Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.047
Filter
1.
BMC Vet Res ; 20(1): 309, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987757

ABSTRACT

BACKGROUND: Parasites Entamoeba spp., Enterocytozoon bieneusi and Blastocystis are prevalent pathogens causing gastrointestinal illnesses in animals and humans. Consequently, researches on their occurrence, distribution and hosts are crucial for the well-being of both animals and humans. Due to the confined spaces and frequent interaction between animals and humans, animal sanctuaries have emerged as potential reservoirs for these parasites. In this study, the wildlife sanctuary near the Huang Gorge of the Qinling Mountains in northwest China is chosen as an ideal site for parasite distribution research, considering its expansive stocking area and high biodiversity. RESULTS: We collected 191 fecal specimens from 37 distinct wildlife species and extracted genomic DNA. We identified these three parasites by amplifying specific gene regions and analyzed their characteristics and evolutionary relationships. All the parasites exhibited a high overall infection rate, reaching 90.05%. Among them, seven Entamoeba species were identified, accounting for a prevalence of 54.97%, with the highest infection observed in Entamoeba bovis. In total, 11 Enterocytozoon bieneusi genotypes were discovered, representing a prevalence of 35.08%, including three genotypes of human-pathogenic Group 1 and two novel genotypes (SXWZ and SXLG). Additionally, 13 Blastocystis subtypes were detected, showing a prevalence of 74.87% and encompassing eight zoonotic subtypes. All of the above suggests significant possibilities of parasite transmission between animals and humans. CONCLUSIONS: This study investigated the occurrence and prevalence of three intestinal parasites, enhancing our understanding of their genetic diversity and host ranges in northwest China. Furthermore, the distribution of these parasites implies significant potential of zoonotic transmission, underscoring the imperative for ongoing surveillance and implementation of control measures. These efforts are essential to mitigate the risk of zoonotic disease outbreaks originating from wildlife sanctuary.


Subject(s)
Animals, Wild , Blastocystis , Entamoeba , Enterocytozoon , Microsporidiosis , Zoonoses , Animals , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , China/epidemiology , Blastocystis/genetics , Blastocystis/classification , Blastocystis/isolation & purification , Animals, Wild/parasitology , Zoonoses/parasitology , Entamoeba/genetics , Entamoeba/isolation & purification , Entamoeba/classification , Microsporidiosis/veterinary , Microsporidiosis/epidemiology , Phylogeny , Feces/parasitology , Entamoebiasis/veterinary , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Blastocystis Infections/veterinary , Blastocystis Infections/epidemiology , Blastocystis Infections/transmission , Blastocystis Infections/parasitology , Prevalence , Genotype , Humans
2.
Front Cell Infect Microbiol ; 14: 1398446, 2024.
Article in English | MEDLINE | ID: mdl-38966250

ABSTRACT

Introduction: Children with intellectual disability (ID) often face challenges in maintaining proper oral hygiene due to their motor, sensory, and intellectual impairments, which can lead to compromised oral health; therefore, there is a need to enhance the oral health status of these populations and establish an effective system for administering preventive interventions. Here, we aimed to evaluate the prevalence of Entamoeba gingivalis and Trichomonas tenax among children with ID in Lorestan province, in Western Iran through parasitological and molecular methods. Methods: The current descriptive investigation involved 215 in children with ID and 215 healthy children (non-ID) who were referred to health facilities in Lorestan province, Iran between October 2022 and March 2024. The prevalence of protozoa in the oral cavity was found through the utilization of both microscopic analysis and conventional polymerase chain reaction (PCR) techniques. Results: The total prevalence of the E. gingivalis and T. tenax in children with ID was found to be 87 (40.5%) and 92 (42.8%) through microscopic and PCR methods, respectively. Among the positive samples, 57 (61.9%) and 35 (38.1%) children tested positive for E. gingivalis and T. tenax, respectively. In contrast, among the 215 non-ID children in the control group, 39 (18.1%) and 42 (19.5%) tested positive by microscopic and PCR methods, respectively. Among positive samples in non-ID children, 23 (54.7%) and 19 (45.3%) children were positive for E. gingivalis and T. tenax, respectively. Multiple logistic regression analysis indicated that residing in urban areas, parental education, monthly family income, and tooth brushing p<0.001) were identified as independent risk factors for oral cavity parasites. Conclusion: This study identified a notable prevalence of oral cavity parasites in children with ID in Lorestan province, Western Iran. It is imperative to recognize the primary risk factors associated with these parasites, particularly inadequate teeth brushing, in order to enhance public and oral health strategies for children with ID. Therefore, pediatric dental professionals should remain vigilant regarding these risk factors to effectively recognize and address oral health issues in this population, thereby mitigating the occurrence of oral diseases and infections.


Subject(s)
Entamoeba , Intellectual Disability , Mouth , Socioeconomic Factors , Humans , Iran/epidemiology , Child , Male , Prevalence , Female , Risk Factors , Mouth/parasitology , Intellectual Disability/epidemiology , Intellectual Disability/parasitology , Entamoeba/isolation & purification , Entamoeba/genetics , Child, Preschool , Adolescent , Entamoebiasis/epidemiology , Oral Health , Trichomonas/isolation & purification , Trichomonas/genetics
3.
Medicina (Kaunas) ; 60(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38792919

ABSTRACT

The oral cavity is a habitat to a diverse range of organisms that make up an essential element of the human microbiota. There are up to 1000 species of micro-organisms capable of colonizing the mouth. Thirty percent of them are uncultivable. The genus Entamoeba includes several species, out of which at least seven of them are able to inhabit the human body (Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, Entamoeba coli, Entamoeba polecki, Entamoeba hartmann, Entamoeba gingivalis). It was shown that only E. gingivalis is able to colonize the oral cavity. The aim of this study was to evaluate the association and prevalence of E. gingivalis in periodontal disease using two electronic database search engines. In order to have a broader view of the subject, a comprehensive manual search was conducted between 15th February 2023 and 1 April 2023 on these content aggregators and the initial search resulted in 277 articles using the keywords "E. gingivalis", "periodontitis", "E. gingivalis", "periodontal disease", "prevalence", and "incidence", in different combinations. The results showed that 755 patients were infected with E. gingivalis out of a total number of 1729 patients diagnosed with periodontal disease, indicating a global prevalence of 43% in the set of patients analyzed. E. gingivalis was prevalent in 58% of the patients that had gingivitis and in 44% of the patients with periodontitis. Prevalence of E. gingivalis based on gender was 43% in female patients and 47% in male patients. The results indicate that the higher incidence of E. gingivalis in people with periodontal disease compared to healthy people is more than just a sign of the disease; it could also be linked to the severity of the condition and the disease propensity to progress.


Subject(s)
Entamoeba , Periodontal Diseases , Humans , Entamoeba/isolation & purification , Entamoeba/pathogenicity , Periodontal Diseases/microbiology , Periodontal Diseases/epidemiology , Entamoebiasis/epidemiology , Prevalence , Female , Male
4.
Drug Discov Ther ; 18(3): 178-187, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38777764

ABSTRACT

In humans, Entamoeba histolytica is the main pathogen causing various amoebiases, while E. moshkovskii falls between being a pathogen and non-pathogen. The two species have similar behavior patterns but differ significantly in pathogenicity, with previous studies and clinical data indicating that E. moshkovskii has a low level of pathogenicity. Meaningfully, the biological characteristics of E. moshkovskii make it a potential model organism and a protein display platform for studying the functions of important Entamoeba proteins. Here, an Amoeba-pcDNA3.1 vector capable of overexpressing E. histolytica-sourced Igl-C protein was constructed and successfully transfected into E. moshkovskii. High levels of expression of the Igl-C, EGFP, and NeoR genes were identified in Igl-C-transfected trophozoites using qRT-PCR, and they were subsequently confirmed using immunoblotting. Transfection of Igl-C protein improved the adherence and phagocytosis of E. moshkovskii, demonstrating that E. histolytica Igl mediated amoebic adhesion. Moreover, as a manifestation of protein virulence, the ability of post-transfected trophozoites to induce inflammation in host macrophages was also enhanced. In conclusion, this study utilizing the characteristics of E. moshkovskii confirmed its potential to serve as a model organism. E. moshkovskii could replace E. histolytica as the target of gene editing, allowing more efficient study of amoebic pathogenicity.


Subject(s)
Entamoeba histolytica , Entamoeba , Protozoan Proteins , Trophozoites , Entamoeba/genetics , Entamoeba/pathogenicity , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Entamoeba histolytica/genetics , Entamoeba histolytica/pathogenicity , Entamoeba histolytica/metabolism , Trophozoites/metabolism , Phagocytosis , Lectins/metabolism , Lectins/genetics , Humans , Animals , Transfection , Virulence/genetics , Entamoebiasis/parasitology , Mice
5.
Exp Parasitol ; 261: 108750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614222

ABSTRACT

Amoebiasis is a disease caused by Entamoeba histolytica, affecting the large intestine of humans and occasionally leading to extra-intestinal lesions. Entamoeba dispar is another amoeba species considered commensal, although it has been identified in patients presenting with dysenteric and nondysenteric colitis, as well as amoebic liver abscess. Amoebic virulence factors are essential for the invasion and development of lesions. There is evidence showing that the association of enterobacteria with trophozoites contributes to increased gene expression of amoebic virulence factors. Enteropathogenic Escherichia coli is an important bacterium causing diarrhea, with high incidence rates in the world population, allowing it to interact with Entamoeba sp. in the same host. In this context, this study aims to evaluate the influence of enteropathogenic Escherichia coli on ACFN and ADO Entamoeba dispar strains by quantifying the gene expression of virulence factors, including galactose/N-acetyl-D-galactosamine-binding lectin, cysteine proteinase 2, and amoebapores A and C. Additionally, the study assesses the progression and morphological aspect of amoebic liver abscess and the profile of inflammatory cells. Our results demonstrated that the interaction between EPEC and ACFN Entamoeba dispar strains was able to increase the gene expression of virulence factors, as well as the lesion area and the activity of the inflammatory infiltrate. However, the association with the ADO strain did not influence the gene expression of virulence factors. Together, our findings indicate that the interaction between EPEC, ACFN, and ADO Entamoeba dispar strains resulted in differences in vitro and in vivo gene expression of Gal/GalNAc-binding lectin and CP2, in enzymatic activities of MPO, NAG, and EPO, and consequently, in the ability to cause lesions.


Subject(s)
Entamoeba , Enteropathogenic Escherichia coli , Virulence Factors , Enteropathogenic Escherichia coli/pathogenicity , Enteropathogenic Escherichia coli/genetics , Entamoeba/pathogenicity , Entamoeba/genetics , Entamoeba/physiology , Virulence Factors/genetics , Virulence , Animals , Mice , Liver Abscess, Amebic/parasitology , Entamoebiasis/parasitology , Humans , Gene Expression
6.
Parasitology ; 151(4): 429-439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38571301

ABSTRACT

Entamoeba moshkovskii, according to recent studies, appears to exert a more significant impact on diarrhoeal infections than previously believed. The efficient identification and genetic characterization of E. moshkovskii isolates from endemic areas worldwide are crucial for understanding the impact of parasite genomes on amoebic infections. In this study, we employed a multilocus sequence typing system to characterize E. moshkovskii isolates, with the aim of assessing the role of genetic variation in the pathogenic potential of E. moshkovskii. We incorporated 3 potential genetic markers: KERP1, a protein rich in lysine and glutamic acid; amoebapore C (apc) and chitinase. Sequencing was attempted for all target loci in 68 positive E. moshkovskii samples, and successfully sequenced a total of 33 samples for all 3 loci. The analysis revealed 17 distinct genotypes, labelled M1­M17, across the tested samples when combining all loci. Notably, genotype M1 demonstrated a statistically significant association with diarrhoeal incidence within E. moshkovskii infection (P = 0.0394). This suggests that M1 may represent a pathogenic strain with the highest potential for causing diarrhoeal symptoms. Additionally, we have identified a few single-nucleotide polymorphisms in the studied loci that can be utilized as genetic markers for recognizing the most potentially pathogenic E. moshkovskii isolates. In our genetic diversity study, the apc locus demonstrated the highest Hd value and π value, indicating its pivotal role in reflecting the evolutionary history and adaptation of the E. moshkovskii population. Furthermore, analyses of linkage disequilibrium and recombination within the E. moshkovskii population suggested that the apc locus could play a crucial role in determining the virulence of E. moshkovskii.


Subject(s)
Entamoeba , Multilocus Sequence Typing , Genetic Markers , Entamoeba/genetics , Entamoeba/classification , Entamoeba/isolation & purification , Humans , Entamoebiasis/parasitology , Entamoebiasis/epidemiology , Genotype , Polymorphism, Single Nucleotide , Genetic Variation , Phylogeny
7.
Int J Parasitol ; 54(8-9): 441-451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604548

ABSTRACT

Wild rhesus macaques are a potential source of zoonotic parasites for humans, and Entamoeba spp. are common intestinal parasites. To investigate the prevalence of Entamoeba in wild rhesus macaques in China and explore the genetic differentiation of the potentially pathogenic species Entamoeba nuttalli, a total of 276 fecal samples from five populations at high altitudes (HAG, 2,800-4,100 m above sea level) and four populations at low altitudes (LAG, 5-1,000 m above sea level) were collected. PCR methods based on the ssrRNA gene were used to detect Entamoeba infection. Genotyping of E. nuttalli was performed based on six tRNA-linked short tandem repeat (STR) loci for further genetic analyses. The results revealed that Entamoeba infection (69.2%) was common in wild rhesus macaques in China, especially in LAG which had a significantly higher prevalence rate than that in HAG (P < 0.001). Three zoonotic species were identified: Entamoeba chattoni (60.9%) was the most prevalent species and distributed in all the populations, followed by Entamoeba coli (33.3%) and Entamoeba nuttalli (17.4%). In addition, a novel Entamoeba ribosomal lineage named RL13 (22.8%) was identified, and phylogenetic analysis revealed a close genetic relationship between RL13 and Entamoeba. hartmanni. Genotyping of E. nuttalli obtained 24 genotypes from five populations and further analysis showed E. nuttalli had a high degree of genetic differentiation (FST > 0.25, Nm < 1) between the host populations. The result of analysis of molecular variance (AMOVA) revealed that observed genetic differences mainly originate from differences among populations (FST = 0.91). Meanwhile, the phylogenetic tree showed that these genotypes of E. nuttalli were clustered according to geographical populations, indicating a significant phylogeographic distribution pattern. Considering the potential pathogenicity of E. nuttalli, attention should be paid to its risk of zoonotic transmission.


Subject(s)
Entamoeba , Entamoebiasis , Feces , Genotype , Macaca mulatta , Phylogeny , Animals , Entamoeba/genetics , Entamoeba/classification , Entamoeba/isolation & purification , China/epidemiology , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Entamoebiasis/veterinary , Feces/parasitology , Monkey Diseases/parasitology , Monkey Diseases/epidemiology , Prevalence , Genetic Variation , Microsatellite Repeats , DNA, Protozoan/genetics
8.
Sci Rep ; 14(1): 6635, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503871

ABSTRACT

Entamoeba moshkovskii, recently known as a possible pathogenic amoeba, and the non-pathogenic Entamoeba dispar are morphologically indistinguishable by microscopy. Although PCR was used for differential diagnosis, gel electrophoresis is labor-intensive, time-consuming, and exposed to hazardous elements. In this study, nucleic acid lateral flow immunoassay (NALFIA) was developed to detect E. moshkovskii and E. dispar by post-PCR amplicon analysis. E. moshkovskii primers were labeled with digoxigenin and biotin whereas primers of E. dispar were lebeled with FITC and digoxigenin. The gold nanoparticles were labeled with antibodies corresponding to particular labeling. Based on the established assay, NALFIA could detect as low as 975 fg of E. moshkovskii target DNA (982 parasites or 196 parasites/microliter), and 487.5 fg of E. dispar target DNA (444 parasites or 89 parasites/microliter) without cross-reactivity to other tested intestinal organisms. After testing 91 stool samples, NALFIA was able to detect seven E. moshkovskii (87.5% sensitivity and 100% specificity) and eight E. dispar samples (66.7% sensitivity and 100% specificity) compared to real-time PCR. Interestingly, it detected three mixed infections as real-time PCR. Therefore, it can be a rapid, safe, and effective method for the detection of the emerging pathogens E. moshkovskii and E. dispar in stool samples.


Subject(s)
Amoeba , Entamoeba histolytica , Entamoeba , Entamoebiasis , Metal Nanoparticles , Nucleic Acids , Humans , Entamoeba/genetics , Entamoebiasis/diagnosis , Entamoebiasis/parasitology , Amoeba/genetics , Digoxigenin , Gold , DNA, Protozoan/genetics , DNA, Protozoan/analysis , Real-Time Polymerase Chain Reaction , Immunoassay , Feces/chemistry , Entamoeba histolytica/genetics
9.
Pol J Microbiol ; 73(1): 99-105, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437467

ABSTRACT

Entamoeba histolytica infects the large intestine of humans, causing a spectrum of clinical appearances ranging from asymptomatic colonization to severe intestinal and extra-intestinal disease. The parasite is identical microscopically to commensal nonpathogenic amoeba. To detect the pathogenic Entamoeba and estimate the precise prevalence of the parasite among the symptomatic pediatric population using molecular techniques. 323 fecal samples were collected from symptomatic children admitted to Sulaimani Pediatric Teaching Hospital, Sulaimaniyah Province, Iraq, from June to October 2021. A structured, validated questionnaire was prepared and used to report participants' gender, residency, and drinking water source. Then, stool samples were microscopically examined, and the positive samples were submitted to molecular analysis by amplifying the 18s rRNA gene using nested PCR to differentiate E. histolytica from other nonpathogenic Entamoeba. Finally, gene sequences were done to confirm the species. Microscopically, 58 positive samples represented Entamoeba species infection rate of 18% among symptomatic patients. However, only 18 samples were positive for E. histolytica based on molecular methods, which accounts for 31% of the positive by microscopy and 5.6% among the 323 symptomatic populations. NCBI, available in their database, gives the gene sequence and accession number. Patients' sociodemographic data and water sources were directly related to the infection rate. Classical microscopic examination provides a misleading profile about the prevalence of E. histolytica in an endemic region that might lead to unnecessary treatments and a lack of appropriate management for patients.


Subject(s)
Entamoeba , Entamoebiasis , Humans , Child , Entamoeba/genetics , Iraq/epidemiology , Entamoebiasis/epidemiology , Feces , Hospitalization
10.
Drug Discov Ther ; 18(1): 10-15, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38355121

ABSTRACT

A fluorescence immunochromatography (FIC) kit was developed recently using fluorescent silica nanoparticles coated with a recombinant C-terminal fragment of the surface lectin intermediate subunit (C-Igl) of Entamoeba histolytica to establish rapid serodiagnosis of amebiasis. We further evaluated the system using serum samples from 52 Thai patients with amebiasis. Of the patients, 50 (96%) tested positive using FIC. The samples were also tested using enzyme-linked immunosorbent assay (ELISA) with C-Igl as the antigen. Two samples were negative on ELISA but positive on FIC. The correlation coefficient between the fluorescence intensity using FIC and the optical density value using ELISA was 0.5390, indicating a moderate correlation between the two tests. Serum samples from 20 patients with malaria and 22 patients with Clostridioides difficile infection were also tested using FIC. The false-positive rates were 4/20 (20%) and 1/22 (4%) in patients with malaria and C. difficile infection, respectively. Combining the data from the present study with our previous study, the sensitivity and specificity of FIC were determined to be 98.5% and 95.2%, respectively. The results of the 50 samples were studied using a fluorescence scope and a fluorescence intensity reader, and the findings were compared. Disagreements were found in only two samples showing near-borderline fluorescence intensity, indicating that the use of scope was adequate for judging the results. These results demonstrate that FIC is a simple and rapid test for the serodiagnosis of amebiasis.


Subject(s)
Amebiasis , Clostridioides difficile , Entamoebiasis , Malaria , Nanoparticles , Humans , Entamoebiasis/diagnosis , Silicon Dioxide , Thailand , Amebiasis/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Serologic Tests/methods , Sensitivity and Specificity
11.
Parasitol Int ; 100: 102861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38244854

ABSTRACT

Amoebiasis, caused by the enteric parasite, Entamoeba histolytica, is one of the major food- and water-borne parasitic diseases in developing countries with improper sanitation and poor hygiene. Infection with E. histolytica has diverse disease outcomes, which are determined by the genetic diversity of the infecting strains. Comparative genetic analysis of infecting E. histolytica strains associated with differential disease outcomes from different geographical regions of the world is important to identify the specific genetic patterns of the pathogen that trigger certain disease outcomes of Amoebiasis. The strategy is able to elucidate the genealogical relation and population structure of infecting E. histolytica strains from different geographical regions. In the present study, we have performed a comparative genetic analysis of circulating E. histolytica strains identified from different parts of the world, including our study region, based on five tRNA-linked short tandem repeat (STR) loci (i.e., D-A, NK2, R-R, STGA-D and A-L) and evaluated their potential associations with differential disease outcomes of Amoebiasis. A number of regional-specific, emerging haplotypes of E. histolytica, significantly associated with specific disease outcomes have been identified. Haplotypes, which have a significant positive association with asymptomatic and amoebic liver abscess outcomes, showed a significant negative association with diarrheal outcome, or vice versa. Comparative multi-locus analysis revealed that E. histolytica isolates from our study region are phylogenetically segregated from the isolates of other geographical regions. This study provides a crucial overview of the population structure and emerging pattern of the enteric parasite, E. histolytica.


Subject(s)
Amebiasis , Dysentery, Amebic , Entamoeba histolytica , Entamoeba , Entamoebiasis , Liver Abscess, Amebic , Animals , Entamoeba histolytica/genetics , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Liver Abscess, Amebic/parasitology , Dysentery, Amebic/parasitology , Sequence Analysis , Entamoeba/genetics
12.
Rev Argent Microbiol ; 56(1): 16-24, 2024.
Article in English | MEDLINE | ID: mdl-37407358

ABSTRACT

Entamoeba infections occur worldwide, with higher frequency in countries of low socioeconomic status and poor public health. Since Entamoeba histolytica has long been recognized as the only pathogenic species, making a differential diagnosis of other morphologically identical Entamoeba is important. This study aimed to determine the prevalence of Entamoeba species in two populations from Argentina, make a differential diagnosis by PCR and characterize Entamoeba isolates at the SSU rRNA gene. A total of 493 serial fecal samples were obtained from individuals in the provinces of Buenos Aires (n=210) and Misiones (n=283). Samples were examined by conventional methods (formalin-ethyl acetate and Willis flotation) and specific PCRs to differentiate Entamoeba species. Entamoeba isolates were characterized by sequencing a fragment of the SSU rRNA gene. The overall prevalence of Entamoeba infection was 12.4%, being more prevalent in Buenos Aires than in Misiones (14.8% vs. 10.6%). A case of E. histolytica confirmed by PCR and sequence analysis was reported for the first time in Buenos Aires. Moreover, new genetic data on Entamoeba coli and Entamoeba dispar were recorded. The phylogenetic analysis revealed a congruence between morphological characteristics and SSU rRNA gene sequences. This study increases the amount of information on the distribution of these species in Argentina and the region of the Americas.


Subject(s)
Entamoeba , Entamoebiasis , Humans , Entamoebiasis/diagnosis , Entamoebiasis/epidemiology , Diagnosis, Differential , Argentina/epidemiology , Phylogeny , Polymerase Chain Reaction/methods , Entamoeba/genetics , Feces
13.
Trop Doct ; 54(2): 108-111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38130150

ABSTRACT

Despite great efforts, intestinal protozoan infections remain a significant healthcare concern worldwide. Although many point-of-care (POC) tests are increasingly being used, microscopic examination of stool specimens remains the mainstay for their diagnosis, especially in resource-limited settings. We assessed the utility of rapid POC tests based on immunochromatography among patients from rural Northern India. A total of 78 patients were enrolled in the study. Out of nine specimens that tested positive for Giardia duodenalis on microscopy, an immunochromatographic test (ICT) could detect only five (55.55%). Entamoeba histolytica/dispar was demonstrated in two specimens on microscopy, both of which were missed by ICT. Its overall sensitivity, specificity, and positive and negative predictive value were 50%, 98.5%, 83.3%, and 93%, respectively. Its performance was considered unsatisfactory. Although ICT-based tests provide a relatively rapid and less labor-intensive alternative, they should be used to supplement and not replace stool microscopy.


Subject(s)
Entamoeba histolytica , Entamoeba , Entamoebiasis , Protozoan Infections , Humans , Outpatients , Entamoebiasis/diagnosis , Entamoebiasis/epidemiology , Feces , Sensitivity and Specificity , Protozoan Infections/diagnosis
14.
Parasitol Int ; 99: 102846, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110172

ABSTRACT

Amoebiasis, caused by the enteric parasite Entamoeba histolytica has differential disease outcomes. The association of parasite genotypes with outcomes of amoebic infection is still a paradox and requires to be explored. The genetic information of infecting strains from endemic settings of different geographical regions is essential to evaluate the relation. Comparative genetics of E. histolytica clinical isolates from different disease outcomes have been explored based on two tRNA-linked STR loci (STGA-D and A-L). All of the repeat patterns in the A-L locus were newly identified and unique to Indian isolates. The majority of newly identified repeat patterns in STGA-D locus have outcome-specific distributions, predicting the emergence of disease-specific mutations in this target locus. Statistical analysis further reinforces this observation, as identified repeat patterns only from STGA-D but not A-L locus were significantly associated with disease outcomes. Phylogenetic analysis indicates independent segregation and divergence of tRNA-linked STR arrays for each STR locus.


Subject(s)
Entamoeba histolytica , Entamoeba , Entamoebiasis , Animals , Entamoeba histolytica/genetics , Entamoebiasis/epidemiology , Entamoebiasis/parasitology , Genetic Markers , Phylogeny , Microsatellite Repeats , RNA, Transfer/genetics , Entamoeba/genetics
15.
Parasitol Res ; 122(11): 2525-2537, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37642770

ABSTRACT

Amoebiasis is an infection caused by enteric protozoa, most commonly Entamoeba histolytica, and is globally considered a potentially severe and life-threatening condition. To understand the impact of the parasite genome on disease outcomes, it is important to study the genomes of infecting strains in areas with high disease prevalence. These studies aim to establish correlations between parasite genotypes and the clinical presentation of amoebiasis. We employ a strain typing approach that utilizes multiple loci, including SREHP and three polymorphic non-coding loci (tRNA-linked array N-K2 and loci 1-2 and 5-6), for high-resolution analysis. Distinct clinical phenotype isolates underwent amplification and sequencing of studied loci. The nucleotide sequences were analysed using Tandem Repeats Finder to detect short tandem repeats (STRs). These patterns were combined to assign a genotype, and the correlation between clinical phenotypes and repetitive patterns was statistically evaluated. This study found significant polymorphism in the size and number of PCR fragments at SREHP and 5-6 locus, while the 1-2 locus and NK2 locus showed variations in PCR product sizes. Out of 41 genotypes, two (I6 and I41) were significantly associated with their respective disease outcomes and were found in multiple isolates. We observed that I6 was linked with a symptomatic outcome, with a statistically significant p-value of 0.0183. Additionally, we found that I41 was associated with ALA disease outcome, with a p-value of 0.0089. Our study revealed new repeat units not previously reported, unveiling the genetic composition of E. histolytica strains in India, associated with distinct disease manifestations.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Humans , Entamoebiasis/parasitology , Polymorphism, Genetic , Entamoeba histolytica/genetics , Phenotype , Microsatellite Repeats
16.
Trop Biomed ; 40(2): 160-164, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37650401

ABSTRACT

Entamoeba histolytica (E. histolytica), the causative agent of amoebiasis, is still a global public health problem that cannot be controlled, especially in tropical and subtropical countries. This study was conducted to obtain information about the incidence of Entamoeba histolytica/dispar/ moshkovskii complex infection and the factors that influence it. The prevalence of infection with the Entamoeba histolytica/dispar/moshkovskii complex and the factors that influence it in people living on the smallest and outermost island of Indonesia, Sabang Island, Aceh Province. This study involved 335 respondents aged >= 10 years. Respondents were selected by non-probability sampling technique. Interviews and observations were conducted to identify risk factors. The Entamoeba histolytica/dispar/ moshkovskii complex was identified by direct examination, concentration, and Whitley's trichrome staining techniques. A Chi-Square test was performed to analyze the correlation of risk factors with the incidence of infection. The prevalence of infection with the Entamoeba histolytica/dispar/ moshkovskii complex in the people of Sabang Island was 26.6% (89/335). Source and adequacy of clean water correlated with the incidence of Entamoeba histolytica/dispar/moshkovskii complex infection. Demographic variables are not correlated with the incidence of infection. However, the group of women aged > 61 years, unemployed, unmarried, and earning less than the regional minimum wage tend to be more likely to be found with Entamoeba histolytica/dispar/moshkovskii complex infections. Thus it can be concluded that the prevalence of infection with the Entamoeba histolytica/dispar/moshkovskii complex on Sabang Island is in the high category. The prevalence of E. histolytica as the causative agent of amoebiasis cannot be explained with certainty because the two identical non-pathogenic Entamoeba species cannot be distinguished by microscopic identification. Sources and adequacy of clean water correlate with the incidence of Entamoeba histolytica/dispar/moshkovskii complex infection in the people of Sabang Island.


Subject(s)
Amebiasis , Entamoeba histolytica , Entamoebiasis , Humans , Female , Indonesia/epidemiology , Prevalence , Entamoebiasis/epidemiology , Risk Factors , Water
17.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37442621

ABSTRACT

Entamoeba gingivalis is a parasitic protozoan that colonizes the human oral cavity and there are two subtypes (ST1 and ST2) that have been identified to date. However, there are no reports on the molecular detection or characterization of E. gingivalis in Turkey. The objective of this study was to detect the presence of E. gingivalis in Turkish healthy individuals and those with periodontal disease and to subtype the isolates using molecular techniques. Samples from the oral cavity of 94 individuals were taken and the presence of E. gingivalis was determined by PCR using primers for SsrRNA and the amplicons were then confirmed by DNA sequencing. Each participant completed a questionnaire that included demographic data, habits and lifestyle, as well as health status. The presence of E. gingivalis was detected in a total of 19 samples (11 patients and eight healthy individuals). Molecular characterization determined that 12 samples belonged to ST1 and seven samples belonged to ST2. The presence of E. gingivalis was higher in patients with periodontal disease than in healthy individuals, and this association was statistically significant (P < .05). This study constitutes the first report of molecular detection and subtyping of E. gingivalis in Turkey.


Subject(s)
Entamoeba , Entamoebiasis , Periodontal Diseases , Humans , Entamoeba/genetics , Entamoebiasis/diagnosis , Entamoebiasis/parasitology , Turkey/epidemiology , Interleukin-1 Receptor-Like 1 Protein , Periodontal Diseases/diagnosis
18.
PLoS Negl Trop Dis ; 17(5): e0011287, 2023 05.
Article in English | MEDLINE | ID: mdl-37167334

ABSTRACT

BACKGROUND: Importance of the amphizoic amoeba Entamoeba moshkovskii is increasing in the study of amoebiasis as a common human pathogen in some settings. Limited studies are found on the genetic and phylogenetic characterization of E. moshkovskii from India; hence remain largely unknown. In this study, we determined the prevalence and characterized the E. moshkovskii isolates in eastern India. METHODS: A three-year systemic surveillance study among a total of 6051 diarrhoeal patients from ID Hospital and BC Roy Hospital, Kolkata was conducted for E. moshkovskii detection via a nested PCR system targeting 18S rRNA locus. The outer primer set detected the genus Entamoeba and the inner primer pair identified the E. moshkovskii species. The 18S rRNA locus of the positive samples was sequenced. Genetic and phylogenetic structures were determined using DnaSP.v5 and MEGA-X. GraphPad Prism (v.8.4.2), CA, USA was used to analyze the statistical data. RESULT: 4.84% (95%CI = 0.0433-0.0541) samples were positive for Entamoeba spp and 3.12% (95%CI = 0.027-0.036) were infected with E. moshkovskii. E. moshkovskii infection was significantly associated with age groups (X2 = 26.01, P<0.0001) but not with gender (Fisher's exact test = 0.2548, P<0.05). A unique seasonal pattern was found for E. moshkovskii infection. Additionally, 46.56% (95%CI = 0.396-0.537) were sole E. moshkovskii infections and significantly associated with diarrheal incidence (X2 = 335.5,df = 9; P<0.0001). Sequencing revealed that the local E. moshkovskii strains were 99.59%-100% identical to the prototype (GenBank: KP722605.1). The study found certain SNPs that showed a correlation with clinical features, but it is not necessarily indicative of direct control over pathogenicity. However, SNPs in the 18S rRNA gene could impact the biology of the amoeba and serve as a useful phylogenetic marker for identifying pathogenic E. moshkovskii isolates. Neutrality tests of different coinfected subgroups indicated deviations from neutrality and implied population expansion after a bottleneck event or a selective sweep and/or purifying selection in co-infected subgroups. The majority of FST values of different coinfected subgroups were <0.25, indicating low to moderate genetic differentiation within the subgroups of this geographical area. CONCLUSION: The findings reveal the epidemiological significance of E. moshkovskii infection in Eastern India as the first report in this geographical area and expose this species as a possible emerging enteric pathogen in India. Our findings provide useful knowledge for further research and the development of future control strategies against E. moshkovskii.


Subject(s)
Amoeba , Coinfection , Entamoeba histolytica , Entamoeba , Entamoebiasis , Humans , Entamoebiasis/epidemiology , Entamoebiasis/diagnosis , RNA, Ribosomal, 18S/genetics , Prevalence , Phylogeny , Feces , Diarrhea/epidemiology , India/epidemiology
19.
Int Immunopharmacol ; 118: 110100, 2023 May.
Article in English | MEDLINE | ID: mdl-37011501

ABSTRACT

Entamoeba histolytica (Eh), a microaerophilic parasite, causes deadly enteric infections that result in Amoebiasis. Every year, the count of invasive infections reaches 50 million approximately and 40,000 to 1,00,000 deaths occurring due to amoebiasis are reported globally. Profound inflammation is the hallmark of severe amoebiasis which is facilitated by immune first defenders, neutrophils. Due to size incompatibility, neutrophils are unable to phagocytose Eh and thus, came up with the miraculous antiparasitic mechanism of neutrophil extracellular traps (NETs). This review provides an in-depth analysis of NETosis induced by Eh including the antigens involved in the recognition of Eh and the biochemistry of NET formation. Additionally, it underscores its novelty by describing the dual role of NETs in amoebiasis where it acts as a double-edged sword in terms of both clearing and exacerbating amoebiasis. It also provides a comprehensive account of the virulence factors discovered to date that are implicated directly and indirectly in the pathophysiology of Eh infections through the lens of NETs and can be interesting drug targets.


Subject(s)
Entamoeba histolytica , Entamoebiasis , Extracellular Traps , Entamoebiasis/drug therapy , Entamoebiasis/epidemiology , Entamoebiasis/physiopathology , Neutrophils , Drug Delivery Systems , Humans , Antigens, Nuclear
20.
mBio ; 14(1): e0300822, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36744962

ABSTRACT

There are several Entamoeba species that colonize humans, but only Entamoeba histolytica causes severe disease. E. histolytica is transmitted through the fecal-oral route to colonize the intestinal tract of 50 million people worldwide. The current mouse model to study E. histolytica intestinal infection directly delivers the parasite into the surgically exposed cecum, which circumvents the natural route of infection. To develop a fecal-oral mouse model, we screened our vivarium for a natural murine Entamoeba colonizer via a pan-Entamoeba PCR targeting the 18S ribosomal gene. We determined that C57BL/6 mice were chronically colonized by Entamoeba muris. This amoeba is closely related to E. histolytica, as determined by 18S sequencing and cross-reactivity with an E. histolytica-specific antibody. In contrast, outbred Swiss Webster (SW) mice were not chronically colonized by E. muris. We orally challenged SW mice with 1 × 105 E. muris cysts and discovered they were susceptible to infection, with peak cyst shedding occurring between 5 and 7 days postinfection. Most infected SW mice did not lose weight significantly but trended toward decreased weight gain throughout the experiment compared to mock-infected controls. Infected mice treated with paromomycin, an antibiotic used against noninvasive intestinal disease, do not become colonized by E. muris. Within the intestinal tract, E. muris localizes exclusively to the cecum and colon. Purified E. muris cysts treated with bovine bile in vitro excyst into mobile, pretrophozoite stages. Overall, this work describes a novel fecal-oral mouse model for the important global pathogen E. histolytica. IMPORTANCE Infection with parasites from the Entamoeba genus are significantly underreported causes of diarrheal disease that disproportionally impact tropical regions. There are several species of Entamoeba that infect humans to cause a range of symptoms from asymptomatic colonization of the intestinal tract to invasive disease with dissemination. All Entamoeba species are spread via the fecal-oral route in contaminated food and water. Studying the life cycle of Entamoeba, from host colonization to infectious fecal cyst production, can provide targets for vaccine and drug development. Because there is not an oral challenge rodent model, we screened for a mouse Entamoeba species and identified Entamoeba muris as a natural colonizer. We determine the peak of infection after an oral challenge, the efficacy of paromomycin treatment, the intestinal tract localization, and the cues that trigger excystation. This oral infection mouse model will be valuable for the development of novel therapeutic options for Entamoeba infections.


Subject(s)
Entamoeba histolytica , Entamoeba , Entamoebiasis , Humans , Animals , Cattle , Mice , Entamoeba/genetics , Paromomycin , Mice, Inbred C57BL , Feces/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL