Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.905
Filter
1.
Exp Eye Res ; 246: 110022, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39117134

ABSTRACT

The corneal epithelium is located on the most anterior surface of the eyeball and protects against external stimuli. The development of the corneal epithelium and the maintenance of corneal homeostasis are essential for the maintenance of visual acuity. It has been discovered recently via the in-depth investigation of ocular surface illnesses that the Wnt/ß-catenin signaling pathway is necessary for the growth and stratification of corneal epithelial cells as well as the control of endothelial cell stability. In addition, the Wnt/ß-catenin signaling pathway is directly linked to the development of common corneal illnesses such as keratoconus, fungal keratitis, and corneal neovascularization. This review mainly summarizes the role of the Wnt/ß-catenin signaling pathway in the development, homeostasis, and pathobiology of cornea, hoping to provide new insights into the study of corneal epithelium and the treatment of related diseases.


Subject(s)
Epithelium, Corneal , Homeostasis , Wnt Signaling Pathway , Epithelium, Corneal/metabolism , Humans , Homeostasis/physiology , Wnt Signaling Pathway/physiology , Animals , beta Catenin/metabolism , Corneal Diseases/metabolism , Corneal Diseases/pathology
2.
Transl Vis Sci Technol ; 13(7): 16, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39042048

ABSTRACT

Purpose: The purpose of this study was to investigate the ocular morphological characteristics of Col4a3-/- mice as a model of Alport syndrome (AS) and the potential pathogenesis. Methods: The expression of collagen IV at 8, 12, and 21 weeks of age was evaluated by immunohistochemistry in wild-type (WT) and Col4a3-/- mice. Hematoxylin and eosin (H&E) staining and thickness measurements were performed to assess the thickness of anterior lens capsule and retina. Ultrastructure analysis of corneal epithelial basement membrane, anterior lens capsule, internal limiting membrane (ILM), and retinal pigment epithelium (RPE) basement membrane was performed using transmission electron microscopy. Finally, Müller cell activation was evaluated by glial fibrillary acidic protein (GFAP) expression. Results: Collagen IV was downregulated in the corneal epithelial basement membrane and ILM of Col4a3-/- mice. The hemidesmosomes of Col4a3-/- mice corneal epithelium became flat and less electron-dense than those of the WT group. Compared with those of the WT mice, the anterior lens capsules of Col4a3-/- mice were thinner. Abnormal structure was detected at the ILM Col4a3-/- mice, and the basal folds of the RPE basement membrane in Col4a3-/- mice were thicker and shorter. The retinas of Col4a3-/- mice were thinner than those of WT mice, especially within 1000 µm away from the optic nerve. GFAP expression enhanced in each age group of Col4a3-/- mice. Conclusions: Our results suggested that Col4a3-/- mice exhibit ocular anomalies similar to patients with AS. Additionally, Müller cells may be involved in AS retinal anomalies. Translational Relevance: This animal model could provide an opportunity to understand the underlying mechanisms of AS ocular disorders and to investigate potential new treatments.


Subject(s)
Basement Membrane , Collagen Type IV , Disease Models, Animal , Mice, Knockout , Nephritis, Hereditary , Animals , Nephritis, Hereditary/pathology , Nephritis, Hereditary/genetics , Nephritis, Hereditary/metabolism , Collagen Type IV/genetics , Collagen Type IV/metabolism , Collagen Type IV/deficiency , Mice , Basement Membrane/metabolism , Basement Membrane/pathology , Basement Membrane/ultrastructure , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/ultrastructure , Microscopy, Electron, Transmission , Mice, Inbred C57BL , Lens Capsule, Crystalline/metabolism , Lens Capsule, Crystalline/pathology , Lens Capsule, Crystalline/ultrastructure , Epithelium, Corneal/pathology , Epithelium, Corneal/ultrastructure , Epithelium, Corneal/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Retina/pathology , Retina/metabolism , Retina/ultrastructure , Autoantigens/genetics , Autoantigens/metabolism , Ependymoglial Cells/pathology , Ependymoglial Cells/metabolism , Ependymoglial Cells/ultrastructure , Immunohistochemistry , Male
3.
Sci Rep ; 14(1): 17407, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075142

ABSTRACT

Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.


Subject(s)
Amnion , Epithelium, Corneal , Mesenchymal Stem Cells , Tissue Engineering , Amnion/cytology , Tissue Engineering/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Epithelium, Corneal/cytology , Epithelium, Corneal/metabolism , Animals , Rabbits , Humans , Cells, Cultured , Limbus Corneae/cytology , Limbus Corneae/metabolism , Cell Differentiation
4.
Invest Ophthalmol Vis Sci ; 65(8): 25, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39017635

ABSTRACT

Purpose: Abnormalities in aquaporins are implicated in the pathological progression of dry eye syndrome. Retinoic acid (RA) regulates cellular proliferation, differentiation, and apoptosis in the cornea, thereby being associated with dry eye disease (DED). The objective of this study is to explore the underlying mechanisms responsible for RA metabolic abnormalities in corneas lacking aquaporin 5 (AQP5). Methods: Dry eye (DE) models were induced via subcutaneous scopolamine hydrobromide. Aqp5 knockout (Aqp5-/-) mice and DE mice were utilized to assess corneal epithelial alterations. Tear secretion, goblet cell counts, and corneal punctate defects were evaluated. The impact of Aqp5 on RA-related enzymes and receptors was investigated using pharmacological RA or SR (A JunB inhibitor), a transcription factor JunB inhibitor, treatment in mouse corneal epithelial cells (CECs), or human corneal epithelial cells (HCECs). The HCECs and NaCl-treated HCECs underwent quantitative real-time PCR (qRT-PCR), immunofluorescent, Western blot, and TUNEL assays. The regulation of transcription factor JunB on Aldh1a1 was explored via ChIP-PCR. Results: Aqp5 and Aldh1a1 were reduced in both CECs of DE mice and NaCl-induced HCECs. Aqp5-/- mice exhibited DE phenotype and reduced Aldh1a1. RA treatment reduced apoptosis, promoted proliferation, and improved the DE phenotype in Aqp5-/- mice. JunB enrichment in the Aldh1a1 promoter was identified by ChIP-PCR. SR significantly increased Aldh1a1 expression, Ki67, and ΔNp63-positive cells, and decreased TUNEL-positive cells in CECs and HCECs. Conclusions: Our findings demonstrated the downregulation of Aqp5 expression and aberrant RA metabolism in DE conditions. Knockout of Aqp5 resulted in reduced production of RA through activation of JunB, subsequently leading to the manifestation of DE symptoms.


Subject(s)
Apoptosis , Aquaporin 5 , Disease Models, Animal , Dry Eye Syndromes , Mice, Knockout , Tretinoin , Animals , Aquaporin 5/genetics , Aquaporin 5/biosynthesis , Aquaporin 5/metabolism , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/pathology , Dry Eye Syndromes/genetics , Mice , Tretinoin/pharmacology , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Real-Time Polymerase Chain Reaction , Mice, Inbred C57BL , Blotting, Western , Humans , Cells, Cultured , Tears/metabolism , In Situ Nick-End Labeling , Gene Expression Regulation , Cell Proliferation
5.
Stem Cell Res Ther ; 15(1): 201, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971839

ABSTRACT

BACKGROUND: Dysfunction or deficiency of corneal epithelium results in vision impairment or blindness in severe cases. The rapid and effective regeneration of corneal epithelial cells relies on the limbal stem cells (LSCs). However, the molecular and functional responses of LSCs and their niche cells to injury remain elusive. METHODS: Single-cell RNA sequencing was performed on corneal tissues from normal mice and corneal epithelium defect models. Bioinformatics analysis was performed to confirm the distinct characteristics and cell fates of LSCs. Knockdown of Creb5 and OSM treatment experiment were performed to determine their roles of in corneal epithelial wound healing. RESULTS: Our data defined the molecular signatures of LSCs and reconstructed the pseudotime trajectory of corneal epithelial cells. Gene network analyses characterized transcriptional landmarks that potentially regulate LSC dynamics, and identified a transcription factor Creb5, that was expressed in LSCs and significantly upregulated after injury. Loss-of-function experiments revealed that silencing Creb5 delayed the corneal epithelial healing and LSC mobilization. Through cell-cell communication analysis, we identified 609 candidate regeneration-associated ligand-receptor interaction pairs between LSCs and distinct niche cells, and discovered a unique subset of Arg1+ macrophages infiltrated after injury, which were present as the source of Oncostatin M (OSM), an IL-6 family cytokine, that were demonstrated to effectively accelerate the corneal epithelial wound healing. CONCLUSIONS: This research provides a valuable single-cell resource and reference for the discovery of mechanisms and potential clinical interventions aimed at ocular surface reconstruction.


Subject(s)
Cell Plasticity , Limbal Stem Cells , Limbus Corneae , Wound Healing , Animals , Mice , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Epithelium, Corneal/injuries , Limbal Stem Cells/cytology , Limbal Stem Cells/metabolism , Limbus Corneae/metabolism , Limbus Corneae/cytology , Limbus Corneae/pathology , Mice, Inbred C57BL , Stem Cell Niche , Wound Healing/genetics
6.
Tissue Cell ; 89: 102465, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39024865

ABSTRACT

Dry eye is a prevalent ophthalmic disease. Ocular surface inflammation in the hyperosmolar environment of the tear film is critical in dry eye progression. Quercetin has strong anti-inflammatory effects; however, its exact mechanism of action in dry eye is not fully understood. Therefore, this study investigated whether quercetin could inhibit the damage sustained to human corneal epithelial cells (HCECs) in a hyperosmolar environment through its anti-inflammatory effects. HCECs were cultured in a complete medium and were divided into four groups: normal, model, quercetin, and inhibitor. The proliferation of HCECs was detected by Ki67 staining; the expression levels of PTEN, p-PI3K and p-AKT were detected by Western blotting and immunofluorescence staining; the relative mRNA expression levels of PTEN, PI3K, AKT, IL-6 and TNF-ɑ were detected by quantitative real-time PCR; the relative expression levels of IL-6 and TNF-α were detected by enzyme-linked immunosorbent assay. In this study, the proliferation of HCECs in the model group was found to be significantly inhibited compared with that in the normal group; however, quercetin was effective in improving the proliferation of HCECs, decreasing the relative expression of p-PI3K, p-AKT, IL-6, TNF-ɑ as well as increasing PTEN. In conclusion, this study demonstrated that quercetin could promote the proliferation of HCECs and reduce the expression of inflammatory factors by inhibiting the PTEN/PI3K/AKT pathway in the hyperosmolarity-induced HCECs model.


Subject(s)
Epithelium, Corneal , Inflammation , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Signal Transduction , Humans , Quercetin/pharmacology , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Inflammation/pathology , Inflammation/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Cell Proliferation/drug effects
7.
Invest Ophthalmol Vis Sci ; 65(6): 39, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38935032

ABSTRACT

Purpose: This study aimed to explore protective effects and potential mechanism of ectoine, a natural osmoprotectant, on ocular surface mucin production in dry eye disease. Methods: A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated (UT) mice as controls. DS mice were topically treated with 2.0% ectoine or PBS vehicle. Corneal epithelial defects were assessed by Oregon Green Dextran (OGD) fluorescent staining. Conjunctival goblet cells, ocular mucins, and T help (Th) cytokines were evaluated by immunofluorescent staining or ELISA, and RT-qPCR. Results: Compared with UT mice, corneal epithelial defects were detected as strong punctate OGD fluorescent staining in DS mice with vehicle, whereas ectoine treatment largely reduced OGD staining to near-normal levels. Conjunctival goblet cell density and cell size decreased markedly in DS mice, but was significantly recovered by ectoine treatment. The protein production and mRNA expression of two gel-forming secreted MUC5AC and MUC2, and 4 transmembrane mucins, MUC1, MUC4, MUC16, and MUC15, largely decreased in DS mice, but was restored by ectoine. Furthermore, Th2 cytokine IL-13 was inhibited, whereas Th1 cytokine IFN-γ was stimulated at protein and mRNA levels in conjunctiva and draining cervical lymph nodes (CLNs) of DS mice, leading to decreased IL-13/IFN-γ ratio. Interestingly, 2.0% ectoine reversed their alternations and restored IL-13/IFN-γ balance. Conclusions: Our findings demonstrate that topical ectoine significantly reduces corneal damage, and enhances goblet cell density and mucin production through restoring imbalanced IL-13/IFN-γ signaling in murine dry eye model. This suggests therapeutic potential of natural osmoprotectant ectoine for dry eye disease.


Subject(s)
Disease Models, Animal , Dry Eye Syndromes , Goblet Cells , Interferon-gamma , Interleukin-13 , Mice, Inbred C57BL , Mucins , Animals , Dry Eye Syndromes/metabolism , Dry Eye Syndromes/drug therapy , Mice , Goblet Cells/metabolism , Goblet Cells/drug effects , Goblet Cells/pathology , Interferon-gamma/metabolism , Mucins/metabolism , Mucins/biosynthesis , Mucins/genetics , Interleukin-13/metabolism , Conjunctiva/metabolism , Conjunctiva/drug effects , Conjunctiva/pathology , Enzyme-Linked Immunosorbent Assay , Female , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Amino Acids, Diamino
8.
Adv Mater ; 36(33): e2403935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889294

ABSTRACT

Tissue-specific delivery of oligonucleotide therapeutics beyond the liver remains a key challenge in nucleic acid drug development. To address this issue, exploiting exosomes as a novel carrier has emerged as a promising approach for efficient nucleic acid drug delivery. However, current exosome-based delivery systems still face multiple hurdles in their clinical applications. Herein, this work presents a strategy for constructing a hybrid exosome vehicle (HEV) through a DNA zipper-mediated membrane fusion approach for tissue-specific siRNA delivery. As a proof-of-concept, this work successfully fuses a liposome encapsulating anti-NFKBIZ siRNAs with corneal epithelium cell (CEC)-derived exosomes to form a HEV construct for the treatment of dry eye disease (DED). With homing characteristics inherited from exosomes, the siRNA-bearing HEV can target its parent cells and efficiently deliver the siRNA payloads to the cornea. Subsequently, the NFKBIZ gene silencing significantly reduces pro-inflammatory cytokine secretions from the ocular surface, reshapes its inflammatory microenvironment, and ultimately achieves an excellent therapeutic outcome in a DED mouse model. As a versatile platform, this hybrid exosome with targeting capability and designed therapeutic siRNAs may hold great potential in various disease treatments.


Subject(s)
Exosomes , Liposomes , Membrane Fusion , RNA, Small Interfering , Exosomes/metabolism , Exosomes/chemistry , RNA, Small Interfering/metabolism , Animals , Mice , Liposomes/chemistry , Dry Eye Syndromes/therapy , Humans , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Gene Silencing , Cornea/metabolism
9.
Exp Eye Res ; 245: 109955, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843984

ABSTRACT

Chronic inflammation is one of the central drivers in the development of dry eye disease (DED), in which pyroptosis induced by the NLRP3/caspase-1/gasdermin D (GSDMD) pathway plays a key role. This pathway has become a major target for the treatment of a variety of inflammatory disorders. Oridonin (Ori) is a naturally occurring substance with anti-inflammatory properties obtained from Rabdosia rubescens. Whether Ori can exert an anti-inflammatory effect on DED, and its anti-inflammatory mechanism of action, are still unknown. This experiment is intended to investigate the impact of Ori on the hyperosmolarity-induced NLRP3/caspase-1/GSDMD pyroptosis pathway in immortalized human corneal epithelial (HCE-T) cells, as well as its efficacy and mechanism of action on ocular surface injury in DED mice. Our study showed that Ori could inhibit hyperosmotic-induced pyroptosis through the NLRP3/caspase-1/GSDMD pathway in HCE-T cells, and similarly, Ori inhibited the expression of this pathway in DED mice. Moreover, Ori was protective against hyperosmolarity-induced HCE-T cell damage. In addition, we found that the morphology and number of HCE-T cells were altered under culture conditions of various osmolarities. With increasing osmolarity, the proliferation, migration, and healing ability of HCE-T cells decreased significantly, and the expression of N-GSDMD was elevated. In a mouse model of DED, Ori application inhibited the expression of the NLRP3/caspase-1/GSDMD pyroptosis pathway, improved DED signs and injury, decreased corneal sodium fluorescein staining scores, and increased tear volume. Thus, our study suggests that Ori has potential applications for the treatment of DED, provides potential novel therapeutic approaches to treat DED, and provides a theoretical foundation for treating DED using Ori.


Subject(s)
Caspase 1 , Disease Models, Animal , Diterpenes, Kaurane , Dry Eye Syndromes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pyroptosis , Pyroptosis/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , Mice , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/metabolism , Caspase 1/metabolism , Humans , Diterpenes, Kaurane/pharmacology , Phosphate-Binding Proteins/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Tears/metabolism , Cells, Cultured , Blotting, Western , Gasdermins
10.
Genes (Basel) ; 15(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927751

ABSTRACT

The identification of new biomarkers of ocular diseases is nowadays of outmost importance both for early diagnosis and treatment. Epigenetics is a rapidly growing emerging area of research and its involvement in the pathophysiology of ocular disease and regulatory mechanisms is of undisputable importance for diagnostic purposes. Environmental changes may impact the ocular surface, and the knowledge of induced epigenetic changes might help to elucidate the mechanisms of ocular surface disorders. In this pilot study, we investigated the impact of extensive contact lens (CL) wearing on human corneal epithelium epigenetics. We performed ex vivo analysis of the expression of the miR-320 and miR-423-5p involved in the processes of cellular apoptosis and chronic inflammation. The human corneal epithelium was harvested from healthy patients before the photorefractive keratectomy (PRK). The patients were divided into two age- and sex-matched groups accordingly to CL wearing history with no CL wearers used as a control. The epithelium was stored frozen in dry ice at -80 °C and forwarded for miRNA extraction; afterwards, miRNA levels were detected using real-time PCR. Both miRNAs were highly expressed in CL wearers (p < 0.001), suggesting epigenetic modifications occurring in chronic ocular surface stress. These preliminary results show the relationships between selected miRNA expression and the chronic ocular surface stress associated with extensive CL use. MicroRNAs might be considered as biomarkers for the diagnosis of ocular surface conditions and the impact of environmental factors on ocular surface epigenetic. Furthermore, they might be considered as new therapeutic targets in ocular surface diseases.


Subject(s)
Biomarkers , Contact Lenses , Epithelium, Corneal , MicroRNAs , Humans , MicroRNAs/genetics , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Female , Male , Adult , Biomarkers/metabolism , Pilot Projects , Epigenesis, Genetic , Gene Expression Regulation
11.
Invest Ophthalmol Vis Sci ; 65(6): 2, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829670

ABSTRACT

Purpose: The purpose of this study was to investigate the involvement of the TLR4/NF-κB/NLRP3 signaling pathway and its underlying mechanism in diabetic dry eye. Methods: Two models of diabetic dry eye were established in high glucose-induced human corneal epithelial (HCE-T) cells and streptozotocin (STZ)-induced C57BL/6 mice, and the TLR4 inhibitor fosfenopril (FOS) was utilized to suppress the TLR4/NF-κB/NLRP3 signaling pathway. The expression changes in TLR4, NF-κB, NLRP3, and IL-1ß, and other factors were detected by Western blot and RT‒qPCR, the wound healing rate was evaluated by cell scratch assay, and the symptoms of diabetic mice were evaluated by corneal sodium fluorescein staining and tear secretion assay. Results: In the diabetic dry eye model, the transcript levels of TLR4, NF-κB, NLRP3, and IL-1ß were raised, and further application of FOS, a TLR4 inhibitor, downregulated the levels of these pathway factors. In addition, FOS was found to be effective in increasing the wound healing rate of high glucose-induced HCE-T cells, increasing tear production, and decreasing corneal fluorescence staining scores in diabetic mice, as measured by cell scratch assay, corneal sodium fluorescein staining assay, and tear production. Conclusions: The current study found that the TLR4/NF-κB/NLRP3 signaling pathway regulates diabetic dry eye in an in vitro and in vivo model, and that FOS reduces the signs of dry eye in diabetic mice, providing a new treatment option for diabetic dry eye.


Subject(s)
Diabetes Mellitus, Experimental , Dry Eye Syndromes , Mice, Inbred C57BL , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , Toll-Like Receptor 4 , Animals , Humans , Male , Mice , Blotting, Western , Cells, Cultured , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Real-Time Polymerase Chain Reaction , Tears/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/antagonists & inhibitors
12.
Invest Ophthalmol Vis Sci ; 65(6): 29, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38888282

ABSTRACT

Purpose: Ubiquitination serves as a fundamental post-translational modification in numerous cellular events. Yet, its role in regulating corneal epithelial wound healing (CEWH) remains elusive. This study endeavored to determine the function and mechanism of ubiquitination in CEWH. Methods: Western blot and immunoprecipitation were used to discern ubiquitination alterations during CEWH in mice. Interventions, including neuronally expressed developmentally downregulated 4 (Nedd4) siRNA and proteasome/lysosome inhibitor, assessed their impact on CEWH. In vitro analyses, such as the scratch wound assay, MTS assay, and EdU staining, were conducted to gauge cell migration and proliferation in human corneal epithelial cells (HCECs). Moreover, transfection of miR-30/200 coupled with a luciferase activity assay ascertained their regulatory mechanism on Nedd4. Results: Global ubiquitination levels were markedly increased during the mouse CEWH. Importantly, the application of either proteasomal or lysosomal inhibitors notably impeded the healing process both in vivo and in vitro. Furthermore, Nedd4 was identified as an essential E3 ligase for CEWH. Nedd4 expression was significantly upregulated during CEWH. In vivo studies revealed that downregulation of Nedd4 substantially delayed CEWH, whereas further investigations underscored its role in regulating cell proliferation and migration, through the Stat3 pathway by targeting phosphatase and tensin homolog (PTEN). Notably, our findings pinpointed miR-30/200 family members as direct regulators of Nedd4. Conclusions: Ubiquitination holds pivotal significance in orchestrating CEWH. The critical E3 ligase Nedd4, under the regulatory purview of miR-30 and miR-200, facilitates CEWH through PTEN-mediated Stat3 signaling. This revelation sheds light on a prospective therapeutic target within the realm of CEWH.


Subject(s)
Cell Movement , Cell Proliferation , Epithelium, Corneal , Nedd4 Ubiquitin Protein Ligases , PTEN Phosphohydrolase , Ubiquitin-Protein Ligases , Ubiquitination , Wound Healing , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Animals , Mice , Cell Movement/physiology , Cell Proliferation/physiology , Wound Healing/physiology , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Epithelium, Corneal/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Humans , Mice, Inbred C57BL , Endosomal Sorting Complexes Required for Transport/metabolism , Blotting, Western , STAT3 Transcription Factor/metabolism , Cells, Cultured , Disease Models, Animal , MicroRNAs/genetics , Immunoprecipitation , Male , Gene Expression Regulation/physiology
13.
J Transl Med ; 22(1): 458, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750454

ABSTRACT

BACKGROUND: Corneal injuries, often leading to severe vision loss or blindness, have traditionally been treated with the belief that limbal stem cells (LSCs) are essential for repair and homeostasis, while central corneal epithelial cells (CCECs) were thought incapable of such repair. However, our research reveals that CCECs can fully heal and maintain the homeostasis of injured corneas in rats, even without LSCs. We discovered that CXCL14, under PAX6's influence, significantly boosts the stemness, proliferation, and migration of CCECs, facilitating corneal wound healing and homeostasis. This finding introduces CXCL14 as a promising new drug target for corneal injury treatment. METHODS: To investigate the PAX6/CXCL14 regulatory axis's role in CCECs wound healing, we cultured human corneal epithelial cell lines with either increased or decreased expression of PAX6 and CXCL14 using adenovirus transfection in vitro. Techniques such as coimmunoprecipitation, chromatin immunoprecipitation, immunofluorescence staining, western blot, real-time PCR, cell colony formation, and cell cycle analysis were employed to validate the axis's function. In vivo, a rat corneal epithelial injury model was developed to further confirm the PAX6/CXCL14 axis's mechanism in repairing corneal damage and maintaining corneal homeostasis, as well as to assess the potential of CXCL14 protein as a therapeutic agent for corneal injuries. RESULTS: Our study reveals that CCECs naturally express high levels of CXCL14, which is significantly upregulated by PAX6 following corneal damage. We identified SDC1 as CXCL14's receptor, whose engagement activates the NF-κB pathway to stimulate corneal repair by enhancing the stemness, proliferative, and migratory capacities of CCECs. Moreover, our research underscores CXCL14's therapeutic promise for corneal injuries, showing that recombinant CXCL14 effectively accelerates corneal healing in rat models. CONCLUSION: CCECs play a critical and independent role in the repair of corneal injuries and the maintenance of corneal homeostasis, distinct from that of LSCs. The PAX6/CXCL14 regulatory axis is pivotal in this process. Additionally, our research demonstrates that the important function of CXCL14 in corneal repair endows it with the potential to be developed into a novel therapeutic agent for treating corneal injuries.


Subject(s)
Cell Proliferation , Chemokines, CXC , Corneal Injuries , Epithelium, Corneal , PAX6 Transcription Factor , Wound Healing , Animals , Humans , Male , Rats , Cell Line , Cell Movement , Chemokines, CXC/metabolism , Chemokines, CXC/genetics , Corneal Injuries/metabolism , Corneal Injuries/pathology , Epithelial Cells/metabolism , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Rats, Sprague-Dawley
14.
Curr Eye Res ; 49(9): 930-941, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38767463

ABSTRACT

PURPOSE: This research was designed to elucidate the anti-inflammatory impacts of liquiritin on lipopolysaccharide (LPS)-activated human corneal epithelial cells (HCECs). METHODS: The Cell Counting kit-8 (CCK-8) assay was adopted to assess cell viability. The enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion levels of the proinflammatory cytokines IL-6, IL-8, and TNF-α. Transcriptome analysis was conducted to identify the genes that exhibited differential expression between different treatment. The model group included cells treated with LPS (10 µg/mL), the treatment group comprised cells treated with liquiritin (80 µM) and LPS (10 µg/mL), and the control group consisted of untreated cells. To further validate the expression levels of the selected genes, including CSF2, CXCL1, CXCL2, CXCL8, IL1A, IL1B, IL24, IL6, and LTB, quantitative real-time PCR was performed. The expression of proteins related to the Akt/NF-κB signaling pathway was assessed through western blot analysis. NF-κB nuclear translocation was evaluated through immunofluorescence staining. RESULTS: The secretion of IL-6, IL-8, and TNF-α in LPS-induced HCECs was significantly downregulated by liquiritin. Based on the transcriptome analysis, the mRNA expression of pro-inflammatory cytokines, namely IL-6, IL-8, IL-1ß, IL-24, TNF-α, and IL-1α was overproduced by LPS stimulation, and suppressed after liquiritin treatment. Furthermore, the Western blot results revealed a remarkable reduction in the phosphorylation degrees of NF-κB p65, IκB, and Akt upon treatment with liquiritin. Additionally, immunofluorescence analysis confirmed liquiritin's inhibition of LPS-induced p65 nuclear translocation. CONCLUSIONS: Collectively, these findings imply that liquiritin suppresses the expression of proinflammatory cytokines, and the anti-inflammatory impacts of liquiritin may be caused by its repression of the Akt/NF-κB signaling pathway in LPS-induced HCECs. These data indicate that liquiritin could provide a potential therapeutic application for inflammation-associated corneal diseases.


Subject(s)
Cell Survival , Cytokines , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal , Flavanones , Glucosides , Lipopolysaccharides , Humans , Lipopolysaccharides/toxicity , Flavanones/pharmacology , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/pathology , Glucosides/pharmacology , Cytokines/metabolism , Cell Survival/drug effects , Cells, Cultured , Real-Time Polymerase Chain Reaction , Blotting, Western , Signal Transduction , Inflammation/metabolism , NF-kappa B/metabolism , Gene Expression Regulation
15.
Exp Eye Res ; 244: 109948, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815790

ABSTRACT

Severe corneal injury can lead to blindness even after prompt treatment. 14-3-3zeta, a member of an adaptor protein family, contributes to tissue repair by enhancing cellular viability and inhibiting fibrosis and inflammation in renal disease or arthritis. However, its role in corneal regeneration is less studied. In this study, filter disc of 2-mm diameter soaked in sodium hydroxide with a concentration of 0.5 N was placed at the center of the cornea for 30 s to establish a mouse model of corneal alkali injury. We found that 14-3-3zeta, which is mainly expressed in the epithelial layer, was upregulated following injury. Overexpression of 14-3-3zeta in ocular tissues via adeno-associated virus-mediated subconjunctival delivery promoted corneal wound healing, showing improved corneal structure and transparency. In vitro studies on human corneal epithelial cells showed that 14-3-3zeta was critical for cell proliferation and migration. mRNA-sequencing in conjunction with KEGG analysis and validation experiments revealed that 14-3-3zeta regulated the mRNA levels of ITGB1, PIK3R1, FGF5, PRKAA1 and the phosphorylation level of Akt, suggesting the involvement of the PI3K-Akt pathway in 14-3-3zeta-mediated tissue repair. 14-3-3zeta is a potential novel therapeutic candidate for treating severe corneal injury.


Subject(s)
14-3-3 Proteins , Burns, Chemical , Corneal Injuries , Wound Healing , Animals , Humans , Male , Mice , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/biosynthesis , Blotting, Western , Burns, Chemical/metabolism , Burns, Chemical/pathology , Burns, Chemical/drug therapy , Cell Movement , Cell Proliferation , Cells, Cultured , Corneal Injuries/metabolism , Corneal Injuries/pathology , Corneal Injuries/genetics , Disease Models, Animal , Epithelium, Corneal/metabolism , Epithelium, Corneal/drug effects , Epithelium, Corneal/injuries , Eye Burns/chemically induced , Gene Expression Regulation , Homeostasis , Mice, Inbred C57BL , Sodium Hydroxide , Wound Healing/drug effects , Wound Healing/physiology
16.
Mol Pharm ; 21(7): 3204-3217, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38809137

ABSTRACT

The transcorneal route is the main entry route for drugs to the intraocular parts, after topical administration. The outer surface, the corneal epithelium (CE), forms the rate-limiting barrier for drug permeability. Information about the role and protein expression of drug and amino acid transporter proteins in the CE is sparse and lacking. The aim of our study was to characterize transporter protein expression in rabbit and porcine CE to better understand potential drug and nutrient absorption after topical administration. Proteins, mainly Abc and Slc transporters, were characterized with quantitative targeted absolute proteomics and global untargeted proteomics methods. In the rabbit CE, 24 of 48 proteins were detected in the targeted approach, and 21 of these were quantified. In the porcine CE, 26 of 58 proteins were detected in the targeted approach, and 20 of these were quantified. Among these, 15 proteins were quantified in both animals: 4f2hc (Slc3a2), Aqp0, Asct1 (Slc1a4), Asct2 (Slc1a5), Glut1 (Slc2a1), Hmit (Slc2a13), Insr, Lat1 (Slc7a5), Mct1 (Slc16a1), Mct2 (Slc16a7), Mct4 (Slc16a3), Mrp 4 (Abcc4), Na+/K+-ATPase, Oatp3a1 (Slco3a1), and Snat2 (Slc38a2). Overall, the global proteomics results supported the targeted proteomics results. Organic anion transporting polypeptide Oatp3a1 was detected and quantified for the first time in both rabbit (1.4 ± 0.4 fmol/cm2) and porcine (11.1 ± 5.3 fmol/cm2) CE. High expression levels were observed for L-type amino acid transporter, Lat1, which was quantified with newly selected extracellular domain peptides in rabbit (48.9 ± 11.8 fmol/cm2) and porcine (37.6 ± 11.5 fmol/cm2) CE. The knowledge of transporter protein expression in ocular barriers is a key factor in the successful design of new ocular drugs, pharmacokinetic modeling, understanding ocular diseases, and the translation to human.


Subject(s)
Epithelium, Corneal , Proteomics , Animals , Rabbits , Swine , Epithelium, Corneal/metabolism , Proteomics/methods , Biological Transport , Membrane Transport Proteins/metabolism , Administration, Ophthalmic
17.
Hum Cell ; 37(4): 1091-1106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782857

ABSTRACT

Severe corneal cryoinjury can cause permanent corneal swelling and bullous keratopathy, one of the main reason for loss of sight. Mouse amniotic fluid mesenchymal stem cells (mAF-MSCs) can repair corneal damage caused by freezing; however, whether the exosomes derived from mAF-MSCs have the same repair effect is unknown. In this study, the mAF-MSC-exosomes were transplanted into the eyeballs of corneal cryoinjured mice. Histopathological examination showed that the mAF-MSC-exosomes improved the corneal structure and status of corneal epithelial cells in corneal cryoinjured mice. RRBS-sequencing showed that compared with the control group, four genes (Rpl13-ps6, miR-33, Hymai, and Plagl1), underwent DNA hypermethylation modification after mAF-MSC-exosomes treatment. The result of FISH indicated that miR-33-3p hybridization signals were enhanced in corneal epithelial cells from mice treated with mAF-MSC-exosomes. Semi-quantitative PCR and western blotting indicated that mAF-MSC-exosomes contained high levels of DNMT1 mRNA and protein. Additionally, luciferase report assays indicated that miR-33-3p overexpression in NIH-3T3 mouse embryonic fibroblast cells inhibited the activity of luciferase carrying a sequence from the 3' untranslated region of Bcl6. Moreover, BCL6 mRNA and protein levels in corneal tissues from mice treated with mAF-MSC-exosomes were higher than those in the control group. Therefore, our results suggested that mAF-MSC-exosomes could repair corneal cryoinjury by releasing DNMT1, which induced hypermethylation of the miR-33 promoter in corneal epithelial cells. Consequent downregulated miR-33 transcription upregulated Bcl6 expression, ultimately achieving the repair of corneal cryoinjury in mice.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Epithelium, Corneal , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Animals , Mice , Corneal Injuries/genetics , Corneal Injuries/etiology , Corneal Injuries/therapy , Corneal Injuries/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation/genetics , Epithelial Cells/metabolism , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , Exosomes/genetics , Exosomes/metabolism , Freezing , Gene Expression/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NIH 3T3 Cells , Promoter Regions, Genetic/genetics
18.
Biol Pharm Bull ; 47(5): 1033-1042, 2024.
Article in English | MEDLINE | ID: mdl-38797668

ABSTRACT

Eye drops, including solutions and suspensions, are essential dosage forms to treat ophthalmic diseases, with poorly water-soluble drugs typically formulated as ophthalmic suspensions. In addition to low bioavailability, suspensions exhibit limited efficacy, safety, and usability due to the presence of drug particles. Improving bioavailability can reduce the drug concentrations and the risk of problems associated with suspended drug particles. However, practical penetration enhancers capable of improving bioavailability remain elusive. Herein, we focused on penetratin (PNT), a cell-penetrating peptide (CPP) that promotes active cellular transport related to macromolecule uptake, such as micropinocytosis. According to the in vitro corneal uptake study using a reconstructed human corneal epithelial tissue model, LabCyte CORNEA-MODEL24, PNT enhanced the uptake of Fluoresbrite® YG carboxylate polystyrene microspheres without covalent binding. In an ex vivo porcine eye model, the addition of 10 µM PNT to rebamipide ophthalmic suspension markedly improved the corneal uptake of rebamipide; however, the addition of 100 µM PNT was ineffective due to potentially increased particle size by aggregation. This article provides basic information on the application of PNT as a penetration enhancer in ophthalmic suspensions, including the in vitro and ex vivo studies mentioned above, as well as the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and storage stability at different pH values.


Subject(s)
Cell-Penetrating Peptides , Cornea , Ophthalmic Solutions , Suspensions , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Ophthalmic Solutions/administration & dosage , Humans , Cornea/metabolism , Cornea/drug effects , Swine , Quinolones/administration & dosage , Quinolones/pharmacokinetics , Quinolones/chemistry , Administration, Ophthalmic , Biological Availability , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Particle Size , Alanine/analogs & derivatives
19.
Exp Eye Res ; 244: 109950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815789

ABSTRACT

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Subject(s)
Capsaicin , Cell Survival , Epithelium, Corneal , Lipopolysaccharides , Oxidative Stress , Oxidative Stress/drug effects , Humans , Lipopolysaccharides/pharmacology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cell Survival/drug effects , TRPV Cation Channels/metabolism , Antioxidants/pharmacology , Cells, Cultured , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/pathology , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/metabolism
20.
Invest Ophthalmol Vis Sci ; 65(5): 21, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38739085

ABSTRACT

Purpose: Aging is a risk factor for dry eye. We sought to identify changes in the aged mouse corneal epithelial transcriptome and determine how age affects corneal sensitivity, re-epithelialization, and barrier reformation after corneal debridement. Methods: Corneal epithelium of female C57BL/6J (B6) mice of different ages (2, 12, 18, and 24 months) was collected, RNA extracted, and bulk RNA sequencing performed. Cornea sensitivity was measured with an esthesiometer in 2- to 3-month-old, 12- to 13-month-old, 18- to 19-month-old, and 22- to 25-month-old female and male mice. The 2-month-old and 18-month-old female and male mice underwent unilateral corneal debridement using a blunt blade. Wound size and fluorescein staining were visualized and photographed at different time points, and a re-epithelialization rate curve was calculated. Results: There were 157 differentially expressed genes in aged mice compared with young mice. Several pathways downregulated with age control cell migration, proteoglycan synthesis, and collagen trimerization, assembly, biosynthesis, and degradation. Male mice had decreased corneal sensitivity compared with female mice at 12 and 24 months of age. Aged mice, irrespective of sex, had delayed corneal re-epithelialization in the first 48 hours and worse corneal fluorescein staining intensity at day 14 than young mice. Conclusions: Aged corneal epithelium has an altered transcriptome. Aged mice regardless of sex heal more slowly and displayed more signs of corneal epithelial defects after wounding than young mice. These results indicate that aging significantly alters the corneal epithelium and its ability to coordinate healing.


Subject(s)
Aging , Epithelium, Corneal , Mice, Inbred C57BL , Transcriptome , Wound Healing , Animals , Epithelium, Corneal/metabolism , Female , Mice , Wound Healing/genetics , Wound Healing/physiology , Male , Aging/physiology , Re-Epithelialization/physiology , Re-Epithelialization/genetics , Corneal Injuries/genetics , Corneal Injuries/metabolism , Debridement , Gene Expression Regulation/physiology , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL