Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.441
Filter
1.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-38980292

ABSTRACT

In the vertebrate immune system, thymus stromal microenvironments support the generation of αßT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.


Subject(s)
Epithelial Cells , Thymus Gland , Thymus Gland/cytology , Thymus Gland/immunology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Animals , Humans , Cell Differentiation , Regeneration/physiology , Thymocytes/cytology , Thymocytes/metabolism , Thymocytes/immunology
4.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975789

ABSTRACT

Lens epithelial cells (LECs) play multiple important roles in maintaining the homeostasis and normal function of the lens. LECs determine lens growth, development, size, and transparency. Conversely, dysfunctional LECs can lead to cataract formation and posterior capsule opacification (PCO). Consequently, establishing a robust primary LEC culture system is important to researchers engaged in lens development, biochemistry, cataract therapeutics, and PCO prevention. However, cultivating primary LECs has long presented challenges due to their limited availability, slow proliferation rate, and delicate nature. This study addresses these hurdles by presenting a comprehensive protocol for primary LEC culture. The protocol encompasses essential steps such as the formulation of an optimized culture medium, precise isolation of lens capsules, trypsinization techniques, subculture procedures, harvest protocols, and guidelines for storage and shipment. Throughout the culture process, cell morphology was monitored using phase-contrast microscopy. To confirm the authenticity of the cultured LECs, immunofluorescence assays were conducted to detect the presence and subcellular distribution of critical lens proteins, namely αA- and γ-crystallins. This detailed protocol equips researchers with a valuable resource for cultivating and characterizing primary LECs, enabling advancements in our comprehension of lens biology and the development of therapeutic strategies for lens-related disorders.


Subject(s)
Epithelial Cells , Lens, Crystalline , Trypsin , Epithelial Cells/cytology , Lens, Crystalline/cytology , Animals , Mice , Trypsin/chemistry , Trypsin/metabolism , Cell Culture Techniques/methods , Primary Cell Culture/methods
5.
Methods Mol Biol ; 2805: 3-18, 2024.
Article in English | MEDLINE | ID: mdl-39008171

ABSTRACT

Three-dimensional (3D) organoid cultures retain self-renewing stem cells that differentiate into multiple cell types that display spatial organization and functional key features, providing a highly physiological relevant system. Here we describe a strategy for the generation of 3D murine lung organoids derived from freshly isolated primary tracheal and distal lung epithelial stem cells. Isolated tracheas are subjected to enzymatic digestion to release the epithelial layer that is then dissociated into a single cell suspension for organoid culture. Lung epithelial cells are obtained from dissected lobes, which are applied to mechanical and enzymatic dissociation. After flow sorting, organoids are established from tracheal basal, secretory club, and alveolar type 2 cells in the defined conditioned medium that is required to sustain organoid growth and generate the differentiated cells. Multi-cell-type organoid co-culture replicates niches for distal epithelial stem cells to differentiate into bronchiolar and alveolar cell types. Established organoids can be fixed for wholemount staining and paraffin embedding, or passaged for further culture. Taken together, this protocol provides an efficient and validated approach to generate murine lung organoids, as well as a platform for further analysis.


Subject(s)
Cell Differentiation , Lung , Organoids , Animals , Organoids/cytology , Mice , Lung/cytology , Cell Culture Techniques/methods , Cell Separation/methods , Epithelial Cells/cytology , Stem Cells/cytology , Stem Cells/metabolism , Phenotype , Trachea/cytology , Coculture Techniques/methods
6.
Methods Mol Biol ; 2805: 113-124, 2024.
Article in English | MEDLINE | ID: mdl-39008177

ABSTRACT

The extracellular matrix (ECM) provides dynamic structural and molecular signals that affect the form and function of developing tissues. In order to parse how the individual features of the ECM impact cell- and tissue-level behavior during development, engineered culture models should reproduce key structural and molecular features of native ECM. Here, we describe a protocol for bioprinting epithelial cell aggregates embedded within a collagen-Matrigel ink in order to study the dynamic interplay between epithelial tissues and aligned networks of type I collagen fibers. Collagen fiber alignment and geometry can be spatially controlled by modulating the printing speed, nozzle geometry, surface chemistry, and degree of molecular crowding in the printing ink. We provide detailed procedures for generating epithelial cell aggregates, microextrusion printing collagen-Matrigel bioinks, culturing the three-dimensional (3D)-printed tissues, and imaging 3D-printed collagen-Matrigel constructs.


Subject(s)
Bioprinting , Collagen , Epithelial Cells , Extracellular Matrix , Hydrogels , Printing, Three-Dimensional , Tissue Engineering , Bioprinting/methods , Hydrogels/chemistry , Collagen/chemistry , Collagen/metabolism , Tissue Engineering/methods , Epithelial Cells/cytology , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Animals , Morphogenesis , Humans , Proteoglycans/chemistry , Proteoglycans/metabolism , Tissue Scaffolds/chemistry , Laminin/chemistry , Drug Combinations , Dogs , Epithelium/metabolism , Epithelium/growth & development
7.
Methods Mol Biol ; 2805: 19-30, 2024.
Article in English | MEDLINE | ID: mdl-39008172

ABSTRACT

Transformed lung organoids have extensive applications in lung cancer modeling and drug screening. Traditional two-dimensional (2D) cultures fail to propagate a large subpopulation of murine primary tumors in vitro. However, three-dimensional (3D) air-liquid interface (ALI) cultures, which are employed to grow normal lung organoids, can be used to efficiently culture cancerous lung tumor cells. Here, we detail a procedure for cultivating genetically modified lung organoids in 3D-ALI cultures. This protocol contains two parts. The first part describes how to transduce lung epithelial cells, which are either freshly sorted from lungs or from actively growing murine organoids, with virus in order to modify gene expression. The target lung cells are incubated with virus for 1-2 h for transduction. Then, the transduced cells are thoroughly washed and mixed with stromal support cells and Matrigel and are loaded into transwell inserts for culture and validated for genetic modifications through downstream assays. The second part describes how to isolate tumor cells growing orthotopically in genetically engineered mouse models to produce organoid cell lines that can be used for ex vivo drug discovery assays. For this protocol, tumors are isolated from lungs of mice, finely chopped and washed. Then, tumor chunks are mixed with Matrigel for 3D-ALI culture. Finally, organoids budding from tumor chunks are trypsinized and passaged to establish an organoid line. Together these two protocols provide a promising platform to study the genesis, progression, and treatment of lung cancer.


Subject(s)
Lung Neoplasms , Lung , Organoids , Organoids/cytology , Animals , Mice , Lung/cytology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Culture Techniques, Three Dimensional/methods , Humans , Cell Culture Techniques/methods , Epithelial Cells/cytology , Transduction, Genetic/methods
8.
Sci Rep ; 14(1): 15195, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956443

ABSTRACT

The intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases. The PIP-FUCCI construct allows for assigning cell cycle phase from a single image of living cells, and our PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths using our publicly available computational pipeline. Treating PIP-FUCCI IECs with oligomycin demonstrates that inhibiting mitochondrial respiration lengthens G1 phase, and PIP-H2A cells allow us to measure that oligomycin differentially lengthens S and G2/M phases across heterogeneous IECs. These platforms provide opportunities for future studies on pharmaceutical effects on the intestinal epithelium, cell cycle regulation, and more.


Subject(s)
Cell Cycle , Epithelial Cells , Intestinal Mucosa , Humans , Epithelial Cells/cytology , Epithelial Cells/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Oligomycins/pharmacology , Cells, Cultured
9.
Biomed Microdevices ; 26(3): 32, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963644

ABSTRACT

Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.


Subject(s)
Amniotic Fluid , Extraembryonic Membranes , Lab-On-A-Chip Devices , Humans , Amniotic Fluid/cytology , Extraembryonic Membranes/cytology , Extraembryonic Membranes/metabolism , Amnion/cytology , Amnion/metabolism , Cell Survival , Epithelial Cells/cytology , Epithelial Cells/metabolism , Motion , Oxidative Stress , Models, Biological , Microphysiological Systems
10.
Sensors (Basel) ; 24(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000992

ABSTRACT

Electric cell-substrate impedance sensing has been used to measure transepithelial and transendothelial impedances of cultured cell layers and extract cell parameters such as junctional resistance, cell-substrate separation, and membrane capacitance. Previously, a three-path cell-electrode model comprising two transcellular pathways and one paracellular pathway was developed for the impedance analysis of MDCK cells. By ignoring the resistances of the lateral intercellular spaces, we develop a simplified three-path model for the impedance analysis of epithelial cells and solve the model equations in a closed form. The calculated impedance values obtained from this simplified cell-electrode model at frequencies ranging from 31.25 Hz to 100 kHz agree well with the experimental data obtained from MDCK and OVCA429 cells. We also describe how the change in each model-fitting parameter influences the electrical impedance spectra of MDCK cell layers. By assuming that the junctional resistance is much smaller than the specific impedance through the lateral cell membrane, the simplified three-path model reduces to a two-path model, which can be used for the impedance analysis of endothelial cells and other disk-shaped cells with low junctional resistances. The measured impedance spectra of HUVEC and HaCaT cell monolayers nearly coincide with the impedance data calculated from the two-path model.


Subject(s)
Electric Impedance , Endothelial Cells , Epithelial Cells , Microelectrodes , Dogs , Animals , Humans , Madin Darby Canine Kidney Cells , Epithelial Cells/cytology , Epithelial Cells/physiology , Endothelial Cells/cytology , Endothelial Cells/physiology , Human Umbilical Vein Endothelial Cells , Cell Line , Models, Biological
11.
Nat Commun ; 15(1): 5898, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003323

ABSTRACT

Studying human fetal lungs can inform how developmental defects and disease states alter the function of the lungs. Here, we sequenced >150,000 single cells from 19 healthy human pseudoglandular fetal lung tissues ranging between gestational weeks 10-19. We capture dynamic developmental trajectories from progenitor cells that express abundant levels of the cystic fibrosis conductance transmembrane regulator (CFTR). These cells give rise to multiple specialized epithelial cell types. Combined with spatial transcriptomics, we show temporal regulation of key signalling pathways that may drive the temporal and spatial emergence of specialized epithelial cells including ciliated and pulmonary neuroendocrine cells. Finally, we show that human pluripotent stem cell-derived fetal lung models contain CFTR-expressing progenitor cells that capture similar lineage developmental trajectories as identified in the native tissue. Overall, this study provides a comprehensive single-cell atlas of the developing human lung, outlining the temporal and spatial complexities of cell lineage development and benchmarks fetal lung cultures from human pluripotent stem cell differentiations to similar developmental window.


Subject(s)
Cell Differentiation , Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial Cells , Fetus , Lung , Humans , Lung/embryology , Lung/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fetus/cytology , Fetus/embryology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cell Plasticity , Cell Lineage , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Single-Cell Analysis , Transcriptome , Female , Gene Expression Regulation, Developmental , Signal Transduction
12.
Cells ; 13(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38994985

ABSTRACT

The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.


Subject(s)
Drosophila melanogaster , Receptors, Notch , Animals , Drosophila melanogaster/metabolism , Receptors, Notch/metabolism , Epithelium/metabolism , Cell Polarity , Drosophila Proteins/metabolism , Sense Organs/metabolism , Sense Organs/cytology , Signal Transduction , Epithelial Cells/metabolism , Epithelial Cells/cytology
13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000215

ABSTRACT

The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.


Subject(s)
Epithelial Cells , Transcriptome , Animals , Female , Swine , Epithelial Cells/metabolism , Epithelial Cells/cytology , Gene Expression Profiling , Cells, Cultured , Oviducts/metabolism , Oviducts/cytology , Cell Culture Techniques/methods , Gene Expression Regulation , Fallopian Tubes/metabolism , Fallopian Tubes/cytology
14.
Cell ; 187(12): 2898-2900, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848672

ABSTRACT

Epithelial folding is a fundamental biological process that requires epithelial interactions with the underlying mesenchyme. In this issue of Cell, Huycke et al. investigate intestinal villus formation. They discover that water-droplet-like behavior of mesenchymal cells drives their coalescence into uniformly patterned aggregates, which generate forces on the epithelium to initiate folding.


Subject(s)
Epithelium , Mesoderm , Animals , Humans , Epithelial Cells/metabolism , Epithelial Cells/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mesoderm/metabolism , Mesoderm/cytology , Epithelium/metabolism
15.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848677

ABSTRACT

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Subject(s)
Intestinal Mucosa , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Animals , Mice , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Stem Cells/metabolism , Stem Cells/cytology , Cell Lineage , Regeneration , Cell Proliferation , Epithelial Cells/metabolism , Epithelial Cells/cytology , Mice, Inbred C57BL , Homeostasis
16.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891075

ABSTRACT

Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and ß-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.


Subject(s)
Adipocytes , Cell Transdifferentiation , Epithelial Cells , Humans , Female , Adipocytes/cytology , Adipocytes/metabolism , Epithelial Cells/metabolism , Epithelial Cells/cytology , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Organoids/cytology , Organoids/metabolism , Coculture Techniques , Mice , Models, Biological
17.
J Vis Exp ; (207)2024 May 24.
Article in English | MEDLINE | ID: mdl-38856212

ABSTRACT

Retinal pigment epithelial cells (RPE) are critical for the proper function of the retina. RPE dysfunction is involved in the pathogenesis of important retinal diseases, such as age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. We present a streamlined approach for the isolation of RPE from murine adult eyes. In contrast to previously reported methods, this approach enables the isolation and culture of highly pure RPE from adult mice. This simple and fast method does not require extensive technical skill and is achievable with basic scientific tools and reagents. Primary RPE are isolated from C57BL/6 background mice aged 3- to 14-weeks by enucleation of the eye followed by the removal of the anterior segment. Enzymatic trypsinization and centrifugation are used to dissociate and isolate the RPE from the eyecup. In conclusion, this approach offers a quick and effective protocol for the utilization of RPE in the study of retinal function and disease.


Subject(s)
Mice, Inbred C57BL , Retinal Pigment Epithelium , Animals , Mice , Retinal Pigment Epithelium/cytology , Cytological Techniques/methods , Cell Culture Techniques/methods , Epithelial Cells/cytology
18.
Bull Math Biol ; 86(8): 95, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896328

ABSTRACT

Epithelial monolayers are some of the best-studied models for collective cell migration due to their abundance in multicellular systems and their tractability. Experimentally, the collective migration of epithelial monolayers can be robustly steered e.g. using electric fields, via a process termed electrotaxis. Theoretically, however, the question of how to design an electric field to achieve a desired spatiotemporal movement pattern is underexplored. In this work, we construct and calibrate an ordinary differential equation model to predict the average velocity of the centre of mass of a cellular monolayer in response to stimulation with an electric field. We use this model, in conjunction with optimal control theory, to derive physically realistic optimal electric field designs to achieve a variety of aims, including maximising the total distance travelled by the monolayer, maximising the monolayer velocity, and keeping the monolayer velocity constant during stimulation. Together, this work is the first to present a unified framework for optimal control of collective monolayer electrotaxis and provides a blueprint to optimally steer collective migration using other external cues.


Subject(s)
Cell Movement , Epithelial Cells , Mathematical Concepts , Models, Biological , Epithelial Cells/physiology , Epithelial Cells/cytology , Cell Movement/physiology , Animals , Computer Simulation , Taxis Response/physiology , Dogs , Humans , Madin Darby Canine Kidney Cells
19.
PLoS Biol ; 22(6): e3002662, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870210

ABSTRACT

The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.


Subject(s)
Epidermis , Larva , Morphogenesis , Animals , Epidermis/metabolism , Larva/growth & development , Drosophila melanogaster/growth & development , Epidermal Cells , Epithelial Cells/cytology , Epithelial Cells/physiology , Epithelial Cells/metabolism , Biomechanical Phenomena , Adherens Junctions/metabolism , Cell Shape , Computer Simulation , Drosophila/growth & development , Models, Biological
20.
Methods Mol Biol ; 2813: 137-144, 2024.
Article in English | MEDLINE | ID: mdl-38888776

ABSTRACT

Air-liquid interface (ALI) airway culture models serve as a powerful tool to emulate the characteristic features of the respiratory tract in vitro. These models are particularly valuable for studying emerging respiratory viral and bacterial infections. Here, we describe an optimized protocol to obtain the ALI airway culture models using normal human bronchial epithelial cells (NHBECs). The protocol outlined below enables the generation of differentiated mucociliary airway epithelial cultures by day 28 following exposure to air.


Subject(s)
Cell Culture Techniques , Epithelial Cells , Humans , Cell Culture Techniques/methods , Epithelial Cells/microbiology , Epithelial Cells/virology , Epithelial Cells/cytology , Bronchi/cytology , Respiratory Mucosa/cytology , Respiratory Mucosa/microbiology , Respiratory Mucosa/virology , Air , Cells, Cultured , Communicable Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...