Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22.947
1.
Luminescence ; 39(5): e4761, 2024 May.
Article En | MEDLINE | ID: mdl-38807512

The fear of an increase in blood sugar can be very traumatic. Being diabetic either type I or type II leads to a disorder called diabetes distress having traits of stress, depression, and anxiety. Among risk factors of diabetes mellitus heavy and trace metal toxicity emerges as new risk factors reported in many studies. In this study we target toxic metals, viz., Ni2+, Zn2+, and Cu2+, involved in the pathogenesis of diabetes and diabetic stress with naphthazarin esters. The compounds C1-C3 isolated from the leaves and roots of Arnebia guttata were tested for their metal-binding ability in an aqueous medium in UV-Visible and nuclear magnetic resonance (NMR) studies. These probes are well-known naphthoquinones present in the Arnebia species. In the UV-Visible titrations of compounds C1-C3 with Na2+, K2+, Zn2+, Ca2+, Cu2+, Mg2+, Co2+, and Ni2+ ions, significant binding was observed with Ni2+, Cu2+, and Zn2+ ions in MeOH/H2O. There occurs a beautiful formation of red-shifted bands between the 520 to 620 nm range with a synergistic increase in absorbance. Also, the disappearance of proton peaks in the 1H NMR spectrum on addition of metal ions confirmed binding. Compounds C1-C3 isolated from A. guttata came out as potent Ni2+, Zn2+, and Cu2+ sensors that are reportedly involved in islet function and induction of diabetes.


Esters , Naphthoquinones , Esters/chemistry , Naphthoquinones/chemistry , Diabetes Mellitus/metabolism , Neurotoxins/chemistry , Neurotoxins/metabolism , Water/chemistry , Molecular Structure , Plant Leaves/chemistry
2.
Environ Sci Pollut Res Int ; 31(24): 35206-35218, 2024 May.
Article En | MEDLINE | ID: mdl-38720129

As alternative substances of PBDEs, organophosphate esters (OPEs), an emerging organic pollutant, were increasingly produced and used in many kinds of industries and consumer products. However, OPEs also have various adverse toxic effects. Information on the pollution levels and exposure to OPEs in related industries is still limited. This study presented data on OPE contamination in the soil, leaf, and river water samples from seven typical industrial parks in Southwest China. Total concentration of seven OPEs (Σ7OPE) including tri-n-butyl phosphate (TnBP), tris-(2-ethylhexyl) phosphate (TEHP), tris-(2-butoxyethyl) phosphate (TBEP), tris-(2-carboxyethyl) phosphine (TCEP), triphenyl phosphate (TPhP), tris-(1,3-dichloro-2-propyl) ester (TDCPP), and tris-(chlorisopropyl) phosphate (TCPP) in the soil samples (36.2 ~ 219.7 ng/g) and the surrounding river water samples (118.9 ~ 287.7 ng/L) were mostly lower than those in other studies, while the Σ7OPE level in the leaves (2053.3 ~ 8152.7 ng/g) was relatively high. There were significant differences in the concentration and distribution of OPEs in the surrounding environment of different industrial parks. TDCPP, TnBP, and TCPP could be used as the characteristic compound in soil samples from auto industrial park, river samples from shoe making industrial park, and leaf samples from logistics park, respectively. The parameter m (the content ratio of chlorinated OPEs to alkyl OPEs) was suggested to distinguish the types of industrial park preliminary. When m ≥ 1, it mainly refers to heavy industries sources such as automobiles, electronics, and machinery, etc. When m<1, it mainly for the light industrial sources such as textile industry, transportation services, and resources processing, etc. For logistics park, furniture park and Wuhou comprehensive industrial park, the volatilization of materials was the main sources of OPEs in the surrounding environment, while more effort was required to strengthen the pollution control and management of the waste water and soil in the pharmacy industrial park, shoe making industrial park and auto industrial park. Risk assessment showed that there was a negligible non-cancer and carcinogenic risk in the soil, while high attention should be paid to the non-cancer risk for children.


Environmental Monitoring , Esters , Organophosphates , China , Risk Assessment , Organophosphates/analysis , Esters/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis
3.
Chemosphere ; 359: 142366, 2024 Jul.
Article En | MEDLINE | ID: mdl-38768782

A multi-target aptamer assay was developed as a phthalic acid ester (PAE) panel to screen selected PAEs in plastic leachate samples. The panel comprises 13 PAEs (PAE-13), namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, di-n-hexyl phthalate, diisobutyl phthalate, diisononyl phthalate, diisodecyl phthalate, mono-2-ethylhexyl phthalate, di-2-ethylhexyl phthalate, diphenyl phthalate, butyl benzyl phthalate, dicyclohexyl phthalate, and phthalic acid. Herein, we proposed an aptamer assay using a newly truncated aptamer (20-mer) and the 7-aminoactinomycin D fluorophore, which selectively binds to guanine in single-stranded DNA, resulting in increased fluorescence intensity. The assay is highly selective for PAE-13 clusters. The selectivity of the assay was evaluated using 13 different PAEs and mixtures depending on the side chain structure. The quantitative detection of PAEs was demonstrated by adopting mixed PAE-13 simulants and achieved a limit of detection of ∼1.4 pg/mL. The repeatability and reproducibility of the assay were also evaluated by presenting acceptable coefficients of variation (%CV less than 10% and 15%, respectively). The performance of the assay was demonstrated by analyzing the plastic leachate samples, and the positive correlation (correlation coefficient, r = 0.985) was confirmed by comparing them with the total sum of individual PAE peak areas obtained by gas chromatography mass spectrometry analysis.


Aptamers, Nucleotide , Endocrine Disruptors , Esters , Phthalic Acids , Water Pollutants, Chemical , Phthalic Acids/analysis , Endocrine Disruptors/analysis , Water Pollutants, Chemical/analysis , Esters/analysis , Aptamers, Nucleotide/chemistry , Plastics/analysis , Plastics/chemistry , Reproducibility of Results
4.
Harmful Algae ; 134: 102621, 2024 Apr.
Article En | MEDLINE | ID: mdl-38705617

Vulcanodinium rugosum is a benthic dinoflagellate known for producing pinnatoxins, pteriatoxins, portimines and kabirimine. In this study, we aimed to identify unknown analogs of these emerging toxins in mussels collected in the Ingril lagoon, France. First, untargeted data acquisitions were conducted by means of liquid chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Data processing involved a molecular networking approach, and a workflow dedicated to the identification of biotransformed metabolites. Additionally, targeted analyses by liquid chromatography coupled to triple quadrupole mass spectrometry were also implemented to further investigate and confirm the identification of new compounds. For the first time, a series of 13-O-acyl esters of portimine-A (n = 13) were identified, with fatty acid chains ranging between C12:0 and C22:6. The profile was dominated by the palmitic acid conjugation. This discovery was supported by fractionation experiments combined with the implementation of a hydrolysis reaction, providing further evidence of the metabolite identities. Furthermore, several analogs were semi-synthesized, definitively confirming the discovery of these metabolization products. A new analog of pinnatoxin, with a molecular formula of C42H65NO9, was also identified across the year 2018, with the highest concentration observed in August (4.5 µg/kg). The MS/MS data collected for this compound exhibited strong structural similarities with PnTX-A and PnTX-G, likely indicating a substituent C2H5O2 in the side chain at C33. The discovery of these new analogs will contribute to deeper knowledge of the chemodiversity of toxins produced by V. rugosum or resulting from shellfish metabolism, thereby improving our ability to characterize the risks associated with these emerging toxins.


Bivalvia , Dinoflagellida , Esters , Fatty Acids , Marine Toxins , Animals , Bivalvia/metabolism , Bivalvia/chemistry , Dinoflagellida/chemistry , Dinoflagellida/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Fatty Acids/chemistry , Esters/metabolism , Esters/chemistry , Marine Toxins/metabolism , Marine Toxins/chemistry , Chromatography, Liquid , France
5.
J Microencapsul ; 41(4): 312-325, 2024 Jun.
Article En | MEDLINE | ID: mdl-38717966

The instability of ester bonds, low water solubility, and increased cytotoxicity of flavonoid glycoside esters significantly limit their application in the food industry. Therefore, the present study attempted to resolve these issues through liposome encapsulation. The results showed that baicalin butyl ester (BEC4) and octyl ester (BEC8) have higher encapsulation and loading efficiencies and lower leakage rate from liposomes than baicalin. FTIR results revealed the location of BEC4 and BEC8 in the hydrophobic layer of liposomes, which was different from baicalin. Additionally, liposome encapsulation improved the water solubility and stability of BEC4 and BEC8 in the digestive system and PBS but significantly reduced their cytotoxicity. Furthermore, the release rate of BEC4 and BEC8 from liposomes was lower than that of baicalin during gastrointestinal digestion. These results indicate that liposome encapsulation alleviated the negative effects of fatty chain introduction into flavonoid glycosides.


Esters , Flavonoids , Liposomes , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/administration & dosage , Liposomes/chemistry , Humans , Esters/chemistry , Solubility , Cell Survival/drug effects , Drug Compounding
6.
Sci Total Environ ; 932: 172984, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38710392

The ubiquitous application of phthalate esters (PAEs) as plasticizers contributes to high levels of marine pollution, yet the contamination patterns of PAEs in various shellfish species remain unknown. The objective of this research is to provide the first information on the pollution characteristics of 16 PAEs in different shellfish species from the Pearl River Delta (PRD), South China, and associated health risks. Among the 16 analyzed PAEs, 13 were identified in the shellfish, with total PAE concentrations ranging from 23.07 to 3794.08 ng/g dw (mean = 514.35 ng/g dw). The PAE pollution levels in the five shellfish species were as follows: Ostreidae (mean = 1064.12 ng/g dw) > Mytilus edulis (mean = 509.88 ng/g dw) > Babylonia areolate (mean = 458.14 ng/g dw) > Mactra chinensis (mean = 378.90 ng/g dw) > Haliotis diversicolor (mean = 335.28 ng/g dw). Dimethyl phthalate (DMP, mean = 69.85 ng/g dw), diisobutyl phthalate (DIBP, mean = 41.39 ng/g dw), dibutyl phthalate (DBP, mean = 130.91 ng/g dw), and di(2-ethylhexyl) phthalate (DEHP, mean = 226.23 ng/g dw) were the most abundant congeners. Notably, DEHP constituted the most predominant fraction (43.98 %) of the 13 PAEs detected in all shellfish from the PRD. Principal component analysis indicated that industrial and domestic emissions served as main sources for the PAE pollution in shellfish from the PRD. It was estimated that the daily intake of PAEs via shellfish consumption among adults and children ranged from 0.004 to 1.27 µg/kgbw/day, without obvious non-cancer risks (< 0.034), but the cancer risks raised some alarm (2.0 × 10-9-1.4 × 10-5). These findings highlight the necessity of focusing on marine environmental pollutants and emphasize the importance of ongoing monitoring of PAE contamination in seafood.


Phthalic Acids , Plasticizers , Shellfish , Water Pollutants, Chemical , Phthalic Acids/analysis , Plasticizers/analysis , Shellfish/analysis , China , Animals , Humans , Water Pollutants, Chemical/analysis , Risk Assessment , Environmental Monitoring , Esters/analysis , Food Contamination/analysis
7.
PLoS One ; 19(5): e0297788, 2024.
Article En | MEDLINE | ID: mdl-38743661

This study was conducted to evaluate the effects of phytosterols (PS) and phytosterol esters (PSE) on C57BL/6 mice. Three groups of 34 six-week-old C57BL/6 mice of specific pathogen free (SPF) grade, with an average initial body weight (IBW) of 17.7g, were fed for 24 days either natural-ingredient diets without supplements or diets supplemented with 89 mg/kg PS or diets supplemented with 400 mg/kg PSE. Growth performance, blood biochemistry, liver and colon morphology as well as intestinal flora status were evaluated. Both PS and PSE exhibited growth promotion and feed digestibility in mice. In blood biochemistry, the addition of both PS and PSE to the diet resulted in a significant decrease in Total Cholesterol (TC) and Triglyceride (TG) levels and an increase in Superoxide Dismutase (SOD) activity. No significant changes in liver and intestinal morphology were observed. Both increased the level of Akkermansia in the intestinal tract of mice. There was no significant difference between the effects of PS and PSE. It was concluded that dietary PS and PSE supplementation could improve growth performance, immune performance and gut microbiome structure in mice, providing insights into its application as a potential feed additive in animals production.


Dietary Supplements , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Phytosterols , Animals , Phytosterols/pharmacology , Phytosterols/administration & dosage , Gastrointestinal Microbiome/drug effects , Mice , Liver/metabolism , Liver/drug effects , Esters/pharmacology , Male , Cholesterol/blood , Triglycerides/blood , Animal Feed/analysis , Superoxide Dismutase/metabolism , Superoxide Dismutase/blood
8.
Nutrients ; 16(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38794653

Lutein (Lut) and zeaxanthin (Zeax) are found in the blood and are deposited in the retina (macular pigment). Both are found in the diet in free form and esterified with fatty acids. A high intake and/or status is associated with a lower risk of chronic diseases, especially eye diseases. There is a large global demand for Lut in the dietary supplement market, with marigold flowers being the main source, mainly as lutein esters. As the bioavailability of Lut from free or ester forms is controversial, our aim was to assess the bioavailability of Lut (free vs. ester) and visual contrast threshold (CT). Twenty-four healthy subjects (twelve women, twelve men), aged 20-35 and 50-65 years, were enrolled in a cross-sectional study to consume 6 mg lutein/day from marigold extract (free vs. ester) for two months. Blood samples were taken at baseline and after 15, 40, and 60 days in each period. Serum Lut and Zeax were analysed using HPLC, and dietary intake was determined with a 7-day food record at the beginning of each period. CT, with and without glare, was at 0 and 60 days at three levels of visual angle. Lut + Zeax intake at baseline was 1.9 mg/day, and serum lutein was 0.36 µmol/L. Serum lutein increased 2.4-fold on day 15 (up to 0.81 and 0.90 µmol/L with free and ester lutein, respectively) and was maintained until the end of the study. Serum Zeax increased 1.7-fold. There were no differences in serum Lut responses to free or ester lutein at any time point. CT responses to lutein supplementation (free vs. ester) were not different at any time point. CT correlated with Lut under glare conditions, and better correlations were obtained at low frequencies in the whole group due to the older group. The highest correlations occurred between CT at high frequency and with glare with serum Lut and Lut + Zeax. Only in the older group were inverse correlations found at baseline at a high frequency with L + Z and with Lut/cholesterol and at a low frequency with Lut/cholesterol. In conclusion, daily supplementation with Lut for 15 days significantly increases serum Lut in normolipemic adults to levels associated with a reduced risk of age-related eye disease regardless of the chemical form of lutein supplied. Longer supplementation, up to two months, does not significantly alter the concentration achieved but may contribute to an increase in macular pigment (a long-term marker of lutein status) and thus improve the effect on visual outcomes.


Biological Availability , Lutein , Tagetes , Zeaxanthins , Humans , Lutein/blood , Lutein/administration & dosage , Lutein/pharmacokinetics , Middle Aged , Male , Female , Adult , Zeaxanthins/blood , Zeaxanthins/administration & dosage , Cross-Sectional Studies , Tagetes/chemistry , Aged , Young Adult , Flowers/chemistry , Esters , Dietary Supplements , Contrast Sensitivity
9.
Carbohydr Res ; 540: 109143, 2024 Jun.
Article En | MEDLINE | ID: mdl-38759343

Two new analytical methods, applying absolute 1H qNMR, were developed to monitor product yield and quantify unreacted carbohydrate and fatty acid reactants, in the synthesis of carbohydrate fatty acid esters (CFAE). These methods provide a mass balance of the crude reaction mixtures and diversify the analytical screening and quantitation approaches available within the synthesis of these molecules. Both methods were validated for the model reaction of methyl α-d-glucopyranoside (MAG) and lauric acid (LA) to form the mono ester product, methyl 6-O-dodecanoyl-α-d-glucopyranoside. Analysis in CD3OD by 1H qNMR, with fumaric acid (FA) as an internal standard (IS), allowed monitoring of all reaction components. Alternatively, using CDCl3 and (E)-stilbene as IS enabled the analysis of CFAE and fatty acid. Parameters calculated for method validation included specificity and selectivity, linearity, accuracy, intermediate precision, limit of detection (LOD), limit of quantification (LOQ) and robustness. Both methods provided excellent linearity with R2 > 0.997. The accuracy, precision, and robustness of the method in CD3OD was <2 % uncertainty making it suitable for complete reaction analysis. The method completed in CDCl3 resulted in accuracy, intermediate precision, and robustness of <5 %, except for accuracy in the lowest levels of concentration (>5 %). For all related analytes in the CD3OD and CDCl3 methods, the LOD and LOQ were determined to ensure applicability for the intended use in the assessment of reaction crude composition. Finally, the system suitability was assessed in a scaled lipase catalysed CFAE synthetic reaction. The determined qNMR product yields were verified against isolated purified product yields with <5 % uncertainty.


Esters , Fatty Acids , Esters/chemistry , Fatty Acids/chemistry , Fatty Acids/analysis , Magnetic Resonance Spectroscopy , Carbohydrates/chemistry , Carbohydrates/analysis
10.
Food Chem ; 453: 139560, 2024 Sep 30.
Article En | MEDLINE | ID: mdl-38761721

Baijiu authenticity has been a frequent problem driven by economic interests in recent years, so it is important to discriminate against baijiu with different origins. Herein, we proposed a simple and efficient esters-targeted colorimetric sensor array mediated by hydroxylamine hydrochloride. Esters undergo a nucleophilic addition reaction with hydroxylamine hydrochloride to form hydroxamic acid, which rapidly forms a purplish red ferric hydroxamate under FeCl3·6H2O. Bromophenol blue and rhodamine B enrich the color effects. The array detected 12 esters with a detection limit on the order of 10-5 of most esters and 16 mixed esters with R2 > 0.999 and recoveries close to 100%. Otherwise, for discriminating 34 strong-aroma baijius (SABs), the array has an accuracy of 98% according to the origin, and 95% according to the grades, with a response time of 1 min. This study provides a new strategy for authenticity determination and quality control of baijiu.


Colorimetry , Esters , Colorimetry/instrumentation , Colorimetry/methods , Esters/chemistry , Esters/analysis , Alcoholic Beverages/analysis , Odorants/analysis
11.
J Oleo Sci ; 73(6): 875-885, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38797689

This study investigated the effect of cooking on the levels of 3-chloro-1, 2-propanediol esters (3-MCPDEs), 2-chloro-1, 3-propanediol esters (2-MCPDEs) and glycidyl esters (GEs) in deep-fried rice cracker, fried potato, croquette, fish fillet, chicken fillet and cooking oils (rice bran oil and palm oil). The levels of 2-/3-MCPDE in rice cracker fried with rice bran oil and the used oil remained about the same, while the levels of GEs in them fell with frying time. The levels of 2-/3-MCPDEs in fried potato, croquette, fried fish and chicken cutlet fried with rice bran oil and palm oil respectively fell with frying time, while the level of GEs in them remained about the same. The levels of 2-/3-MCPDEs and GEs in fried rice cooked with rice bran oil were under the method limit of quantification. These results provide insights the cooking has no influence with the levels of 2-/3-MCPDEs and GEs in cooked foods.


Cooking , Esters , Hot Temperature , Palm Oil , Rice Bran Oil , alpha-Chlorohydrin , Cooking/methods , Esters/analysis , Palm Oil/chemistry , Rice Bran Oil/chemistry , alpha-Chlorohydrin/analysis , Fatty Acids/analysis , Plant Oils/chemistry , Food Analysis , Animals , Time Factors , Propylene Glycols/analysis , Epoxy Compounds/analysis , Dietary Fats/analysis , Chickens , Food, Processed
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731958

While organophosphorus chemistry is gaining attention in a variety of fields, the synthesis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phosphonate ester. In this paper, we demonstrate how to avoid these issues by employing phosphonylaminium salts for the synthesis of novel mixed n-alkylphosphonate diesters or amino acid-derived n-alkylphosphonamidates. We successfully applied this methodology for the synthesis of novel N-acyl homoserine lactone analogues with varying alkyl chains and ester groups in the phosphorus moiety. Finally, we developed a rapid, quantitative and high-throughput bioassay to screen a selection of these compounds for their herbicidal activity. Together, these results will aid future research in phosphorus chemistry, agrochemistry and the synthesis of bioactive targets.


Amino Acids , Esters , Herbicides , Organophosphonates , Herbicides/chemical synthesis , Herbicides/chemistry , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Amino Acids/chemistry , Esters/chemistry , Esters/chemical synthesis
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731989

Drug candidates must undergo thermal evaluation as early as possible in the preclinical phase of drug development because undesirable changes in their structure and physicochemical properties may result in decreased pharmacological activity or enhanced toxicity. Hence, the detailed evaluation of nitrogen-rich heterocyclic esters as potential drug candidates, i.e., imidazolidinoannelated triazinylformic acid ethyl esters 1-3 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -COOC2H5) and imidazolidinoannelated triazinylacetic acid methyl esters 4-6 (where R1 = 4-CH3 or 4-OCH3 or 4-Cl, and R2 = -CH2COOCH3)-in terms of their melting points, melting enthalpy values, thermal stabilities, pyrolysis, and oxidative decomposition course-has been carried out, using the simultaneous thermal analysis methods (TG/DTG/DSC) coupled with spectroscopic techniques (FTIR and QMS). It was found that the melting process (documented as one sharp peak related to the solid-liquid phase transition) of the investigated esters proceeded without their thermal decomposition. It was confirmed that the melting points of the tested compounds increased in relation to R1 and R2 as follows: 2 (R1 = 4-OCH3; R2 = -COOC2H5) < 6 (R1 = 4-Cl; R2 = -CH2COOCH3) < 5 (R1 = 4-OCH3; R2 = -CH2COOCH3) < 3 (R1 = 4-Cl; R2 = -COOC2H5) < 1 (R1 = 4-CH3; R2 = -COOC2H5) < 4 (R1 = 4-CH3; R2 = -CH2COOCH3). All polynitrogenated heterocyclic esters proved to be thermally stable up to 250 °C in inert and oxidising conditions, although 1-3 were characterised by higher thermal stability compared to 4-6. The results confirmed that both the pyrolysis and the oxidative decomposition of heterocyclic ethyl formates/methyl acetates with para-substitutions at the phenyl moiety proceed according to the radical mechanism. In inert conditions, the pyrolysis process of the studied molecules occurred with the homolytic breaking of the C-C, C-N, and C-O bonds. This led to the emission of alcohol (ethanol in the case of 1-3 or methanol in the case of 4-6), NH3, HCN, HNCO, aldehydes, CO2, CH4, HCl, aromatics, and H2O. In turn, in the presence of air, cleavage of the C-C, C-N, and C-O bonds connected with some oxidation and combustion processes took place. This led to the emission of the corresponding alcohol depending on the analysed class of heterocyclic esters, NH3, HCN, HNCO, aldehydes, N2, NO/NO2, CO, CO2, HCl, aromatics, and H2O. Additionally, after some biological tests, it was proven that all nitrogen-rich heterocyclic esters-as potential drug candidates-are safe for erythrocytes, and some of them are able to protect red blood cells from oxidative stress-induced damage.


Esters , Heterocyclic Compounds , Nitrogen , Esters/chemistry , Nitrogen/chemistry , Heterocyclic Compounds/chemistry , Drug Stability , Thermodynamics , Spectroscopy, Fourier Transform Infrared , Pyrolysis
14.
Int J Mol Sci ; 25(9)2024 May 03.
Article En | MEDLINE | ID: mdl-38732218

Boronate esters are a class of compounds containing a boron atom bonded to two oxygen atoms in an ester group, often being used as precursors in the synthesis of other materials. The characterization of the structure and properties of esters is usually carried out by UV-visible, infrared, and nuclear magnetic resonance (NMR) spectroscopic techniques. With the aim to better understand our experimental data, in this article, the density functional theory (DFT) is used to analyze the UV-visible and infrared spectra, as well as the isotropic shielding and chemical shifts of the hydrogen atoms 1H, carbon 13C and boron 11B in the compound 4-(4,4,5,5-tetramethyl-1,3,2-dioxoborolan-2-yl)benzaldehyde. Furthermore, this study considers the change in its electronic and spectroscopic properties of this particular ester, when its boron atom is coordinated with a fluoride anion. The calculations were carried out using the LSDA and B3LYP functionals in Gaussian-16, and PBE in CASTEP. The results show that the B3LYP functional gives the best approximation to the experimental data. The formation of a coordinated covalent B-F bond highlights the remarkable sensitivity of the NMR chemical shifts of carbon, oxygen, and boron atoms and their surroundings. Furthermore, this bond also highlights the changes in the electron transitions bands n → π* and π → π* during the absorption and emission of a photon in the UV-vis, and in the stretching bands of the C=C bonds, and bending of BO2 in the infrared spectrum. This study not only contributes to the understanding of the properties of boronate esters but also provides important information on the interactions and responses optoelectronic of the compound when is bonded to a fluorine atom.


Benzaldehydes , Benzaldehydes/chemistry , Magnetic Resonance Spectroscopy , Density Functional Theory , Fluorine/chemistry , Boron/chemistry , Models, Molecular , Esters/chemistry , Spectrophotometry, Infrared , Molecular Structure , Ions/chemistry
15.
Ecotoxicol Environ Saf ; 278: 116414, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38714086

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.


Bone Density , Nutrition Surveys , Organophosphates , Humans , Adult , Male , Bone Density/drug effects , Female , Middle Aged , United States , Cross-Sectional Studies , Organophosphates/urine , Organophosphates/toxicity , Esters , Flame Retardants/toxicity , Environmental Exposure/statistics & numerical data , Environmental Pollutants/urine
16.
Nat Commun ; 15(1): 4239, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762517

Ester-linked post-translational modifications, including serine and threonine ubiquitination, have gained recognition as important cellular signals. However, their detection remains a significant challenge due to the chemical lability of the ester bond. This is the case even for long-known modifications, such as ADP-ribosylation on aspartate and glutamate, whose role in PARP1 signaling has recently been questioned. Here, we present easily implementable methods for preserving ester-linked modifications. When combined with a specific and sensitive modular antibody and mass spectrometry, these approaches reveal DNA damage-induced aspartate/glutamate mono-ADP-ribosylation. This previously elusive signal represents an initial wave of PARP1 signaling, contrasting with the more enduring nature of serine mono-ADP-ribosylation. Unexpectedly, we show that the poly-ADP-ribose hydrolase PARG is capable of reversing ester-linked mono-ADP-ribosylation in cells. Our methodology enables broad investigations of various ADP-ribosylation writers and, as illustrated here for noncanonical ubiquitination, it paves the way for exploring other emerging ester-linked modifications.


ADP-Ribosylation , Aspartic Acid , Esters , Glutamic Acid , Poly (ADP-Ribose) Polymerase-1 , Protein Processing, Post-Translational , Poly (ADP-Ribose) Polymerase-1/metabolism , Humans , Aspartic Acid/metabolism , Glutamic Acid/metabolism , Esters/chemistry , Esters/metabolism , Ubiquitination , DNA Damage , HEK293 Cells , Glycoside Hydrolases/metabolism , Signal Transduction
17.
Viruses ; 16(5)2024 04 24.
Article En | MEDLINE | ID: mdl-38793547

Severe acute respiratory syndrome-related Coronavirus 2 (SARS-CoV-2) has infected more than 762 million people to date and has caused approximately 7 million deaths all around the world, involving more than 187 countries. Although currently available vaccines show high efficacy in preventing severe respiratory complications in infected patients, the high number of mutations in the S proteins of the current variants is responsible for the high level of immune evasion and transmissibility of the virus and the reduced effectiveness of acquired immunity. In this scenario, the development of safe and effective drugs of synthetic or natural origin to suppress viral replication and treat acute forms of COVID-19 remains a valid therapeutic challenge. Given the successful history of flavonoids-based drug discovery, we developed esters of substituted cinnamic acids with quercetin to evaluate their in vitro activity against a broad spectrum of Coronaviruses. Interestingly, two derivatives, the 3,4-methylenedioxy 6 and the ester of acid 7, have proved to be effective in reducing OC43-induced cytopathogenicity, showing interesting EC50s profiles. The ester of synaptic acid 7 in particular, which is not endowed with relevant cytotoxicity under any of the tested conditions, turned out to be active against OC43 and SARS-CoV-2, showing a promising EC50. Therefore, said compound was selected as the lead object of further analysis. When tested in a yield reduction, assay 7 produced a significant dose-dependent reduction in viral titer. However, the compound was not virucidal, as exposure to high concentrations of it did not affect viral infectivity, nor did it affect hCoV-OC43 penetration into pre-treated host cells. Additional studies on the action mechanism have suggested that our derivative may inhibit viral endocytosis by reducing viral attachment to host cells.


Antiviral Agents , Cinnamates , Esters , Quercetin , SARS-CoV-2 , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/analogs & derivatives , Cinnamates/pharmacology , Cinnamates/chemistry , Esters/pharmacology , Esters/chemistry , Humans , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19 Drug Treatment , Chlorocebus aethiops , Vero Cells , COVID-19/virology , Cell Line
18.
Insect Biochem Mol Biol ; 169: 104129, 2024 Jun.
Article En | MEDLINE | ID: mdl-38704126

The Asian palm weevil, Rhynchophorus ferrugineus, is a tremendously important agricultural pest primarily adapted to palm trees and causes severe destruction, threatening sustainable palm cultivation worldwide. The host plant selection of this weevil is mainly attributed to the functional specialization of odorant receptors (ORs) that detect palm-derived volatiles. Yet, ligands are known for only two ORs of R. ferrugineus, and we still lack information on the mechanisms of palm tree detection. This study identified a highly expressed antennal R. ferrugineus OR, RferOR2, thanks to newly generated transcriptomic data. The phylogenetic analysis revealed that RferOR2 belongs to the major coleopteran OR group 2A and is closely related to a sister clade containing an R. ferrugineus OR (RferOR41) tuned to the non-host plant volatile and antagonist, α-pinene. Functional characterization of RferOR2 via heterologous expression in Drosophila olfactory neurons revealed that this receptor is tuned to several ecologically relevant palm-emitted odors, most notably ethyl and methyl ester compounds, but not to any of the pheromone compounds tested, including the R. ferrugineus aggregation pheromone. We did not evidence any differential expression of RferOR2 in the antennae of both sexes, suggesting males and females detect these compounds equally. Next, we used the newly identified RferOR2 ligands to demonstrate that including synthetic palm ester volatiles as single compounds and in combinations in pheromone-based mass trapping has a synergistic attractiveness effect to R. ferrugineus aggregation pheromone, resulting in significantly increased weevil catches. Our study identified a key OR from a palm weevil species tuned to several ecologically relevant palm volatiles and represents a significant step forward in understanding the chemosensory mechanisms of host detection in palm weevils. Our study also defines RferOR2 as an essential model for exploring the molecular basis of host detection in other palm weevil species. Finally, our work showed that insect OR deorphanization could aid in identifying novel behaviorally active volatiles that can interfere with weevil host-searching behavior in sustainable pest management applications.


Receptors, Odorant , Weevils , Animals , Weevils/metabolism , Weevils/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/chemistry , Volatile Organic Compounds/metabolism , Male , Phylogeny , Female , Arecaceae/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Arthropod Antennae/metabolism , Esters/metabolism
19.
Environ Pollut ; 351: 124085, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38697247

Organophosphate esters (OPEs) are extensively applied in various materials as flame retardants and plasticizers, and have high biological toxicity. OPEs are detected worldwide, even in distant polar regions and the Tibetan Plateau (TP). However, few studies have been performed to evaluate the distribution patterns and origins of OPEs in different climate systems on the TP. This study investigated the distribution characteristics, possible sources, and ecological risks of OPEs in soils from the different climate systems on the TP and its surroundings. The total concentrations of OPEs in soil varied from 468 to 17,451 pg g-1 dry weight, with greater concentrations in southeast Tibet (monsoon zone), followed by Qinghai (transition zone) and, finally, southern Xingjiang (westerly zone). OPE composition profiles also differed among the three areas with tri-n-butyl phosphate dominant in the westerly zone and tris(2-butoxyethyl) phosphate dominant in the Indian monsoon zone. Correlations between different compounds and altitude, soil organic carbon, or longitude varied in different climate zones, indicating that OPE distribution originates from both long-range atmospheric transport and local emissions. Ecological risk assessment showed that tris(2-chloroethyl) phosphate and tri-phenyl phosphate exhibited medium risks in soil at several sites in southeast Tibet. Considering the sensitivity and vulnerability of TP ecosystems to anthropogenic pollutants, the ecological risks potentially caused by OPEs in this region should be further assessed.


Climate , Environmental Monitoring , Esters , Organophosphates , Soil Pollutants , Soil , Tibet , Soil Pollutants/analysis , Soil/chemistry , Organophosphates/analysis , Esters/analysis , Flame Retardants/analysis
20.
J Agric Food Chem ; 72(22): 12707-12718, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38757388

This study extensively characterized yeast polysaccharides (YPs) from Pichia fermentans (PF) and Pichia kluyveri (PK), with a specific focus on their structural attributes and their interaction with wine fruity esters in a model wine system. By finely tuning enzymatic reactions based on temperature, pH, and enzyme dosage, an optimal YP yield of 77.37% was achieved, with a specific mass ratio of cellulase, pectinase, and protease set at 3:5:2. There were four YP fractions (YPPF-W, YPPF-N, YPPK-W, and YPPK-N) isolated from the two yeasts. YPPF-N and YPPK-N were identified as glucans based on monosaccharide analysis and Fourier-transform infrared spectroscopy analysis. "Specific degradation-methylation-nuclear magnetic" elucidated YPPF-W's backbone structure as 1,3-linked α-l-Man and 1,6-linked α-d-Glc residues, while YPPK-W displayed a backbone structure of 1,3-linked α-Man residues, indicative of a mannoprotein nature. Isothermal titration calorimetry revealed spontaneous interactions between YPPK-W/YPPF-W and fruity esters across temperatures (25-45 °C), with the strongest interaction observed at 30 °C. However, distinct esters exhibited varying interactions with YPPK-W and YPPF-W, attributed to differences in molecular weights and hydrophobic characteristics. While shedding light on these intricate interactions, further experimental data is essential for a comprehensive understanding of yeast polysaccharides' or mannoproteins' impact on fruity esters. This research significantly contributes to advancing our knowledge of yeast polysaccharides' role in shaping the nuanced sensory attributes of wine.


Esters , Pichia , Polysaccharides , Wine , Wine/analysis , Wine/microbiology , Esters/chemistry , Esters/metabolism , Pichia/metabolism , Pichia/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Vitis/chemistry , Vitis/microbiology , Fermentation , Spectroscopy, Fourier Transform Infrared
...