Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.188
Filter
1.
Dent Med Probl ; 61(3): 391-399, 2024.
Article in English | MEDLINE | ID: mdl-38963395

ABSTRACT

BACKGROUND: In Mexico and around the world, water in dental units, including triple syringes, comes from municipal chlorinated water mains. The microbial contamination of dental unit water systems constitutes a risk factor for opportunistic infections. OBJECTIVES: The present work aimed to identify the bacteria present in the triple-syringe water lines of dental units at a dental school of a public university in Mexico, with a hypothesis that opportunistic bacteria of importance to human health would be found. MATERIAL AND METHODS: A cross-sectional study was carried-out. A total of 100 samples of triple-syringe tubing from dental units operated by a dental school of a public university in Mexico were analyzed before and after their use in dental practice. Bacterial biofilm was cultured and isolated from the tubing, using standard microbiological methods, and then the species present were identified through 16S rRNA gene sequencing. The characterization of the biofilm was performed by means of scanning electron microscopy (SEM). RESULTS: Bacterial growth was observed in 20% of the non-disinfected and 10% of the disinfected samples, with 11 strains isolated. Six genera and 11 bacterial species were genetically identified. Coagulasenegative staphylococci (CoNS), considered opportunistic human pathogens, were among the most critical microorganisms. Scanning electron microscopy revealed a thick polymeric matrix with multiple bacterial aggregates. CONCLUSIONS: Opportunistic bacteria from human skin and mucous membranes were detected. Under normal conditions, these bacteria are incapable of causing disease, but are potentially harmful to immunosuppressed patients.


Subject(s)
Biofilms , Equipment Contamination , Syringes , Water Microbiology , Cross-Sectional Studies , Mexico , Humans , Syringes/microbiology , Dental Equipment/microbiology , Microscopy, Electron, Scanning , Bacteria/isolation & purification , Genotype , RNA, Ribosomal, 16S
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 762-768, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38948302

ABSTRACT

Objective: Ultrasound diagnosis and treatment is easy to perform and takes little time. It is widely used in clinical practice thanks to its non-invasive, real-time, and dynamic characteristics. In the process of ultrasound diagnosis and treatment, the probe may come into contact with the skin, the mucous membranes, and even the sterile parts of the body. However, it is difficult to achieve effective real-time disinfection of the probes after use and the probes are often reused, leading to the possibility of the probes carrying multiple pathogenic bacteria. At present, the processing methods for probes at home and abroad mainly include probe cleaning, probe disinfection, and physical isolation (using probe covers or sheaths). Yet, each approach has its limitations and cannot completely prevent probe contamination and infections caused by ultrasound diagnosis and treatment. For example, when condoms are used as the probe sheath, the rate of condom breakage is relatively high. The cutting and fixing of cling film or freezer bags involves complicated procedures and is difficult to perform. Disposable plastic gloves are prone to falling off and causing contamination and are hence not in compliance with the principles of sterility. Furthermore, the imaging effect of disposable plastic gloves is poor. Therefore, there is an urgent need to explore new materials to make probe covers that can not only wrap tightly around the ultrasound probe, but also help achieve effective protection and rapid reuse. Based on the concept of physical barriers, we developed in this study a heat sealing system for the rapid reuse of ultrasound probes. The system uses a heat sealing device to shrink the protective film so that it wraps tightly against the surface of the ultrasound probe, allowing for the rapid reuse of the probe while reducing the risk of nosocomial infections. The purpose of this study is to design a heat sealing system for the rapid reuse of ultrasound probes and to verify its application effect on the rapid reuse of ultrasound probes. Methods: 1) The heat sealing system for the rapid reuse of ultrasound probes was designed and tested by integrating medical and engineering methods. The system included a protective film (a multilayer co-extruded polyolefin thermal shrinkable film) and a heat sealing device, which included heating wire components, a blower, a photoelectric switch, temperature sensors, a control and drive circuit board, etc. According to the principle of thermal shrinkage, the ultrasound probe equipped with thermal shrinkable film was rapidly heated and the film would wrap closely around the ultrasound probe placed on the top of the heat sealing machine. The ultrasound probe was ready for use after the thermal shrinkage process finished. Temperature sensors were installed on the surface of the probe to test the thermal insulation performance of the system. The operation procedures of the system are as follows: placing the ultrasound probe covered with the protective film in a certain space above the protective air vent, which is detected by the photoelectric switch; the heating device heats the thermal shrinkable film with a constant flow of hot air at a set temperature value. Then, the probe is rotated so that the thermal shrinkable film will quickly wrap around the ultrasound probe. After the heat shrinking is completed, the probe can be used directly. 2) Using the convenience sampling method, 90 patients from the Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University were included as the research subjects. All patients were going to undergo arterial puncture under ultrasound guidance. The subjects were divided into 3 groups, with 30 patients in each group. Three measures commonly applied in clinical practice were used to process the probes in the three groups and water-soluble fluorescent labeling was applied around the puncture site before use. In the experimental group, the probes were processed with the heat sealing system. The standard operating procedures of the heat sealing system for rapid reuse of ultrasonic probes were performed to cover the ultrasonic probe and form a physical barrier to prevent probe contamination. There were two control groups. In control group 1, disinfection wipes containing double-chain quaternary ammonium salt were used to repeatedly wipe the surface of the probe for 10-15 times, and then the probe was ready for use once it dried up. In the control group 2, a disposable protective sheath was used to cover the front end of the probe and the handle end of the sheath was tied up with threads. Comparison of the water-soluble fluorescent labeling on the surface of the probe (which reflected the colony residues on the surface of the probe) before and after use and the reuse time (i.e., the lapse of time from the end of the first use to the beginning of the second use) were made between the experimental group and the two control groups. Results: 1) The temperature inside the ultrasound probe was below 40 ℃ and the heat sealing system for rapid reuse did not affect the performance of the ultrasound probe. 2) The reuse time in the heat sealing system group, as represented by (median [P25, P75]), was (8.00 [7.00, 10.00]) s, which was significantly lower than those of the disinfection wipe group at (95.50 [8.00, 214.00]) s and the protective sleeve group at (25.00 [8.00, 51.00]) s, with the differences being statistically significant (P<0.05). No fluorescence residue was found on the probe in either the heat sealing system group or the protective sheath group after use. The fluorescence residue in the heat sealing system group was significantly lower than that in the disinfection wipes group, showing statistically significant differences (χ 2=45.882, P<0.05). Conclusion: The thermal shrinkable film designed and developed in this study can be cut and trimmed according to the size of the equipment. When the film is heated, it shrinks and wraps tightly around the equipment, forming a sturdy protective layer. With the heat sealing system for rapid reuse of ultrasonic probes, we have realized the semi-automatic connection between the thermal shrinkable film and the heating device, reducing the amount of time-consuming and complicated manual operation. Furthermore, the average reuse time is shortened and the system is easy to use, which contributes to improvements in the reuse and operation efficiency of ultrasound probes. The heat sealing system reduces colony residues on the surface of the probe and forms an effective physical barrier on the probe. No probes were damaged in the study. The heat sealing system for rapid reuse of ultrasonic probes can be used as a new method to process the ultrasonic probes.


Subject(s)
Ultrasonography , Ultrasonography/instrumentation , Ultrasonography/methods , Hot Temperature , Equipment Reuse , Humans , Disinfection/methods , Disinfection/instrumentation , Equipment Design , Equipment Contamination/prevention & control
3.
Antimicrob Resist Infect Control ; 13(1): 57, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840171

ABSTRACT

AIM: Although uncommon, infections associated with peripheral intravenous catheters (PIVCs) may be responsible for severe life-threatening complications and increase healthcare costs. Few data are available on the relationship between PIVC insertion site and risk of infectious complications. METHODS: We performed a post hoc analysis of the CLEAN 3 database, a randomized 2 × 2 factorial study comparing two skin disinfection procedures (2% chlorhexidine-alcohol or 5% povidone iodine-alcohol) and two types of medical devices (innovative or standard) in 989 adults patients requiring PIVC insertion before admission to a medical ward. Insertion sites were grouped into five areas: hand, wrist, forearm, cubital fossa and upper arm. We evaluated the risk of risk of PIVC colonization (i.e., tip culture eluate in broth showing at least one microorganism in a concentration of at least 1000 Colony Forming Units per mL) and/or local infection (i.e., organisms growing from purulent discharge at PIVC insertion site with no evidence of associated bloodstream infection), and the risk of positive PIVC tip culture (i.e., PIVC-tip culture eluate in broth showing at least one microorganism regardless of its amount) using multivariate Cox models. RESULTS: Eight hundred twenty three PIVCs with known insertion site and sent to the laboratory for quantitative culture were included. After adjustment for confounding factors, PIVC insertion at the cubital fossa or wrist was associated with increased risk of PIVC colonization and/or local infection (HR [95% CI], 1.64 [0.92-2.93] and 2.11 [1.08-4.13]) and of positive PIVC tip culture (HR [95% CI], 1.49 [1.02-2.18] and 1.59 [0.98-2.59]). CONCLUSION: PIVC insertion at the wrist or cubital fossa should be avoided whenever possible to reduce the risk of catheter colonization and/or local infection and of positive PIVC tip culture.


Subject(s)
Catheter-Related Infections , Catheterization, Peripheral , Humans , Female , Male , Catheterization, Peripheral/adverse effects , Catheter-Related Infections/prevention & control , Catheter-Related Infections/microbiology , Middle Aged , Aged , Chlorhexidine , Adult , Disinfection/methods , Povidone-Iodine , Risk Factors , Anti-Infective Agents, Local , Equipment Contamination , Wrist/microbiology
4.
Clin Nurse Spec ; 38(4): 189-192, 2024.
Article in English | MEDLINE | ID: mdl-38889060

ABSTRACT

PURPOSE/OBJECTIVES: The Centers for Disease Control and Prevention has highlighted the strong association between healthcare-associated infections and the reprocessing of flexible endoscopes. This process improvement project provided an evidence-based workflow analysis of pleuravideoscope reprocessing to validate and implement safe practices in the pulmonary clinic and sterile processing department. DESCRIPTION OF THE PROJECT/PROGRAM: A multidisciplinary team created an audit tool to complete infection control risk assessment using Lean Six Sigma methodology. OUTCOME: The risk assessment identified gaps in clinical practice, prompting corrective measures using a shared decision-making approach. The organization updated standard operating procedures, provided training and competency assessments, and purchased single-use pleuravideoscopes. These initiatives addressed the deficiencies and reinforced a culture of continuous process improvement and patient safety. CONCLUSION: Multidisciplinary teams should perform comprehensive reviews of facility processes and assess the risks related to infection control to identify optimal pleuravideoscope workflows for the healthcare institution. The involvement of a clinical nurse specialist is advantageous, as they possess the expertise necessary to facilitate collaborative efforts among team members spanning various departments. By leveraging the insights and skills of diverse professionals, healthcare organizations can optimize their reprocessing programs and enhance patient safety.


Subject(s)
Sterilization , Humans , Nurse Clinicians , Endoscopes/microbiology , Patient Care Team/organization & administration , Cross Infection/prevention & control , Infection Control , Equipment Contamination/prevention & control , Nursing Evaluation Research
5.
J Am Dent Assoc ; 155(6): 515-525.e1, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839239

ABSTRACT

BACKGROUND: Dental unit waterline (DWL) infection control is critical to infection prevention. Identifying challenges and barriers to its implementation is a first step toward understanding how to improve engagement. METHODS: A survey was distributed to dentists, dental hygienists, and dental assistants via the Qualtrics XM platform (Qualtrics). Responses were analyzed to quantify engagement in practices contrary to Centers for Disease Control and Prevention guidance and identify avenues to improve engagement. RESULTS: Although oral health care providers recognized DWL infection control was important, there was a lack of clarity about appropriate routine engagement (eg, what lines should be tested), what should be noted in practice infection control records, and steps to be taken in response to a failed test result (ie, ≥ 500 colony-forming units/mL), such as taking a chair out of service. CONCLUSIONS: Survey results showed there were considerable gaps in knowledge and practice that could lead to patient harm. Oral health care provider training may not prepare personnel adequately to engage in, let alone supervise, DWL infection control. DWL infection control, like other aspects of infection control, requires action informed via an understanding of what needs to be done. Although good intentions are appreciated, better approaches to DWL infection control information dissemination and strategies to engage dental assistants, dental hygienists, and dentists in best practices are needed. PRACTICAL IMPLICATIONS: Evolving standards of care, including infection control, should be reflected in the provision of dental treatment. Improvements in communicating and ensuring engagement in best practices are needed when it comes to DWL infection control.


Subject(s)
Infection Control, Dental , Humans , Infection Control, Dental/methods , Dental Hygienists , Surveys and Questionnaires , Dentists , Dental Equipment , Equipment Contamination/prevention & control , Health Knowledge, Attitudes, Practice , Dental Assistants
6.
Indian J Dent Res ; 35(1): 80-83, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38934755

ABSTRACT

BACKGROUND: Dental Unit Water Line (DUWL) deliver water to different handpieces in a dental unit. The water in DUWL circulates in a closed system, where it is taken from a container. The quality of dental water is of considerable importance since patients and dental staff are regularly exposed to water and aerosols generated from dental equipment. Output water from DUWLs may be a potential source of infection for both dental health care personnel and patients. AIM: To assess the microbial contamination in the DUWL among dental clinics in Chennai. MATERIALS AND METHODS: An in vitro study was conducted on 60 water samples from 20 dental clinics in Chennai in December 2019. Water samples were collected from three different sources of the Dental unit according to ADA guidelines. The collected samples were assessed for the presence of Aspergillus, Acinetobacter, Pseudomonas aeruginosa, and Legionella by agar plate method. The data were analysed using SPSS software version 20. RESULTS: Legionella was the most prevalent microorganism with 70% prevalence in a three-way syringe and 50% in scaler and airotor, followed by Pseudomonas aeruginosa and Acinetobacter with 10% prevalence in scaler and airotor and Aspergillus with a prevalence of 10% in the three-way syringe. CONCLUSION: Most of the dental units were contaminated with Aspergillus, Legionella, Pseudomonas aeruginosa and Acinetobacter which pose a serious threat to the patients as well as the dentists.


Subject(s)
Dental Clinics , Dental Equipment , Equipment Contamination , Legionella , Water Microbiology , India , Dental Equipment/microbiology , Humans , Legionella/isolation & purification , Pseudomonas aeruginosa/isolation & purification , Acinetobacter/isolation & purification , In Vitro Techniques
7.
Compr Rev Food Sci Food Saf ; 23(3): e13348, 2024 05.
Article in English | MEDLINE | ID: mdl-38720587

ABSTRACT

Listeria monocytogenes biofilms formed on food-contact surfaces within food-processing facilities pose a significant challenge, serving as persistent sources of cross-contamination. In this review, we examined documented cases of foodborne outbreaks and recalls linked to L. monocytogenes contamination on equipment surfaces and in the food production environment, provided an overview of the prevalence and persistence of L. monocytogenes in different food-processing facilities, and discussed environmental factors influencing its biofilm formation. We further delved into antimicrobial interventions, such as chemical sanitizers, thermal treatments, biological control, physical treatment, and other approaches for controlling L. monocytogenes biofilms on food-contact surfaces. This review provides valuable insights into the persistent challenge of L. monocytogenes biofilms in food processing, offering a foundation for future research and practical strategies to enhance food safety.


Subject(s)
Biofilms , Food Microbiology , Listeria monocytogenes , Listeria monocytogenes/physiology , Biofilms/growth & development , Food Handling/methods , Food Contamination/prevention & control , Equipment Contamination/prevention & control
8.
Surg Endosc ; 38(6): 3470-3477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769187

ABSTRACT

BACKGROUND: Soilage of the surgical endoscope occurs frequently during minimally invasive surgery. The resultant impairment of visualization of the surgical field compromises patient safety, prolongs operative times, and frustrates surgeons. The standard practice for cleaning the surgical camera involves a disruption in the conduct of surgery by completely removing the endoscope from the field, manually cleaning its lens, treating it with a surfactant, and reinserting it into the patient; after which the surgeon resumes the procedure. METHODS: We developed an automated solution for in vivo endoscope cleaning in minimally invasive surgery- a port that detects the position of the endoscope in its distal lumen, and precisely and automatically delivers a pressurized mist of cleaning solution to the lens of the camera. No additions to the scope and minimal user interaction with the port are required. We tested the efficacy of this troCarWash™ device in a porcine model of laparoscopy. Four board-certified general surgeons were instructed to soil and then clean the laparoscope using the device. Representative pre- and post-clean images were exported from the surgical video and clarity was graded (1) digitally by a canny edge detection algorithm, and (2) subjectively by 3 blinded, unbiased observers using a semi-quantitative scale. RESULTS: We observed statistically significant improvements in clarity by each method and for each surgeon, and we noted significant correlation between digital and subjective scores. CONCLUSION: Based on these data, we conclude that the troCarWash™ effectively restored impaired visualization in a large animal model of laparoscopy.


Subject(s)
Laparoscopy , Laparoscopy/methods , Laparoscopy/instrumentation , Animals , Swine , Laparoscopes , Equipment Contamination/prevention & control , Equipment Design
9.
Tomography ; 10(5): 686-692, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38787013

ABSTRACT

(1) Background: Bacterial contamination has been shown to occur during angiographies, although data on its frequency and relevance are sparse. Our aim was to evaluate the incidence of bacterial contamination of syringes used under sterile conditions during neuroangiographies. We sought to differentiate between contamination of the outside of the syringes and the inside and to detect the frequency, extent and germ spectrum of bacterial contamination. (2) Methods: We prospectively collected 600 samples from 100 neuroangiographies. Per angiography, fluid samples from the three routinely used syringes as well as the syringes themselves were analyzed. We analyzed the frequency and extent of contamination and determined the germ spectrum. (3) Results: The majority of samples (56.9%) were contaminated. There was no angiography that showed no contamination (0%). The outer surfaces of the syringes were contaminated significantly more frequently and to a higher extent than the inner surfaces. Both the frequency and extent of contamination of the samples increased with longer duration of angiographic procedures. Most of the bacterial species were environmental or skin germs (87.7%). (4) Conclusions: Bacterial contamination is a frequent finding during neuroangiographies, although its clinical significance is believed to be small. Bacterial contamination increases with longer duration of angiographic procedures.


Subject(s)
Equipment Contamination , Syringes , Syringes/microbiology , Humans , Prospective Studies , Bacteria/isolation & purification , Cerebral Angiography/methods , Radiography, Interventional/methods
10.
Article in English | MEDLINE | ID: mdl-38791788

ABSTRACT

Public restrooms are often a hub of microbial contamination and the examination of bacterial contamination in these facilities can serve as an important indicator of the transmission of infectious diseases. This study was conducted to determine the prevalence of bacterial contamination in public restrooms based on the economic class of the building. Samples were collected from various spots in 32 restrooms found in 10 shopping malls, classifying them into two categories: upper-end restrooms and lower-end restrooms. The findings showed that the level of contamination was higher in the lower-end restrooms, with the seat being the most contaminated area. The most dominant Gram-positive bacteria were of the coagulase-negative staphylococci species, making up 86% of the identified Gram-positive isolates. The most dominant Gram-negative bacteria identified were Klebsiella pneumoniae (K. pneumoniae) and Pseudomonas aeruginosa (P. aeruginosa). The antibiotic sensitivity test results revealed the presence of multidrug-resistant bacteria among the Gram-positive and negative isolates, including Staphylococcus haemolyticus (S. haemolyticus), Staphylococcus kloosii (S. kloosii), Acinetobacter baumanii (A. baumanii), and P. aeruginosa. In conclusion, the study underscores the significance of monitoring bacterial contamination in public restrooms and the need for measures to reduce the spread of infectious diseases. Further research is crucial to gain a complete understanding of the bacterial contamination in public restrooms and their resistance patterns, to ensure the safety and health of the public. The implementation of improved cleaning practices and hands-free designs in addition to the installation of antimicrobial surfaces in restrooms can help reduce the risk of cross-contamination and prevent the spread of diseases.


Subject(s)
Drug Resistance, Multiple, Bacterial , Bacterial Load , Toilet Facilities , Microbial Sensitivity Tests , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification , Humans , Bacteria/drug effects , Bacteria/isolation & purification , Bacteria/classification , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Equipment Contamination
11.
Surg Laparosc Endosc Percutan Tech ; 34(3): 248-258, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38767568

ABSTRACT

INTRODUCTION: Our aim was to determine whether bacteria contamination occurred within the surgical field or on endoscopic equipment during surgery using the transoral endoscopic thyroidectomy vestibular approach (TOETVA). MATERIALS AND METHODS: Participants were recruited from patients planned for TOETVA between May 2017 and December 2019. Bacterial samples were taken before and at the conclusion of the TOETVA procedure. The preoperative and postoperative samples were taken from the endoscopic materials and inferior oral vestibulum using a sterile flocked swab. RESULTS: The study resulted in 480 samples (80 TOETVAs). No vestibular, port site, or neck infections occurred in any of the patients. Three (3.7%) out of 80 patients developed postoperative fever. Our results show different microbial communities during TOETVA. The most prevalent species detected were S treptococcus species. Multivariate logistic regression analyses revealed that the degree of contamination depended on the sampling site (inferior vestibulum > equipment) ( P =0.03). In addition, the abundance of bacteria was affected by operative time ( P =0.013). There were no significant differences observed in isolation frequencies of bacteria in malignancy ( P =0.34). CONCLUSIONS: TOETVA surgery is categorized as a "clean-contaminated" operation. A swab identified the common colonizers of oral microbiota on the endoscopic equipment and within the surgical field.


Subject(s)
Natural Orifice Endoscopic Surgery , Thyroidectomy , Humans , Female , Male , Thyroidectomy/adverse effects , Thyroidectomy/methods , Middle Aged , Natural Orifice Endoscopic Surgery/adverse effects , Natural Orifice Endoscopic Surgery/instrumentation , Adult , Equipment Contamination , Aged , Surgical Wound Infection/microbiology , Surgical Wound Infection/etiology , Surgical Wound Infection/epidemiology , Mouth/microbiology , Bacteria/isolation & purification
12.
Surg Infect (Larchmt) ; 25(5): 384-391, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38752928

ABSTRACT

Background: No in vitro surgical study has evaluated the time-dependent contamination of surgical suction tips compared with controls. Our purpose was to determine the difference in suction tip bacterial contamination rates between suction-positive and suction-negative tips. Materials and Methods: A matched-pair analysis of the contamination of surgical suction tips over a six-hour period was performed in two clean operating rooms. One suction tip was connected to standard wall suction (suction-positive group), with a matched control tip not connected to wall suction (suction-negative group). At time zero and then at hourly intervals for six hours, the distal 3 cm of suction tips were removed, placed in nutrient broth for 48 hours, then plate cultured. One hundred tips were collected for each time interval. Results: Eighty-two of 700 (11.7%) suction tips had bacterial contamination. Sixty-three (18.0%) of 350 suction-positive tips were contaminated, with 19 (5.4%) of the 350 suction-negative tips contaminated (χ2 = 26.7, p < 0.001). Suction tip contamination was time-dependent with the first significant difference between groups occurring after two hours of continuous suction (χ2 = 4.0, p = 0.04). Contamination rate in the suction-positive group increased significantly after one hour compared with time-zero controls (χ2 = 7.1, p = 0.008). There was no significant difference in frequency of positive cultures over time in the suction-negative group compared with time-zero controls. Conclusions: This is the first controlled laboratory study suggesting a time-dependent increase in positive suction tip cultures. From our data, operating room staff should have an awareness that suction tips represent a potential source of bacterial concentration. We recommend that when not in use, suction tip valves be closed if this feature is available, that hosing be manipulated to cease suction when not needed, that suckers be disconnected from tubing, or that suckers be exchanged at frequent intervals. Doing so may reduce bacterial contamination on the suction tip.


Subject(s)
Bacteria , Equipment Contamination , Operating Rooms , Suction/instrumentation , Bacteria/isolation & purification , Bacteria/classification , Time Factors , Humans , Surgical Instruments/microbiology
13.
Anal Chem ; 96(21): 8373-8380, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38709238

ABSTRACT

Polypropylene microcentrifuge tubes (MCTs) are increasingly used in lipidome sample preparation. In the absence of a comprehensive study evaluating ramifications of plasticware utilization in mass spectrometry-based lipidomic analyses, we conducted a systematic analysis to elucidate potential negative effects ascribable to labware contamination in serum lipidomics. During serum lipid extractions, tested glassware introduced 24 labware contaminants. In contrast, Eppendorf polypropylene MCTs contributed 485 contaminant features, many of which could be erroneously putatively identified as lipids via their m/z values. Eppendorf MCTs contamination engendered severe ion-suppression of 40 low abundance serum lipids, while generating mild to modest lipid ion-suppression across a multitude of higher abundance coeluting lipids. Less compatible polypropylene MCTs from an alternative manufacturer introduced a staggering 2,949 contaminant m/z values, severely affecting 75 coeluting serum lipids and causing more frequent and pronounced ion-suppression instances. Furthermore, by performing serum extractions with varied initial volumes, it was ascertained that labware-induced lipid ion-suppression is a dynamic phenomenon, contingent on both lipid and labware contaminant concentrations where low-abundance lipids are disproportionately impacted by coelutes of suppressive contaminants. In addition to lipid ion-suppression, the identification and quantification of 7 fatty acid endogenous serum lipids were compromised by the leaching of structurally identical surfactants from MCTs. MCTs artificially introduced 10 additional primary amides extraneous to serum samples. Utmost caution is imperative in interpreting data concerning primary amides and fatty acids when employing plastic labware. Through this investigation, we aspire to elevate awareness regarding the pernicious impact of labware contamination on lipidome analysis.


Subject(s)
Lipidomics , Lipids , Mass Spectrometry , Polypropylenes , Humans , Lipidomics/methods , Lipids/blood , Lipids/chemistry , Mass Spectrometry/methods , Polypropylenes/chemistry , Equipment Contamination
14.
Microbiol Spectr ; 12(6): e0396223, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38652098

ABSTRACT

Water contamination in dental unit waterlines (DUWLs) is a potential source of healthcare-associated infection during dental care. The aim of this study was to evaluate the microbiological quality of DUWLs water from newly installed dental chairs in a French University Hospital. The microbiological quality of water from 24 new DUWLs initially disinfected by ICX Renew-prior to use of the dental units for patient treatment-was assessed for total culturable aerobic bacteria at 22°C and 36°C, Legionella sp., Pseudomonas aeruginosa, and total coliforms. Among the 24 samples analyzed, 21 were compliant with the water quality levels: 19 had no bacteria, and 2 contained only 4 and 1 CFU/mL for total culturable aerobic bacteria at 22°C and 36°C, respectively. Three samples were non-compliant due to contamination by P. aeruginosa (4, 2, and 2 CFU/100 mL). Controlling and preventing the microbiological contamination of DUWLs, especially by pathogenic bacteria, at the time of the installation of the new dental chairs are crucial to prevent healthcare-associated infection in dentistry. IMPORTANCE: Dental unit waterlines (DUWLs) of new dental chairs may be contaminated before their first clinical use, so an initial shock disinfection is crucial at the time of their installation. The microbiological analyses are crucial to control the water quality of DUWLs before their first clinical use because their disinfection does not guarantee the elimination of all bacteria.


Subject(s)
Pseudomonas aeruginosa , Water Microbiology , Pseudomonas aeruginosa/isolation & purification , Humans , Disinfection/methods , Dental Equipment/microbiology , Equipment Contamination , Cross Infection/microbiology , Cross Infection/prevention & control , France , Legionella/isolation & purification
15.
J Hosp Infect ; 149: 36-45, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38649121

ABSTRACT

BACKGROUND: Contamination rates reported in the literature for patient-ready flexible endoscopes vary from 0.4% to 49%. Unfortunately, the comparison and interpretation of these results is almost impossible since several factors including sampling and culturing methods, target levels for contamination, or definition of indicator micro-organisms vary widely from one study to the other. AIM: To compare the efficacy of six duodenoscope sampling and culturing methods by means of extraction efficacy comparison, while at the same time identifying key parameters that provide optimal microbial recovery. METHODS: The duodenoscope sample extraction efficacy of each method was assessed using the repetitive recovery method described in ISO 11737-1: 2018. FINDINGS: Mean overall bioburden extraction efficacy varied from 1% for the Australian method to 39% for the French one. The lowest endoscope sample extraction efficacy was associated with the absence of any neutralizer, friction, or tensioactive agent, and when only a small portion of the sampling solution collected was inoculated on to culture media. The efficacy of the sampling and culturing methods also varied according to the nature of micro-organisms present in the endoscope, and the time between sampling and culturing. CONCLUSION: This study supports the need for a harmonized and standardized sampling and culturing method for flexible endoscopes.


Subject(s)
Equipment Contamination , Specimen Handling , Humans , Specimen Handling/methods , Specimen Handling/instrumentation , Equipment Contamination/prevention & control , Bacteria/isolation & purification , Bacteria/classification , Microbiological Techniques/methods , Endoscopes/microbiology , Duodenoscopes/microbiology
16.
Ultrasound Med Biol ; 50(6): 775-778, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485533

ABSTRACT

The COVID-19 pandemic highlighted the importance of infection prevention and control measures for all medical procedures, including ultrasound examinations. As the use of ultrasound increases across more medical modalities, including point-of-care ultrasound, so does the risk of possible transmission from equipment to patients and patients to patients. This is particularly relevant for endocavity transducers, such as trans-vaginal, trans-rectal and trans-oesophageal, which could be contaminated with organisms from blood, mucosal, genital or rectal secretions. This article proports to update the WFUMB 2017 guidelines which focussed on the cleaning and disinfection of trans-vaginal ultrasound transducers between patients.


Subject(s)
COVID-19 , Disinfection , Equipment Contamination , Transducers , Ultrasonography , Humans , COVID-19/transmission , COVID-19/prevention & control , Disinfection/methods , Equipment Contamination/prevention & control , Infection Control/methods , Infection Control/standards , Point-of-Care Systems , Practice Guidelines as Topic , SARS-CoV-2 , Ultrasonography/methods , Ultrasonography/instrumentation
17.
J Emerg Med ; 66(4): e477-e482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433037

ABSTRACT

BACKGROUND: Medical equipment can become scarce in disaster scenarios. Prior work has reported that four sheep could be ventilated together on a single ventilator. Others found that this maneuver is possible when needed, but no one has yet investigated whether cross-contamination occurs in co-ventilated individuals. OBJECTIVE: Our goal was to investigate whether an infection could spread between co-ventilated individuals. METHODS: Four 2-L anesthesia bags were connected to a sterilized ventilator circuit that used heat and moisture exchange filters and bacterial and viral filters, as would be expected in this dire scenario. Serratia marcescens was inoculated into "lung" no. 1. After running for 24 h, each lung and three additional points in the circuit were cultured to see whether S. marcescens had spread. These cultures were examined at 24 and 48 h to assess for cross-contamination. This entire procedure was performed three times. RESULTS: S. marcescens was not found in lung no. 2, 3, or 4 or the three additional sites on the expiratory limb at 24 and 48 h in all three trials. CONCLUSIONS: Cross-contamination does not occur within 24 h using the described ventilator circuit configuration.


Subject(s)
Equipment Contamination , Ventilators, Mechanical , Humans , Bacteria , Filtration , Lung , Respiration, Artificial
18.
J Hosp Infect ; 147: 56-62, 2024 May.
Article in English | MEDLINE | ID: mdl-38447805

ABSTRACT

BACKGROUND: Duodenoscope-associated infections (DAIs) are exogenous infections resulting from the use of contaminated duodenoscopes. Though numerous outbreaks of DAI have involved multidrug-resistant micro-organisms (MDROs), outbreaks involving non-MDROs are also likely to occur. Detection challenges arise as these infections often resolve before culture or because causative strains are not retained for comparison with duodenoscope strains. AIM: To identify and analyse DAIs spanning a seven-year period in a tertiary care medical centre. METHODS: This was a retrospective observational study. Duodenoscope cultures positive for gastrointestinal flora between March 2015 and September 2022 were paired with duodenoscope usage data to identify patients exposed to contaminated duodenoscopes. Analysis encompassed patients treated after a positive duodenoscope culture and those treated within the interval from a negative to a positive culture. Patient identification numbers were cross-referenced with a clinical culture database to identify patients developing infections with matching micro-organisms within one year of their procedure. A 'pair' was established upon a species-level match between duodenoscope and patient cultures. Pairs were further analysed via antibiogram comparison, and by whole-genome sequencing (WGS) to determine genetic relatedness. FINDINGS: Sixty-eight pairs were identified; of these, 21 exhibited matching antibiograms which underwent WGS, uncovering two genetically closely related pairs categorized as DAIs. Infection onset occurred up to two months post procedure. Both causative agents were non-MDROs. CONCLUSION: This study provides crucial insights into DAIs caused by non-MDROs and it highlights the challenge of DAI recognition in daily practice. Importantly, the delayed manifestation of the described DAIs suggests a current underestimation of DAI risk.


Subject(s)
Duodenoscopes , Humans , Retrospective Studies , Duodenoscopes/microbiology , Duodenoscopes/adverse effects , Tertiary Care Centers , Microbial Sensitivity Tests , Male , Female , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , Equipment Contamination
19.
Nutr Clin Pract ; 39(4): 873-880, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38491970

ABSTRACT

BACKGROUND: Home-prepared enteral formulations are supplied to patients through enteral nutrition bottles, via a gravity bag or other container, which may be inadequately sanitized and reused more times than recommended by the manufacturer. Such procedures increase the risk of contamination and can compromise the patient's clinical outcome. In light of this, the present study aimed to assess the risk of contamination of enteral nutrition bottles by simulating home use conditions and hygiene procedures. METHODS: A simulation of bottle usage was conducted across the three categories of enteral nutrition (homemade enteral preparations, blended enteral preparations, and commercial enteral formulas) for 3 days, using three hygiene procedures reported by caregivers: use of detergent (DET); use of detergent and boiling water (DET+BW); and use of detergent and bleach (DET+BL). The microbiological contamination was determined by the analysis of aerobic mesophilic microorganisms. RESULTS: The bottles that were used for 3 days, regardless of the enteral nutrition category, were within the acceptable limit for aerobic mesophilic microorganisms (between <4 and 8.0 colony-forming units [CFU]/cm2) when sanitized using the DET+BW and DET+BL procedures. The enteral nutrition bottles, when cleaned using the DET procedure during the 3 days of usage, showed low microbial contamination (between <4 and 3.0 CFU/cm2) in blended preparation and commercial formula only. CONCLUSION: Thus, regardless of the enteral nutrition category, we found that the bottles can be used for 3 days, as long as the DET+BW or DET+BL hygiene procedure is applied and safe food handling measures are adopted.


Subject(s)
Enteral Nutrition , Hygiene , Enteral Nutrition/methods , Enteral Nutrition/instrumentation , Humans , Detergents , Food Microbiology , Food, Formulated/analysis , Food Packaging/methods , Food Contamination/analysis , Equipment Contamination/prevention & control , Risk Assessment
20.
J Hosp Infect ; 143: 1-7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38529779

ABSTRACT

BACKGROUND: Using robots to handle medical devices in the decontamination area of the Central Sterile Supply Department (CSSD) can reduce risks and address staff shortages. The gripper design must allow reliable cleaning using standard CSSD procedures to avoid build-up of biofilms and possible cross-contamination between different instrument trays and the gripper's functionality. This study explores the design of the robot's gripper regarding cleanability, aiming to determine whether successful cleaning can be achieved even after prolonged drying for a working shift of 8 h. METHODS: We optimized a gripper for cleanability and used it to assess the spread of different test soils depending on different forms of motion. Subsequently, we analysed the cleanability using sheep's blood as test soil, reprocessing the gripper in different assembly configurations after 4 and 8 h of drying, and measuring residual protein. FINDINGS: Based on our investigations, we documented the spread of contamination depending on the type of motion of the gripper's components. Sheep's blood exhibited the highest dispersion among the test soils, permeating through thin crevices. Importantly, all samples displayed residual protein levels below the warning threshold, irrespective of drying time and gripper disassembly or cleaning position. Cleaning in a device-specific optimized position achieved results comparable to cleaning the disassembled individual components. CONCLUSIONS: These findings indicate that cleaning even after one working shift of 8 h and without the labour-intensive disassembly of the gripper is feasible, supporting the future use of robots to handle contaminated medical devices in the CSSD decontamination area.


Subject(s)
Robotics , Humans , Decontamination/methods , Equipment Contamination/prevention & control , Surgical Instruments , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...