Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.023
Filter
1.
Front Immunol ; 15: 1457174, 2024.
Article in English | MEDLINE | ID: mdl-39359730

ABSTRACT

Background: Humoral bactericidal activity was first recognized nearly a century ago. However, the extent of inter-individual heterogeneity and the mechanisms underlying such heterogeneity beyond antibody or complement systems have not been well studied. Methods: The plasma bactericidal activity of five healthy volunteers were tested against 30 strains of Gram-negative uropathogens, Klebsiella pneumoniae and Escherichia coli, associated with bloodstream infections. IgG and IgM titers specific to K. pneumoniae strains KP13883 and KPB1 were measured by ELISA, and complement inhibitor was used to measure the contribution of complement-induced killing. Furthermore, MALDI-TOF mass spectrometry was conducted to determine the metabolomic components of plasma with bactericidal properties in 25 healthy individuals using Bayesian inference of Pearson correlation between peak intensity and colony counts of surviving bacteria. Results: Plasma bactericidal activity varied widely between individuals against various bacterial strains. While individual plasma with higher IgM titers specific to K. pneumoniae strain KP13883 showed more efficient killing of the strain, both IgM and IgG titers for K. pneumoniae strain KPB1 did not correlate well with the killing activity. Complement inhibition assays elucidated that the complement-mediated killing was not responsible for the inter-individual heterogeneity in either isolate. Subsequently, using MALDI-TOF mass spectrometry on plasmas of 25 healthy individuals, we identified several small molecules including gangliosides, pediocins, or saponins as candidates that showed negative correlation between peak intensities and colony forming units of the test bacteria. Conclusion: This is the first study to demonstrate the inter-individual heterogeneity of constitutive innate humoral bactericidal function quantitatively and that the heterogeneity can be independent of antibody or the complement system.


Subject(s)
Antibodies, Bacterial , Complement System Proteins , Immunity, Humoral , Immunoglobulin G , Immunoglobulin M , Klebsiella pneumoniae , Humans , Complement System Proteins/immunology , Immunoglobulin M/immunology , Immunoglobulin M/blood , Klebsiella pneumoniae/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Blood Bactericidal Activity/immunology , Adult , Male , Female , Escherichia coli/immunology , Middle Aged , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Elife ; 132024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235964

ABSTRACT

To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.


We quickly learn to steer clear of eating the moldy apple, the foul-smelling piece of chicken or the leftovers that taste a little 'off'. This survival instinct is shared across most animal species ­ even those with extremely simple and limited visual or taste systems, like the tiny worm Caenorhabditis elegans. Indeed, assessing the safety and quality of available food items can also rely on cells activating built-in cascades of molecular reactions. However, it remains unclear how these 'cellular stress response programs' actually help guide feeding behaviors. To better understand this process, Liu et al. conducted a series of experiments using C. elegans worms exposed to heat-killed bacteria, which are devoid of many nutrients essential for growth. After initially consuming these bacteria, the worms quickly started to avoid feeding on this type of low-quality food. This suggests that mechanisms occurring after ingestion allowed the worms to adjust their feeding choices. Further work showed that the consumption of heat-killed bacteria triggered two essential stress response pathways, known as the unfolded protein response and the innate immune response. The activation of these pathways was essential for the animals to be able to change their behavior and avoid the heat-killed bacteria. These biochemical pathways were particularly active in the worms' nerve cells, highlighting the importance of these cells in sensing and reacting to food. Finally, Liu et al. also found that adding sugars like lactose and sucrose to the low-quality food could prevent the activation of the stress response pathways. This result suggests that specific nutrients play a central role in how these worms decide what to eat. These findings shed light on the complex systems that ensure organisms consume the nutritious food they need to survive. Understanding these processes in worms can provide insights into the broader biological mechanisms that help animals avoid harmful food.


Subject(s)
Escherichia coli , Animals , Escherichia coli/immunology , Escherichia coli/physiology , Feeding Behavior , Food Quality , Immunity, Innate , Caenorhabditis elegans
3.
Innate Immun ; 30(5): 96-118, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39252173

ABSTRACT

The dynamic interplay between intramammary IgG, formation of antigen-IgG complexes and effector immune cell function is essential for immune homeostasis within the bovine mammary gland. We explore how changes in the recognition and binding of anti-LPS IgG to the glycolipid "functional" core in milk from healthy or clinically diagnosed Escherichia coli (E. coli) mastitis cows' controls endotoxin function. In colostrum, we found a varied anti-LPS IgG repertoire and novel soluble LPS/IgG complexes with direct IgG binding to the LPS glycolipid core. These soluble complexes, absent in milk from healthy lactating cows, were evident in cows diagnosed with E. coli mastitis and correlated with endotoxin-driven inflammation. E. coli mastitis milk displayed a proportional reduction in anti-LPS glycolipid core IgG compared to colostrum. Milk IgG extracts showed that only colostrum IgG attenuated LPS induced endotoxin activity. Furthermore, LPS-stimulated reactive oxygen species (ROS) in milk granulocytes was only suppressed by colostrum IgG, while IgG extracts of neither colostrum nor E. coli mastitis milk influenced N-formylmethionine-leucyl-phenylalanine (fMLP)-stimulated ROS in LPS primed granulocytes. Our findings support bovine intramammary IgG diversity in health and in response to E. coli infection generate milk anti-LPS IgG repertoires that coordinate appropriate LPS innate-adaptive immune responses essential for animal health.


Subject(s)
Colostrum , Escherichia coli Infections , Escherichia coli , Glycolipids , Immunoglobulin G , Lipopolysaccharides , Mastitis, Bovine , Milk , Animals , Cattle , Female , Colostrum/immunology , Colostrum/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mastitis, Bovine/immunology , Mastitis, Bovine/microbiology , Escherichia coli/immunology , Lipopolysaccharides/immunology , Milk/immunology , Glycolipids/metabolism , Glycolipids/immunology , Escherichia coli Infections/immunology , Endotoxins/immunology , Endotoxins/metabolism , Reactive Oxygen Species/metabolism , Granulocytes/immunology , Granulocytes/metabolism , Protein Binding , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism
4.
BMC Microbiol ; 24(1): 350, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289612

ABSTRACT

Diarrheal diseases remain the leading cause of high mortality among the infants, particularly in the developing countries; Probiotic intervention for diarrhea has been an ongoing novel approach to diarrheal prevention and treatment. This study aims to characterize immunogenic and probiotic properties of lactic acid bacteria (LAB) isolated from human breast milk and neonates' faeces. The LAB isolates from 16 mothers' breast milk and 13 infants' faeces were screened and identified by 16 S rRNA gene partial sequencing. Their antimicrobial activities against 5 strains of diarrheagenic Escherichia coli were tested. Organic acids production was quantified by HPLC, and antibiotic resistance pattern were determined by VITEK®. Autoaggregation, co-aggregation and hydrophobicity properties were assessed by UV spectrophotometry and immunomodulatory effect was determined in mouse model. Ninety-three LAB of five genera were identified. The most abundant species was Lactiplantibacillus plantarum with inhibition zones ranged from 8.0 to 25.0 ± 1 mm. Lacticaseibacillus rhamnosus A012 had 76.8 mg/mL lactic acid, (the highest concentration), was susceptible to all antibiotics tested. L. plantarum A011 and L. rhamnosus A012 were highly resistance to gastrointestinal conditions. L. rhamnosus A012 produced hydrophobicity of 25.01% (n-hexadecane), 15.4% (xylene) and its autoaggregation was 32.52%. L. rhamnosus A012 and L. plantarum A011 exert immunomodulatory effects on the cyclophosphamide-treated mice by upregulating anti-inflammatory cytokine and downregulating proinflammatory cytokines. Lactobacillus sp. demonstrated good probiotic and immunomodulatory properties. Further works are ongoing on the practical use of the strains.


Subject(s)
Diarrhea , Escherichia coli , Feces , Lactobacillales , Milk, Human , Probiotics , Probiotics/pharmacology , Humans , Feces/microbiology , Animals , Female , Milk, Human/microbiology , Milk, Human/immunology , Mice , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/immunology , Lactobacillales/isolation & purification , Lactobacillales/physiology , Lactobacillales/classification , Diarrhea/microbiology , Diarrhea/prevention & control , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Infant , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents/pharmacology , Infant, Newborn , Adult , Microbial Sensitivity Tests
5.
Front Immunol ; 15: 1404192, 2024.
Article in English | MEDLINE | ID: mdl-39308863

ABSTRACT

Breast milk is a vital source of nutrients, prebiotics, probiotics, and protective factors, including antibodies, immune cells and antimicrobial proteins. Using bacterial lipopolysaccharide arrays, we investigated the reactivity and specificity of breast milk antibodies towards microbial antigens, comparing samples from rural Kenya and urban Switzerland. Results showed considerable variability in antibody reactivity both within and between these locations. Kenyan breast milk demonstrated broad reactivity to bacterial lipopolysaccharides, likely due to increased microbial exposure. Antibodies primarily recognized the O-antigens of lipopolysaccharides and showed strong binding to specific carbohydrate motifs. Notably, antibodies against specific Escherichia coli O-antigens showed cross-reactivity with parasitic pathogens like Leishmania major and Plasmodium falciparum, thus showing that antibodies reacting against lipopolysaccharide O-antigens can recognize a wide range of antigens beyond bacteria. The observed diversity in antigen recognition highlights the significance of breast milk in safeguarding infants from infections, particularly those prevalent in specific geographic regions. The findings also offer insights for potential immunobiotic strategies to augment natural antibody-mediated defense against diverse pathogens.


Subject(s)
Lipopolysaccharides , Milk, Human , Milk, Human/immunology , Milk, Human/chemistry , Humans , Kenya , Lipopolysaccharides/immunology , Female , Cross Reactions/immunology , Switzerland , Antibodies, Bacterial/immunology , O Antigens/immunology , Adult , Escherichia coli/immunology
6.
Int Immunopharmacol ; 142(Pt B): 113175, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39306887

ABSTRACT

Autoimmune liver diseases (AILD) encompass a group of conditions in which the immune system mistakenly attacks the liver tissue. Mucosal-associated invariant T (MAIT) cells are enriched in the liver, where they play crucial roles in antibacterial defense and inflammation regulation. Compared to other autoimmune conditions affecting the synovium of the joints, MAIT cells from AILD exhibited a greater deficiency in ratio, elevated activation markers, increased apoptosis, and higher pro-inflammatory cytokines production. However, the frequency of MAIT cells in AILD was negatively correlated with anti-bacterial indexes, and their impaired responsiveness and weakened anti-bacterial potential were evidenced by reduced expansion ability, lower maximal IFN-γ production, and diminished E. coli-induced cytotoxic mediators release. Similar shifts in MAIT cell ratios and phenotypes were observed in both primary biliary cirrhosis and autoimmune hepatitis, linked to upregulation of bile acid components in the affected tissue. Specifically, ursodeoxycholic acid, a metabolic intermediate and traditional anti-primary biliary cirrhosis drug, inhibited TCR-mediated expansion and downregulated pro-inflammatory cytokines and anti-bacterial-related mediators in MAIT cells. These findings underscore the intricate interplay between hepatic pathology and MAIT cells, and highlight the importance of antibacterial monitoring during ursodeoxycholic acid treatment in AILD.


Subject(s)
Cytokines , Hepatitis, Autoimmune , Liver Cirrhosis, Biliary , Mucosal-Associated Invariant T Cells , Mucosal-Associated Invariant T Cells/immunology , Humans , Hepatitis, Autoimmune/immunology , Hepatitis, Autoimmune/drug therapy , Liver Cirrhosis, Biliary/immunology , Liver Cirrhosis, Biliary/drug therapy , Cytokines/metabolism , Male , Female , Ursodeoxycholic Acid/pharmacology , Ursodeoxycholic Acid/therapeutic use , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Liver/immunology , Liver/pathology , Liver/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/drug therapy , Cells, Cultured , Escherichia coli/immunology , Adult , Aged
7.
Poult Sci ; 103(10): 104148, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142031

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is a notable pathogen that frequently leads to avian colibacillosis, posing a substantial risk to both the poultry industry and public health. The commercial vaccines against avian colibacillosis are primarily inactivated vaccines, but their effectiveness is limited to specific serotypes. Recent advances have highlighted bacterial membrane vesicles (MV) as a promising candidate in vaccine research. How to produce bacterial MVs vaccines on a large scale is a significant challenge for the industrialization of MVs. The msbB gene encodes an acyltransferase and has been implicated in altering the acylation pattern of lipid A, leading to a decrease in lipid A content in lipopolysaccharides (LPS). Here, we evaluated the immunoprotective efficacy of MVs derived from the LPS low-expressed APEC strain FY26ΔmsbB, which was an APEC mutant strain with a deletion of the msbB gene. The nitrogen cavitation technique was employed to extract APEC MVs, with results indicating a significant increase in MVs yield compared to that obtained under natural culture. The immunization effectiveness was assessed, revealing that FY26ΔmsbB MVs elicited an antibody response of laying hens and facilitated bacterial clearance. Protective efficacy studies demonstrated that immunization with FY26ΔmsbB MVs conferred the immune protection in chickens challenged with the wild-type APEC strain FY26. Notably, LPS low-carried MVs recovered from the mutant FY26ΔmsbB also displayed cross-protective capabilities, and effectively safeguarding against infections caused by O1, O7, O45, O78, and O101 serotypes virulent APEC strains. These findings suggest that MVs generated from the LPS low-expressed APEC strain FY26ΔmsbB represent a novel and empirically validated subunit vaccine for the prevention and control of infections by various APEC serotypes.


Subject(s)
Chickens , Escherichia coli Infections , Escherichia coli Vaccines , Escherichia coli , Poultry Diseases , Vaccines, Subunit , Animals , Poultry Diseases/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/immunology , Escherichia coli Infections/veterinary , Escherichia coli Infections/prevention & control , Escherichia coli Infections/immunology , Escherichia coli/immunology , Escherichia coli Vaccines/immunology , Escherichia coli Vaccines/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Female , Cross Protection
8.
mSphere ; 9(9): e0033024, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39158304

ABSTRACT

Outer membrane vesicles (OMVs) from Gram-negative bacteria can be used as a vaccine platform to deliver heterologous antigens. Here, the major protective antigens of Yersinia pestis, F1 and LcrV, were fused either with the leader sequence or the transmembrane domain of the outer membrane protein A (OmpA), resulting in chimeric proteins OmpA-ls-F1V and OmpA46-159-F1V, respectively. We show that OmpA-ls-F1V and OmpA46-159-F1V can be successfully delivered into the lumen and membrane of the OMVs of Escherichia coli, respectively. Mutation of ompA but not tolR in E. coli enhanced the delivery efficiency of OmpA-ls-F1V into OMVs. The OmpA-ls-F1V protein comprises up to 20% of the total protein in OMVs derived from the ompA mutant (OMVdA-ALS-F1V), a proportion significantly higher than the 1% observed for OmpA46-159-F1V in OMVs produced by an ompA mutant that expresses OmpA46-159-F1V, referred to as OMVdA-LATM5-F1V. Intramuscular (i.m.) immunization of mice with OMVdA-ALS-F1V induced significantly higher levels of serum anti-LcrV and anti-F1 IgG, and provided higher efficacy in protection against subcutaneous (s.c.) Y. pestis infection compared to OMVdA-LATM5-F1V and the purified recombinant F1V (rF1V) protein adsorbed to aluminum hydroxide. The three-dose i.m. immunization with OMVdA-ALS-F1V, administered at 14-day intervals, provides complete protection to mice against s.c. infection with 130 LD50 of Y. pestis 201 and conferred 80% against intranasal (i.n.) challenge with 11.4 LD50 of Y. pestis 201. Taken together, our findings indicate that the engineered OMVs containing F1V fused with the leader sequence of OmpA provide significantly higher protection than rF1V against both s.c. and i.n. infection of Y. pestis and more balanced Th1/Th2 responses.IMPORTANCEThe two major protective antigens of Y. pestis, LcrV and F1, have demonstrated the ability to elicit systemic and local mucosal immune responses as subunit vaccines. However, these vaccines have failed to provide adequate protection against pneumonic plague in African green monkeys. Here, Y. pestis F1 and LcrV antigens were successfully incorporated into the lumen and the surface of the outer membrane vesicles (OMVs) of E. coli by fusion either with the leader sequence or the transmembrane domain of OmpA. We compared the humoral immune response elicited by these OMV formulations and their protective efficacy in mice against Y. pestis. Our results demonstrate that the plague OMV vaccine candidates can induce robust protective immunity against both s.c. and i.n. Y. pestis infections, surpassing the effectiveness of rF1V. In addition, immunization with OMVs generated a relatively balanced Th1/Th2 immune response compared to rF1V immunization. These findings underscore the potential of OMVs-based plague vaccines for further development.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Bacterial Outer Membrane Proteins , Escherichia coli , Plague Vaccine , Plague , Pore Forming Cytotoxic Proteins , Yersinia pestis , Animals , Plague/prevention & control , Plague/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/genetics , Escherichia coli/immunology , Yersinia pestis/immunology , Yersinia pestis/genetics , Mice , Pore Forming Cytotoxic Proteins/immunology , Pore Forming Cytotoxic Proteins/genetics , Plague Vaccine/immunology , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Female , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Mice, Inbred BALB C , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Bacterial Outer Membrane/immunology , Bacterial Proteins
9.
Bull Exp Biol Med ; 177(2): 243-247, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090462

ABSTRACT

The influence of non-opsonized and opsonized S. aureus 2879M and E. coli 321 strains on the total strength of interaction between the endothelial cell and neutrophil during the docking process was studied using in vitro model of experimental septicemia. We observed a decrease in the force and work of adhesion between receptors of neutrophils and endothelial cells under the influence of non-opsonized strains and further decrease in the affinity of single interactions between cells under the influence of opsonized S. aureus, which was compensated by an increase in the number of contacts, as well as an increase in the force of adhesion under the influence of opsonized E. coli compared to non-opsonized bacteria, which remained below the control level, while adhesion work reaches the control level. Thus, opsonization of S. aureus aggravates the "immunological uncoupling" between neutrophils and endothelial cells, while opsonization of E. coli reduces the pathological effect compared to non-opsonized bacteria.


Subject(s)
Endothelial Cells , Escherichia coli , Neutrophils , Sepsis , Staphylococcus aureus , Neutrophils/immunology , Neutrophils/metabolism , Escherichia coli/immunology , Staphylococcus aureus/immunology , Staphylococcus aureus/pathogenicity , Sepsis/immunology , Sepsis/microbiology , Sepsis/metabolism , Sepsis/pathology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Endothelial Cells/microbiology , Humans , Phagocytosis , Cell Adhesion/immunology , Opsonin Proteins/metabolism , Opsonin Proteins/immunology , Bacterial Adhesion , Animals
10.
Nat Commun ; 15(1): 6766, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117651

ABSTRACT

Live vaccines are ideal for inducing immunity but suffer from the need to attenuate their pathogenicity or replication to preclude the possibility of escape. Unnatural amino acids (UAAs) provide a strategy to engineer stringent auxotrophies, yielding conditionally replication incompetent live bacteria with excellent safety profiles. Here, we engineer Pseudomonas aeruginosa to maintain auxotrophy for the UAA p-benzoyl-L-phenylalanine (BzF) through its incorporation into the essential protein DnaN. In vivo evolution using an Escherichia coli-based two-hybrid selection system enabled engineering of a mutant DnaN homodimeric interface completely dependent on a BzF-specific interaction. This engineered strain, Pa Vaccine, exhibits undetectable escape frequency (<10-11) and shows excellent safety in naïve mice. Animals vaccinated via intranasal or intraperitoneal routes are protected from lethal challenge with pathogenic P. aeruginosa PA14. These results establish UAA-auxotrophic bacteria as promising candidates for bacterial vaccine therapy and outline a platform for expanding this technology to diverse bacterial pathogens.


Subject(s)
Pseudomonas Infections , Pseudomonas Vaccines , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/prevention & control , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Mice , Female , Pseudomonas Vaccines/immunology , Pseudomonas Vaccines/genetics , Amino Acids , Phenylalanine/analogs & derivatives , Escherichia coli/immunology , Escherichia coli/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Mice, Inbred BALB C
11.
Nat Commun ; 15(1): 7384, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39191765

ABSTRACT

Toll/interleukin-1 receptor (TIR) domain-containing proteins play a critical role in immune responses in diverse organisms, but their function in bacterial systems remains to be fully elucidated. This study, focusing on Escherichia coli, addresses how TIR domain-containing proteins contribute to bacterial immunity against phage attack. Through an exhaustive survey of all E. coli genomes available in the NCBI database and testing of 32 representatives of the 90% of the identified TIR domain-containing proteins, we found that a significant proportion (37.5%) exhibit antiphage activities. These defense systems recognize a variety of phage components, thus providing a sophisticated mechanism for pathogen detection and defense. This study not only highlights the robustness of TIR systems in bacterial immunity, but also draws an intriguing parallel to the diversity seen in mammalian Toll-like receptors (TLRs), enriching our understanding of innate immune mechanisms across life forms and underscoring the evolutionary significance of these defense strategies in prokaryotes.


Subject(s)
Bacteriophages , Escherichia coli , Protein Domains , Escherichia coli/genetics , Escherichia coli/virology , Escherichia coli/immunology , Escherichia coli/metabolism , Bacteriophages/genetics , Bacteriophages/immunology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Immunity, Innate , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics
12.
Nat Commun ; 15(1): 7539, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215040

ABSTRACT

Many bacterial immune systems recognize phage structural components to activate antiviral responses, without inhibiting the function of the phage component. These systems can be encoded in specific chromosomal loci, known as defense islands, and in mobile genetic elements such as prophages and phage-inducible chromosomal islands (PICIs). Here, we identify a family of bacterial immune systems, named Tai (for 'tail assembly inhibition'), that is prevalent in PICIs, prophages and P4-like phage satellites. Tai systems protect their bacterial host population from other phages by blocking the tail assembly step, leading to the release of tailless phages incapable of infecting new hosts. To prevent autoimmunity, some Tai-positive phages have an associated counter-defense mechanism that is expressed during the phage lytic cycle and allows for tail formation. Interestingly, the Tai defense and counter-defense genes are organized in a non-contiguous operon, enabling their coordinated expression.


Subject(s)
Bacteriophages , Prophages , Bacteriophages/genetics , Bacteriophages/physiology , Prophages/genetics , Genomic Islands/genetics , Bacteria/virology , Bacteria/genetics , Bacteria/immunology , Operon/genetics , Escherichia coli/genetics , Escherichia coli/virology , Escherichia coli/immunology , Gene Expression Regulation, Bacterial
13.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2322-2332, 2024 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-39044594

ABSTRACT

This study aims to establish an ELISA method with high specificity for the detection of antibodies against Mycoplasma hyopneumoniae. Firstly, we constructed a recombinant strain Escherichia coli BL21(DE3)-pET-32a(+)-mhp336 to express the recombinant protein Mhp336 and used the purified Mhp336 as the coating antigen. Then, we optimized the ELISA parameters, including antigen concentration, blocking buffer, blocking time, dilution of serum, incubation time with serum, secondary antibody dilution, secondary antibody incubation time, colorimetric reaction time, and cut-off value. Afterwards, reproducibility experiments were conducted, and the cross reactivity of Mhp366 with other antisera of porcine major pathogens and the maximum dilution ratios of the sera were determined. Finally, 226 porcine serum samples were detected using the method established in this study, a commercial ELISA kit for M. hyopneumoniae antibody detection, and a convalescent serum ELISA kit for M. hyopneumoniae antibody detection. The detection results of the three methods were compared to evaluate the sensitivity and specificity of the ELISA method established in this study. For this method, the optimal antigen concentration, blocking buffer, blocking time, dilution of serum, incubation time with serum, secondary antibody dilution, secondary antibody incubation time, and colorimetric reaction time were 0.05 µg/mL, PBS containing 2.5% skim milk, 1 h, 1:500, 0.5 h, 1:10 000, 1 h, and 5 min, respectively. Validation of the ELISA method based on Mhp336 showed a cut-off value of 0.332. The coefficients of variation of both intra-batch and inter-batch kits were below 7%. The detection results of porcine serum samples indicated that the method established in this study outperformed the commercial ELISA kit and the convalescent serum ELISA kit for M. hyopneumoniae antibody detection in terms of sensitivity and specificity. We successfully established an ELISA method for detecting the antibodies against M. hyopneumoniae based on Mhp336 protein. This method demonstrated high sensitivity and specificity, serving as a tool for the prevention of mycoplasmal pneumonia of swine in pig farms.


Subject(s)
Antibodies, Bacterial , Enzyme-Linked Immunosorbent Assay , Mycoplasma hyopneumoniae , Recombinant Proteins , Enzyme-Linked Immunosorbent Assay/methods , Mycoplasma hyopneumoniae/immunology , Animals , Swine , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/immunology , Pneumonia of Swine, Mycoplasmal/immunology , Pneumonia of Swine, Mycoplasmal/diagnosis , Pneumonia of Swine, Mycoplasmal/microbiology , Sensitivity and Specificity , Bacterial Proteins/immunology , Bacterial Proteins/genetics
14.
RMD Open ; 10(3)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39038910

ABSTRACT

OBJECTIVE: Gut-residing bacteria, such as Escherichia coli, can acetylate their proteome under conditions of amine starvation. It is postulated that the (gut) microbiome is involved in the breach of immune tolerance to modified self-proteins leading to the anti-modified protein antibodies (AMPAs), hallmarking seropositive rheumatoid arthritis (RA). Our aim was to determine whether acetylated bacterial proteins can induce AMPA responses cross-reactive to modified self-proteins and be recognised by human AMPA (hAMPA). METHODS: E. coli bacteria were grown under amine starvation to generate endogenously acetylated bacterial proteins. Furthermore, E. coli proteins were acetylated chemically. Recognition of these proteins by hAMPA was analysed by western blotting and ELISA; recognition by B cells carrying a modified protein-reactive B cell receptor (BCR) was analysed by pSyk (Syk phosphorylation) activation assay. C57BL/6 mice were immunised with (modified) bacterial protein fractions, and sera were analysed by ELISA. RESULTS: Chemically modified bacterial protein fractions contained high levels of acetylated proteins and were readily recognised by hAMPA and able to activate B cells carrying modified protein-reactive BCRs. Likely due to substantially lower levels of acetylation, endogenously acetylated protein fractions were not recognised by hAMPA or hAMPA-expressing B cells. Immunising mice with chemically modified protein fractions induced a strong cross-reactive AMPA response, targeting various modified antigens including citrullinated proteins. CONCLUSIONS: Acetylated bacterial proteins are recognisable by hAMPA and are capable of inducing cross-reactive AMPA in mice. These observations provide the first conceptual evidence for a novel mechanism involving the (endogenous) acetylation of the bacterial proteome, allowing a breach of tolerance to modified proteins and the formation of cross-reactive AMPA.


Subject(s)
B-Lymphocytes , Animals , Mice , Acetylation , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Escherichia coli/immunology , Bacterial Proteins/immunology , Cross Reactions/immunology , Antibody Formation/immunology , Mice, Inbred C57BL , Antigens, Bacterial/immunology , Arthritis, Rheumatoid/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/immunology
15.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000557

ABSTRACT

The effects of intestinal microflora on extraintestinal immune response by intestinal cytokines and metabolites have been documented, but whether intestinal microbes stimulate serum antibody generation is unknown. Here, serum antibodies against 69 outer membrane proteins of Escherichia coli, a dominant bacterium in the human intestine, are detected in 141 healthy individuals of varying ages. Antibodies against E. coli outer membrane proteins are determined in all serum samples tested, and frequencies of antibodies to five outer membrane proteins (OmpA, OmpX, TsX, HlpA, and FepA) are close to 100%. Serum antibodies against E. coli outer membrane proteins are further validated by Western blot and bacterial pull-down. Moreover, the present study shows that OstA, HlpA, Tsx, NlpB, OmpC, YfcU, and OmpA provide specific immune protection against pathogenic E. coli, while HlpA and OmpA also exhibit cross-protection against Staphylococcus aureus infection. These finding indicate that intestinal E. coli activate extraintestinal antibody responses and provide anti-infective immunity.


Subject(s)
Antibodies, Bacterial , Bacterial Outer Membrane Proteins , Escherichia coli , Humans , Escherichia coli/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/immunology , Adult , Female , Staphylococcus aureus/immunology , Male , Antibody Formation/immunology , Middle Aged , Escherichia coli Proteins/immunology , Young Adult , Aged , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Adolescent , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology
16.
Eur J Immunol ; 54(10): e2451190, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39072722

ABSTRACT

Sepsis affects 25 million children per year globally, leading to 2.9 million deaths and substantial disability in survivors. Extensive characterization of interactions between the host and bacteria in children is required to design novel preventive and therapeutic strategies tailored to this age group. Vγ9Vδ2 T cells are the first T cells generated in humans. These cells are defined by the expression of Vγ9Vδ2 T-cell receptors (TCRs, using the TRGV9 and TRDV2 gene segments), which react strongly against the prototypical bacterial phosphoantigen HMBPP. We investigated this reactivity by analyzing the TCR δ (TRD) repertoire in the blood of 76 children (0-16 years) with blood culture-proven bacterial sepsis caused by HMBPP-positive Escherichia coli or by HMBPP-negative Staphylococcus aureus or by HMBPP-negative Streptococcus pneumoniae. Strikingly, we found that S. aureus, and to a lesser extent E. coli but not S. pneumoniae, shaped the TRDV2 repertoire in young children (<2 years) but not in older children or adults. This dichotomy was due to the selective expansion of a fetal TRDV2 repertoire. Thus, young children possess fetal-derived Vγ9Vδ2 T cells that are highly responsive toward specific bacterial pathogens.


Subject(s)
Receptors, Antigen, T-Cell, gamma-delta , Sepsis , Staphylococcus aureus , Streptococcus pneumoniae , Humans , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics , Child , Infant , Child, Preschool , Adolescent , Sepsis/immunology , Staphylococcus aureus/immunology , Streptococcus pneumoniae/immunology , Escherichia coli/immunology , Male , Female , Infant, Newborn , Age Factors , Escherichia coli Infections/immunology , Staphylococcal Infections/immunology
17.
J Immunol Methods ; 532: 113728, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059746

ABSTRACT

Immunoassay relies on antibodies, but traditional antibodies such as monoclonal antibody (mAb) require animal immunization and complex procedures. Single-chain variable fragment (scFv) becomes a potential alternative to mAb with advantages of the low cost, rapid and easy prepared. In the present study, we prepared scFvs against dihydroartemisinin (DHA) based on E. coli and HEK293T cell expression system, named MBP-scFv and scFv-Fc, respectively. Their properties were compared with the parent mAb. The calculated affinity constants of mAb, MBP-scFv and scFv-Fc were 2.1 × 108 L mol-1, 2.2 × 107 L mol-1 and 1.6 × 108 L mol-1, respectively. The half inhibitory concentration (IC50) of mAb, MBP-scFv and scFv-Fc were 1.16 ng mL-1, 2.15 ng mL-1 and 6.57 ng mL-1, respectively. Both the scFv showed less sensitive than the mAb based on the IC50. The cross-reactivities of MBP-scFv for artemisinin and artesunate exhibited similarities to the mAb, yet the cross-reactivities of scFv-Fc for these compounds exceeded those of the mAb significantly. The stability of the scFvs was ascertained to be maintained for over 5 days at room temperature, and for more than a month at both 4 °C and - 20 °C. After that, the indirect competitive enzyme-linked immunosorbent assays (icELISAs) based on the scFv from E. coli were used to detect the DHA content in eight drug samples, and the result was consistent with ultra-performance liquid chromatography simultaneously. Although scFv can be used for quantitative determination of drugs, but it still cannot completely replace mAb in immunoassay without evolution and modification.


Subject(s)
Antibodies, Monoclonal , Artemisinins , Single-Chain Antibodies , Artemisinins/immunology , Artemisinins/pharmacology , Single-Chain Antibodies/immunology , Humans , Antibodies, Monoclonal/immunology , HEK293 Cells , Antibody Affinity , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/immunology , Cross Reactions/immunology , Antimalarials/immunology , Enzyme-Linked Immunosorbent Assay , Antibody Specificity
18.
Gut Microbes ; 16(1): 2380064, 2024.
Article in English | MEDLINE | ID: mdl-39069911

ABSTRACT

Mucosal enrichment of the Adherent-Invasive E. coli (AIEC) pathotype and the expansion of pathogenic IFNγ-producing Th17 (pTh17) cells have been linked to Crohn's Disease (CD) pathogenesis. However, the molecular pathways underlying the AIEC-dependent pTh17 cell transdifferentiation in CD patients remain elusive. To this aim, we created and functionally screened a transposon AIEC mutant library of 10.058 mutants to identify the virulence determinants directly implicated in triggering IL-23 production and pTh17 cell generation. pTh17 cell transdifferentiation was assessed in functional assays by co-culturing AIEC-infected human dendritic cells (DCs) with autologous conventional Th17 (cTh17) cells isolated from blood of Healthy Donors (HD) or CD patients. AIEC triggered IL-23 hypersecretion and transdifferentiation of cTh17 into pTh17 cells selectively through the interaction with CD-derived DCs. Moreover, the chronic release of IL-23 by AIEC-colonized DCs required a continuous IL-23 neutralization to significantly reduce the AIEC-dependent pTh17 cell differentiation. The multi-step screenings of the AIEC mutant's library revealed that deletion of ybaT or rfaP efficiently hinder the IL-23 hypersecretion and hampered the AIEC-dependent skewing of protective cTh17 into pathogenic IFNγ-producing pTh17 cells. Overall, our findings indicate that ybaT (inner membrane transport protein) and rfaP (LPS-core heptose kinase) represent novel and attractive candidate targets to prevent chronic intestinal inflammation in CD.


Subject(s)
Cell Transdifferentiation , Crohn Disease , Dendritic Cells , Escherichia coli , Interleukin-23 , Th17 Cells , Th17 Cells/immunology , Crohn Disease/immunology , Crohn Disease/genetics , Humans , Cell Transdifferentiation/genetics , Dendritic Cells/immunology , Interleukin-23/genetics , Interleukin-23/metabolism , Interleukin-23/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Deletion , Interferon-gamma/metabolism , Interferon-gamma/genetics , Interferon-gamma/immunology , Virulence Factors/genetics , Virulence Factors/metabolism
19.
Mol Immunol ; 173: 10-19, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004021

ABSTRACT

Adjuvant is a major supplementary component of vaccines to boost adaptive immune responses. To select an efficient adjuvant from the heat-labile toxin B subunit (LTB) of E. coli, four LTB mutants (numbered LTB26, LTB34, LTB57, and LTB85) were generated by multi-amino acid random replacement. Mice have been intranasally vaccinated with human rotavirus VP8 admixed. Among the four mutants, enzyme-linked immunosorbent assay (ELISA) revealed that LTB26 had enhanced mucosal immune adjuvanticity compared to LTB, showing significantly enhanced immune responses in both serum IgG and mucosal sIgA levels. The 3D modeling analysis suggested that the enhanced immune adjuvanticity of LTB26 might be due to the change of the first LTB α-helix to a ß-sheet. The molecular mechanism was studied using transcriptomic and flow cytometric (FCM) analysis. The transcriptomic data demonstrated that LTB26 enhanced immune response by enhancing B cell receptor (BCR) and major histocompatibility complex (MHC) II+-related pathways. Furthermore, LTB26 promoted Th1 and Th2-type immune responses which were confirmed by detecting IFN-γ and IL-4 expression levels. Immunohistochemical analysis demonstrated that LTB26 enhanced both Th1 and Th2 type immunity. Therefore, LTB26 was a potent mucosal immune adjuvant meeting the requirement for use in human clinics in the future.


Subject(s)
Adjuvants, Immunologic , Enterotoxins , Escherichia coli Proteins , Animals , Female , Humans , Mice , Antigens, Viral/immunology , Antigens, Viral/genetics , Bacterial Toxins/immunology , Bacterial Toxins/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Enterotoxins/immunology , Enterotoxins/genetics , Escherichia coli/immunology , Escherichia coli Proteins/immunology , Escherichia coli Proteins/genetics , Immunity, Mucosal/immunology , Immunoglobulin G/immunology , Mice, Inbred BALB C , Mutation , Rotavirus/immunology , Rotavirus Infections/immunology , Rotavirus Vaccines/immunology , Rotavirus Vaccines/administration & dosage
20.
Biochemistry (Mosc) ; 89(5): 923-932, 2024 May.
Article in English | MEDLINE | ID: mdl-38880652

ABSTRACT

Phagocytosis is an essential innate immunity function in humans and animals. A decrease in the ability to phagocytize is associated with many diseases and aging of the immune system. Assessment of phagocytosis dynamics requires quantification of bacteria inside and outside the phagocyte. Although flow cytometry is the most common method for assessing phagocytosis, it does not include visualization and direct quantification of location of bacteria. Here, we used double-labeled Escherichia coli cells to evaluate phagocytosis by flow cytometry (cell sorting) and confocal microscopy, as well as employed image cytometry to provide high-throughput quantitative and spatial recognition of the double-labeled E. coli associated with the phagocytes. Retention of pathogens on the surface of myeloid and lymphoid cells without their internalization was suggested to be an auxiliary function of innate immunity in the fight against infections. The developed method of bacterial labeling significantly increased the accuracy of spatial and quantitative measurement of phagocytosis in whole blood and can be recommended as a tool for phagocytosis assessment by image cytometry.


Subject(s)
Escherichia coli , Flow Cytometry , Phagocytosis , Escherichia coli/immunology , Flow Cytometry/methods , Humans , Microscopy, Confocal , Staining and Labeling/methods , Image Cytometry/methods , Animals
SELECTION OF CITATIONS
SEARCH DETAIL