Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Appl Environ Microbiol ; 90(6): e0229323, 2024 Jun 18.
Article En | MEDLINE | ID: mdl-38786361

Bacteria shape interactions between hosts and fungal pathogens. In some cases, bacteria associated with fungi are essential for pathogen virulence. In other systems, host-associated microbiomes confer resistance against fungal pathogens. We studied an aphid-specific entomopathogenic fungus called Pandora neoaphidis in the context of both host and pathogen microbiomes. Aphids host several species of heritable bacteria, some of which confer resistance against Pandora. We first found that spores that emerged from aphids that harbored protective bacteria were less virulent against subsequent hosts and did not grow on plate media. We then used 16S amplicon sequencing to study the bacterial microbiome of fungal mycelia and spores during plate culturing and host infection. We found that the bacterial community is remarkably stable in culture despite dramatic changes in pathogen virulence. Last, we used an experimentally transformed symbiont of aphids to show that Pandora can acquire host-associated bacteria during infection. Our results uncover new roles for bacteria in the dynamics of aphid-pathogen interactions and illustrate the importance of the broader microbiological context in studies of fungal pathogenesis. IMPORTANCE: Entomopathogenic fungi play important roles in the population dynamics of many insect species. Understanding the factors shaping entomopathogen virulence is critical for agricultural management and for the use of fungi in pest biocontrol. We show that heritable bacteria in aphids, which confer protection to their hosts against fungal entomopathogens, influence virulence against subsequent hosts. Aphids reproduce asexually and are typically surrounded by genetically identical offspring, and thus these effects likely shape the dynamics of fungal disease in aphid populations. Furthermore, fungal entomopathogens are known to rapidly lose virulence in lab culture, complicating their laboratory use. We show that this phenomenon is not driven by changes in the associated bacterial microbiome. These results contribute to our broader understanding of the aphid model system and shed light on the biology of the Entomophthorales-an important but understudied group of fungi.


Aphids , Microbiota , Animals , Aphids/microbiology , Virulence , Host-Pathogen Interactions , Entomophthorales/pathogenicity , Entomophthorales/physiology , Entomophthorales/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/pathogenicity , Bacteria/isolation & purification , Symbiosis , Spores, Fungal/growth & development , Spores, Fungal/pathogenicity
2.
Elife ; 122024 May 20.
Article En | MEDLINE | ID: mdl-38767950

Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae's species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.


Entomophthora , Genome, Fungal , Animals , Entomophthora/genetics , DNA Transposable Elements/genetics , Phylogeny , Circadian Rhythm/genetics , Entomophthorales/genetics , Entomophthorales/physiology
3.
J Invertebr Pathol ; 186: 107673, 2021 11.
Article En | MEDLINE | ID: mdl-34626615

A new species from the genus Strongwellsea (Entomophthorales: Entomophthoraceae) is described: Strongwellsea crypta Eilenberg & Humber from adult Botanophila fugax (Meigen) (Diptera: Anthomyiidae). The description is based on pathobiological, phenotypical and genotypical characters. The abdominal holes in infected hosts develop rapidly and become strikingly large and edgy, almost rhomboid in shape. The new species S. crypta differs from S. castrans, the only described species infecting flies from Anthomyiidae, by: (a) naturally infecting another host species, (b) by having significantly longer primary conidia, and (c) by genotypical clustering separately from that species when sequencing ITS2.


Diptera/microbiology , Entomophthorales/classification , Animals , Entomophthorales/genetics , Entomophthorales/physiology , Genotype , Spores, Fungal/cytology
4.
Fitoterapia ; 146: 104671, 2020 Oct.
Article En | MEDLINE | ID: mdl-32565347

Two new cyclopentapeptides, basidiosins A and B (1 and 2) were isolated from the mycelia extracts of entomophthoralean fungus Basidiobolus meristosporus RCEF 4516. The structures were determined based on spectroscopic methods, and the absolute config urations were assigned by Marfey's method on their acid hydrolyzates. Compounds 1 and 2 were identified as cyclo(L-Thr-L-Leu- L-Ile-D-Tyr-D-Thr) and cyclo(L-Thr-L-Leu-L-Val-D-Val-D-Ser), respectively. They were evaluated for the biological activities including antibacterial, antifungal and antioxidative activities. Furthermore, the biosynthetic pathway of 1 was proposed by bioinformatic analysis. This is the first study on the isolation of natural products from Basidiobolus fungus.


Biological Products/pharmacology , Entomophthorales/chemistry , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Biological Products/isolation & purification , China , Entomophthorales/genetics , Forests , Molecular Structure , Multigene Family , Mycelium/chemistry , Peptide Fragments/isolation & purification , Peptide Fragments/pharmacology , Soil Microbiology
5.
Mycologia ; 112(6): 1060-1074, 2020.
Article En | MEDLINE | ID: mdl-32412847

The fungal genus Massospora (Zoopagomycota: Entomophthorales) includes more than a dozen obligate, sexually transmissible pathogenic species that infect cicadas (Hemiptera) worldwide. At least two species are known to produce psychoactive compounds during infection, which has garnered considerable interest for this enigmatic genus. As with many Entomophthorales, the evolutionary relationships and host associations of Massospora spp. are not well understood. The acquisition of M. diceroproctae from Arizona, M. tettigatis from Chile, and M. platypediae from California and Colorado provided an opportunity to conduct molecular phylogenetic analyses and morphological studies to investigate whether these fungi represent a monophyletic group and delimit species boundaries. In a three-locus phylogenetic analysis including the D1-D2 domains of the nuclear 28S rRNA gene (28S), elongation factor 1 alpha-like (EFL), and beta-tubulin (BTUB), Massospora was resolved in a strongly supported monophyletic group containing four well-supported genealogically exclusive lineages, based on two of three methods of phylogenetic inference. There was incongruence among the single-gene trees: two methods of phylogenetic inference recovered trees with either the same topology as the three-gene concatenated tree (EFL) or a basal polytomy (28S, BTUB). Massospora levispora and M. platypediae isolates formed a single lineage in all analyses and are synonymized here as M. levispora. Massospora diceroproctae was sister to M. cicadina in all three single-gene trees and on an extremely long branch relative to the other Massospora, and even the outgroup taxa, which may reflect an accelerated rate of molecular evolution and/or incomplete taxon sampling. The results of the morphological study presented here indicate that spore measurements may not be phylogenetically or diagnostically informative. Despite recent advances in understanding the ecology of Massospora, much about its host range and diversity remains unexplored. The emerging phylogenetic framework can provide a foundation for exploring coevolutionary relationships with cicada hosts and the evolution of behavior-altering compounds.


Entomophthorales/genetics , Entomophthorales/pathogenicity , Evolution, Molecular , Hemiptera/microbiology , Animals , Entomophthorales/classification , Phylogeny , Psychotropic Drugs/metabolism , Zygomycosis/microbiology
6.
Med Mycol ; 58(2): 264-267, 2020 Feb 01.
Article En | MEDLINE | ID: mdl-31111900

Basidiobolus species were isolated from colonic biopsy samples of patients with gastrointestinal basidiobolomycosis (GIB) in southern Saudi Arabia. Isolated fungi were initially identified using classical mycological tools and confirmed by sequence analysis of the large subunit ribosomal RNA gene. Phenotypic tests revealed zygomycete-like fungi which conform to those of Basidiobolus species. Five sequenced strains formed a monophyletic clade in the 28S ribosomal RNA gene phylogenetic tree. They shared 99.97% similarity with B. haptosporus and 99.97% with B. haptosporus var. minor, and relatively lower similarity with B. ranarum (99.925%). The study suggests a new and a serious causal agent of GIB related to Basidiobolus haptosporus. These isolates are not related to B. ranarum, which is commonly linked to this disease.


Colon/microbiology , Entomophthorales/classification , Phylogeny , Zygomycosis/microbiology , Biopsy , Colon/pathology , Entomophthorales/genetics , Entomophthorales/pathogenicity , Gastrointestinal Diseases/microbiology , Humans , RNA, Ribosomal, 28S/genetics , Saudi Arabia , Zygomycosis/diagnosis
7.
Mycoses ; 62(3): 298-305, 2019 Mar.
Article En | MEDLINE | ID: mdl-30411397

Members of the genus Basidiobolus are potentially pathogenic fungi, known to cause mycoses in tropical and subtropical countries. Basidiobolus spp. can be associated with animals, and reptiles and amphibians are candidate vectors for the distribution of this fungus. The presence of Basidiobolus spp. was described for different reptiles in several African countries, although not for South Africa. In addition, quantitative data are scarce. The aim of this study was to analyse faeces of selected South African reptiles for the presence and quantity of "viable Basidiobolus units." Faecal samples of gecko and agama lizards were collected and analysed using spread plating, with confirmation by PCR. The addition of dichloran and benomyl to standard fungal media improved the selectivity and allowed quantification of Basidiobolus spp. in reptile faeces. The amount of Basidiobolus spp. varied between 300 and 1.4 × 106  CFU per gram of pooled gecko faeces, which mostly corresponds to >1000 CFU per outside dropping and <100 CFU per inside dropping. About 60% of analysed agama faeces carried Basidiobolus spp., ranging from 150 to 1.2 × 105  CFU per dropping. Our results show for the first time that faeces of South African reptiles frequently carry Basidiobolus spp., confirming that they can contribute to the distribution of this fungus.


Entomophthorales/isolation & purification , Feces/microbiology , Reptiles/microbiology , Animals , Colony Count, Microbial , Culture Media/chemistry , Entomophthorales/genetics , Entomophthorales/growth & development , Polymerase Chain Reaction , South Africa
8.
J Invertebr Pathol ; 157: 112-116, 2018 09.
Article En | MEDLINE | ID: mdl-30110609

The genus Strongwellsea (Entomophthorales) has a unique pathobiology. Infected adult dipteran hosts develop a large hole in their abdomens, through which conidia are actively discharged while the hosts are still alive. We analyzed the IST II region of Strongwellsea from 29 infected hosts representing 15 dipteran species from Anthomyiidae, Fanniidae, Muscidae, and Scathophagidae. Each genotype was found on only one host species or a few closely related host species. Strongwellsea genotypes infecting flies from Anthomyiidae represented a monophyletic lineage, including the species Strongwellsea castrans, while genotypes infecting Muscidae were very diverse and clustered at different places. All three host species from Fanniidae were infected with the same Strongwellsea genotype, namely the species Strongwellsea magna. It appears that members of the genus Strongwellsea are strongly adapted to their host species and have co-evolved.


Adaptation, Physiological/genetics , Diptera/microbiology , Entomophthorales/genetics , Host-Pathogen Interactions/genetics , Animals , Genotype
9.
G3 (Bethesda) ; 8(10): 3311-3319, 2018 10 03.
Article En | MEDLINE | ID: mdl-30111619

Insect-pathogenic fungi use subtilisin-like serine proteases (SLSPs) to degrade chitin-associated proteins in the insect procuticle. Most insect-pathogenic fungi in the order Hypocreales (Ascomycota) are generalist species with a broad host-range, and most species possess a high number of SLSPs. The other major clade of insect-pathogenic fungi is part of the subphylum Entomophthoromycotina (Zoopagomycota, formerly Zygomycota) which consists of high host-specificity insect-pathogenic fungi that naturally only infect a single or very few host species. The extent to which insect-pathogenic fungi in the order Entomophthorales rely on SLSPs is unknown. Here we take advantage of recently available transcriptomic and genomic datasets from four genera within Entomophthoromycotina: the saprobic or opportunistic pathogens Basidiobolus meristosporus, Conidiobolus coronatus, C. thromboides, C. incongruus, and the host-specific insect pathogens Entomophthora muscae and Pandora formicae, specific pathogens of house flies (Muscae domestica) and wood ants (Formica polyctena), respectively. In total 154 SLSP from six fungi in the subphylum Entomophthoromycotina were identified: E. muscae (n = 22), P. formicae (n = 6), B. meristosporus (n = 60), C. thromboides (n = 18), C. coronatus (n = 36), and C. incongruus (n = 12). A unique group of 11 SLSPs was discovered in the genomes of the obligate biotrophic fungi E. muscae, P. formicae and the saprobic human pathogen C. incongruus that loosely resembles bacillopeptidase F-like SLSPs. Phylogenetics and protein domain analysis show this class represents a unique group of SLSPs so far only observed among Bacteria, Oomycetes and early diverging fungi such as Cryptomycota, Microsporidia, and Entomophthoromycotina. This group of SLSPs is missing in the sister fungal lineages of Kickxellomycotina and the fungal phyla Mucoromyocta, Ascomycota and Basidiomycota fungi suggesting interesting gene loss patterns.


Entomophthorales/classification , Entomophthorales/genetics , Insecta/microbiology , Subtilisins/genetics , Amino Acid Motifs , Amino Acid Sequence , Animals , Catalytic Domain , Cluster Analysis , Databases, Nucleic Acid , Entomophthorales/enzymology , Phylogeny , Position-Specific Scoring Matrices , Protein Domains , Sequence Analysis, DNA , Subtilisins/chemistry , Subtilisins/metabolism
10.
Fungal Biol ; 122(6): 538-545, 2018 06.
Article En | MEDLINE | ID: mdl-29801798

Entomopathogenic fungi of the order Hypocreales infect their insect hosts mainly by penetrating through the cuticle and colonize them by proliferating throughout the body cavity. In order to ensure a successful infection, fungi first produce a variety of degrading enzymes that help to breach the insect cuticle, and then secrete toxic secondary metabolites that facilitate fungal invasion of the hemolymph. In response, insect hosts activate their innate immune system by triggering both cellular and humoral immune reactions. As fungi are exposed to stress in both cuticle and hemolymph, several mechanisms are activated not only to deal with this situation but also to mimic host epitopes and evade the insect's immune response. In this review, several components involved in the molecular interaction between insects and fungal pathogens are described including chemical, metabolomics, and dual transcriptomics approaches; with emphasis in the involvement of cuticle surface components in (pre-) infection processes, and fungal secondary metabolite (non-ribosomally synthesized peptides and polyketides) analysis. Some of the mechanisms involved in such interaction are also discussed.


Beauveria/metabolism , Entomophthorales/metabolism , Host-Pathogen Interactions/immunology , Hypocreales/metabolism , Insecta/metabolism , Metarhizium/metabolism , Secondary Metabolism , Animals , Beauveria/genetics , Beauveria/immunology , Beauveria/pathogenicity , Biological Coevolution , Entomophthorales/genetics , Entomophthorales/immunology , Entomophthorales/pathogenicity , Hemolymph , Hypocreales/genetics , Hypocreales/immunology , Hypocreales/pathogenicity , Insecta/genetics , Insecta/immunology , Insecta/microbiology , Metarhizium/genetics , Metarhizium/immunology , Metarhizium/pathogenicity , Sequence Analysis, RNA/methods
11.
PLoS One ; 12(7): e0179930, 2017.
Article En | MEDLINE | ID: mdl-28672012

The selection of stable reference genes is a critical step for the accurate quantification of gene expression. To identify and validate the reference genes in Pandora neoaphidis-an obligate aphid pathogenic fungus-the expression of 13classical candidate reference genes were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction(qPCR) at four developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae). Four statistical algorithms, including geNorm, NormFinder, BestKeeper and Delta Ct method were used to rank putative reference genes according to their expression stability and indicate the best reference gene or combination of reference genes for accurate normalization. The analysis of comprehensive ranking revealed that ACT1and 18Swas the most stably expressed genes throughout the developmental stages. To further validate the suitability of the reference genes identified in this study, the expression of cell division control protein 25 (CDC25) and Chitinase 1(CHI1) genes were used to further confirm the validated candidate reference genes. Our study presented the first systematic study of reference gene(s) selection for P. neoaphidis study and provided guidelines to obtain more accurate qPCR results for future developmental efforts.


Aphids/microbiology , Entomophthorales/genetics , Genes, Fungal , Animals , Aphids/genetics , Entomophthorales/growth & development , Real-Time Polymerase Chain Reaction , Reference Standards
12.
Appl Environ Microbiol ; 83(17)2017 09 01.
Article En | MEDLINE | ID: mdl-28625988

The goal of this study was to develop effective and practical field sampling methods for quantification of aerial deposition of airborne conidia of Entomophaga maimaiga over space and time. This important fungal pathogen is a major cause of larval death in invasive gypsy moth (Lymantria dispar) populations in the United States. Airborne conidia of this pathogen are relatively large (similar in size to pollen), with unusual characteristics, and require specialized methods for collection and quantification. Initially, dry sampling (settling of spores from the air onto a dry surface) was used to confirm the detectability of E. maimaiga at field sites with L. dispar deaths caused by E. maimaiga, using quantitative PCR (qPCR) methods. We then measured the signal degradation of conidial DNA on dry surfaces under field conditions, ultimately rejecting dry sampling as a reliable method due to rapid DNA degradation. We modified a chamber-style trap commonly used in palynology to capture settling spores in buffer. We tested this wet-trapping method in a large-scale (137-km) spore-trapping survey across gypsy moth outbreak regions in Pennsylvania undergoing epizootics, in the summer of 2016. Using 4-day collection periods during the period of late instar and pupal development, we detected variable amounts of target DNA settling from the air. The amounts declined over the season and with distance from the nearest defoliated area, indicating airborne spore dispersal from outbreak areas.IMPORTANCE We report on a method for trapping and quantifying airborne spores of Entomophaga maimaiga, an important fungal pathogen affecting gypsy moth (Lymantria dispar) populations. This method can be used to track dispersal of E. maimaiga from epizootic areas and ultimately to provide critical understanding of the spatial dynamics of gypsy moth-pathogen interactions.


Entomophthorales/isolation & purification , Microbiological Techniques/methods , Pollen/microbiology , Spores, Fungal/isolation & purification , Air Microbiology , Animals , Entomophthorales/genetics , Entomophthorales/growth & development , Larva/microbiology , Microbiological Techniques/instrumentation , Moths/microbiology , Real-Time Polymerase Chain Reaction , Seasons , Spores, Fungal/genetics , Spores, Fungal/growth & development
14.
J Invertebr Pathol ; 140: 68-74, 2016 10.
Article En | MEDLINE | ID: mdl-27637932

Molecular methods were used to determine the generic placement of two species of Entomophthorales known only from resting spores. Historically, these species would belong in the form-genus Tarichium, but this classification provides no information about phylogenetic relationships. Using DNA from resting spores, Zoophthora independentia, infecting Tipula (Lunatipula) submaculata in New York State, is now described as a new species and Tarichium porteri, described in 1942, which infects Tipula (Triplicitipula) colei in Tennessee, is transferred to the genus Zoophthora. We have shown that use of molecular methods can assist with determination of the phylogenetic relations of specimens within the form-genus Tarichium for an already described species and a new species for which only resting spores are available.


Diptera/parasitology , Entomophthora/genetics , Entomophthorales/genetics , Animals , DNA, Fungal , Phylogeny , Polymerase Chain Reaction , Spores, Fungal , Zygomycosis/veterinary
15.
J Invertebr Pathol ; 139: 34-41, 2016 09.
Article En | MEDLINE | ID: mdl-27449676

The entomopathogenic fungus Lecanicillium lecanii persists in a highly dynamic network of habitat patches (i.e., a metapopulation) formed by its primary host, the green coffee scale Coccus viridis. Lecanicillium lecanii is an important biological control of both C. viridis and the coffee rust, Hemileia vastatrix. Successfully managing this biocontrol agent will depend on an increased understanding of the characteristics of its dispersal, as migration between occupied and unoccupied patches is essential for the persistence of this metapopulation. In the present study, we employ a population genetics approach, and show that in our study system, a coffee farm in the Soconusco region of southern Mexico, L. lecanii is characterized by clear spatial genetic structure among plots within the farm but a lack of apparent structure at smaller scales. This is consistent with dispersal dominated by highly localized transport, such as by insects or rain splash, and less dependence on longer distance dispersal such as wind transport. The study site was dominated by a few multi-locus microsatellite genotypes, and their identities and large-scale locations persist across both study years, suggesting that local epizootics (outbreaks) are initiated each wet season by residual propagules from the previous wet season, and not by long-distance transport of propagules from other sites. The index of association, a measure of linkage disequilibrium, indicates that epizootics are primarily driven by asexual, clonal reproduction, which is consistent with the apparent lack of a teleomorph in the study site and the presence of only a single mating type across the site (MAT-1-2-1). Although the same predominant clonal genotypes were found across years, a drastic difference in genotypic diversity was witnessed across two sites between the two years, suggesting that interclonal selection was occurring. In light of the dispersal limitation of L. lecanii, spatial structure may be an essential axis of management to ensure the persistence of L. lecanii and preserve the ecosystem services provided by this versatile biocontrol agent in this and similar coffee farms.


Entomophthorales/genetics , Hemiptera/parasitology , Animals , Coffea , Farms , Mexico , Pest Control, Biological/methods , Polymerase Chain Reaction , Zygomycosis/veterinary
16.
Braz. j. microbiol ; 47(1): 259-265, Jan.-Mar. 2016. tab, graf
Article En | LILACS | ID: lil-775129

Abstract The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host–pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis.


Entomophthorales/genetics , Genes, Fungal , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Reference Standards , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Peptide Elongation Factor 1/genetics , /genetics , /genetics
17.
Braz J Microbiol ; 47(1): 259-65, 2016.
Article En | MEDLINE | ID: mdl-26887253

The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis.


Entomophthorales/genetics , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Genes, Fungal , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Peptide Elongation Factor 1/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 28S/genetics
18.
Appl Microbiol Biotechnol ; 100(7): 3301-11, 2016 Apr.
Article En | MEDLINE | ID: mdl-26637423

Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.


Biofilms/growth & development , Drinking Water/microbiology , Entomophthorales/genetics , Pseudomonas/genetics , Water Microbiology , Water Quality , Alkalies/chemistry , Biodiversity , Entomophthorales/growth & development , Entomophthorales/metabolism , Halogenation , High-Throughput Nucleotide Sequencing , Humans , Microbial Consortia/genetics , Nitrates/chemistry , Pseudomonas/growth & development , Pseudomonas/metabolism , Water Supply
19.
J Invertebr Pathol ; 128: 47-56, 2015 Jun.
Article En | MEDLINE | ID: mdl-25968105

Pandora formicae is an obligate entomopathogenic fungus from the phylum Entomophthoromycota, known to infect only ants from the genus Formica. In the final stages of infection, the fungus induces the so-called summit disease syndrome, manipulating the host to climb up vegetation prior to death and fixing the dead cadaver to the surface, all to increase efficient spore dispersal. To investigate this fascinating pathogen-host interaction, we constructed interaction transcriptome libraries from two final infection stages from the material sampled in the field: (1) when the cadavers were fixed, but the fungus had not grown out through the cuticle and (2) when the fungus was growing out from host cadaver and producing spores. These phases mark the switch from within-host growth to reproduction on the host surface, after fungus outgrowth through host integument. In this first de novo transcriptome of an entomophthoralean fungus, we detected expression of many pathogenicity-related genes, including secreted hydrolytic enzymes and genes related to morphological reorganization and nutrition uptake. Differences in expression of genes in these two infection phases were compared and showed a switch in enzyme expression related to either cuticle breakdown or cell proliferation and cell wall remodeling, particularly in subtilisin-like serine protease and trypsin-like protease transcripts.


Ants/parasitology , Entomophthorales/genetics , Entomophthorales/pathogenicity , Host-Pathogen Interactions/genetics , Animals , Gene Expression Profiling , Gene Expression Regulation, Fungal/physiology , Phylogeny , Polymerase Chain Reaction , Transcriptome
20.
Biomed Res Int ; 2013: 838145, 2013.
Article En | MEDLINE | ID: mdl-23862158

The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia.


Aphids/microbiology , Entomophthorales/physiology , Animals , Cell Nucleus/metabolism , DNA, Intergenic/genetics , Entomophthorales/genetics , Entomophthorales/growth & development , Entomophthorales/ultrastructure , Species Specificity , Spores, Fungal/cytology , Tunisia
...