. A decrease of EPC count was found in 65% of the patients, while 35% displayed an increase. Primary outcomes occurred in 10.8% and the secondary in 37.8% of the patients. Despite a higher level of EPC before (402 cell/mcl) and after PCI (383 cell/mcl) in patients with the secondary outcomes, there was no significant association between EPC and cardiovascular events.
Subject(s)
Coronary Restenosis/pathology , Coronary Restenosis/surgery , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Percutaneous Coronary Intervention , Aged , Cell Count , Female , Humans , Male , Treatment OutcomeABSTRACT
BACKGROUND: We have previously demonstrated that acidic preconditioning of human endothelial colony-forming cells (ECFC) increased proliferation, migration, and tubulogenesis in vitro, and increased their regenerative potential in a murine model of hind limb ischemia without baseline disease. We now analyze whether this strategy is also effective under adverse conditions for vasculogenesis, such as the presence of ischemia-related toxic molecules or diabetes, one of the main target diseases for cell therapy due to their well-known healing impairments. METHODS: Cord blood-derived CD34+ cells were seeded in endothelial growth culture medium (EGM2) and ECFC colonies were obtained after 14-21 days. ECFC were exposed at pH 6.6 (preconditioned) or pH 7.4 (nonpreconditioned) for 6 h, and then pH was restored at 7.4. A model of type 2 diabetes induced by a high-fat and high-sucrose diet was developed in nude mice and hind limb ischemia was induced in these animals by femoral artery ligation. A P value < 0.05 was considered statistically significant (by one-way analysis of variance). RESULTS: We found that acidic preconditioning increased ECFC adhesion and the release of pro-angiogenic molecules, and protected ECFC from the cytotoxic effects of monosodium urate crystals, histones, and tumor necrosis factor (TNF)α, which induced necrosis, pyroptosis, and apoptosis, respectively. Noncytotoxic concentrations of high glucose, TNFα, or their combination reduced ECFC proliferation, stromal cell-derived factor (SDF)1-driven migration, and tubule formation on a basement membrane matrix, whereas almost no inhibition was observed in preconditioned ECFC. In type 2 diabetic mice, intravenous administration of preconditioned ECFC significantly induced blood flow recovery at the ischemic limb as measured by Doppler, compared with the phosphate-buffered saline (PBS) and nonpreconditioned ECFC groups. Moreover, the histologic analysis of gastrocnemius muscles showed an increased vascular density and reduced signs of inflammation in the animals receiving preconditioned ECFC. CONCLUSIONS: Acidic preconditioning improved ECFC survival and angiogenic activity in the presence of proinflammatory and damage signals present in the ischemic milieu, even under high glucose conditions, and increased their therapeutic potential for postischemia tissue regeneration in a murine model of type 2 diabetes. Collectively, our data suggest that acidic preconditioning of ECFC is a simple and inexpensive strategy to improve the effectiveness of cell transplantation in diabetes, where tissue repair is highly compromised.
Subject(s)
Acids/chemistry , Diabetes Mellitus, Experimental/drug therapy , Endothelial Progenitor Cells/metabolism , Glucose/metabolism , Neovascularization, Physiologic/physiology , Animals , Cell Differentiation , Cell Proliferation , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Humans , Male , Mice , Mice, NudeABSTRACT
In this study, we compared the functional properties of endothelial progenitor cells (EPCs) derived from halfpipe-snowboarding athletes who train under hyperoxic conditions with those derived from normal subjects who lived under normoxic conditions. Peripheral blood-derived EPCs were isolated from both halfpipe-snowboarding athletes and normal humans. Cellular growth dynamics, lipoprotein transport, and gene expression of cultured EPCs were compared between the two groups of cells. Results indicate that cytoactivity of EPCs from athletes was higher than that of EPCs from control subjects. This study suggests that function of EPCs from snowboarding athletes may be better than that of EPCs from normal humans, which demonstrates the benefits of training under hyperoxic conditions.
Subject(s)
Endothelial Progenitor Cells/cytology , Exercise , Gene Expression , Lipoproteins/metabolism , Athletes , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Endothelial Progenitor Cells/metabolism , Humans , SkiingABSTRACT
BACKGROUND AND AIMS: The number of colony-forming unit (CFU)-Hill colonies has been proposed as a biomarker of vascular function and cardiovascular risk in adults but information about its role in children is scarce. This study evaluates the associations between obesity, cardiovascular risk factors and breastfeeding history with the numbers of CFU-Hill colonies in a sample of young people. METHODS AND RESULTS: We selected 49 children and teenagers between ages 10 and 17 (65.3% boys) from Mexican Health Care system. Physical activity and Anthropometric measures data were registered. CFU-Hill colonies were cultured from mononuclear cells obtained from venous blood. We detected inverse associations between the formation of CFU-Hill colonies and body mass index (BMI; ß = -1.53; 95% confidence interval [CI], -1.92, -1.13), triglycerides (ß = -0.26; 95%CI = -0.34, -0.18), total cholesterol (ß = -0.13; 95%CI = -0.17, -0.08), Low Density Lipoprotein (LDL) (ß = -0.20; 95%CI = -0.31, -0.09) and glucose (ß = -0.37; 95%CI = -0.55, -0.18) using multivariate models. Breastfeeding duration showed a 1.46-colony increase for each month of breastfeeding (95%CI = 0.73, 2.18). CONCLUSIONS: CFU-Hill colony-forming capacity in children and teenagers was inversely associated with obesity, dyslipidemia and high blood levels of glucose. In contrast a longer breastfeeding duration was directly associated with an increased number of CFU-Hill colonies. However these results must be confirmed with further studies. Our findings support the importance of promoting breastfeeding and monitoring nutritional and metabolic status at an early age to prevent chronic disease development.