Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.692
Filter
1.
World J Microbiol Biotechnol ; 40(8): 255, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926189

ABSTRACT

Thermophilic actinomycetes are commonly found in extreme environments and can thrive and adapt to extreme conditions. These organisms exhibit substantial variation and garnered significant interest due to their remarkable enzymatic activities. This study evaluated the potential of Streptomyces griseorubens NBR14 and Nocardiopsis synnemataformans NBRM9 strains to produce thermo-stable amylase via submerged fermentation using wheat and bean straw. The Box-Behnken design was utilized to determine the optimum parameters for amylase biosynthesis. Subsequently, amylase underwent partial purification and characterization. Furthermore, the obtained hydrolysate was applied for ethanol fermentation using Saccharomyces cerevisiae. The optimal parameters for obtaining the highest amylase activity by NBR14 (7.72 U/mL) and NBRM9 (26.54 U/mL) strains were found to be 40 and 30 °C, pH values of 7, incubation time of 7 days, and substrate concentration (3 and 2 g/100 mL), respectively. The NBR14 and NBRM9 amylase were partially purified, resulting in specific activities of 251.15 and 144.84 U/mg, as well as purification factors of 3.91 and 2.69-fold, respectively. After partial purification, the amylase extracted from NBR14 and NBRM9 showed the highest activity level at pH values of 9 and 7 and temperatures of 50 and 60 °C, respectively. The findings also indicated that the maximum velocity (Vmax) for NBR14 and NBRM9 amylase were 57.80 and 59.88 U/mL, respectively, with Km constants of 1.39 and 1.479 mM. After 48 h, bioethanol was produced at concentrations of 5.95 mg/mL and 9.29 mg/mL from hydrolyzed wheat and bean straw, respectively, through fermentation with S. cerevisiae. Thermophilic actinomycetes and their α-amylase yield demonstrated promising potential for sustainable bio-ethanol production from agro-byproducts.


Subject(s)
Actinobacteria , Amylases , Ethanol , Fermentation , Saccharomyces cerevisiae , Temperature , Triticum , Ethanol/metabolism , Amylases/metabolism , Hydrogen-Ion Concentration , Kinetics , Actinobacteria/metabolism , Actinobacteria/enzymology , Saccharomyces cerevisiae/metabolism , Hydrolysis , Streptomyces/enzymology , Streptomyces/metabolism , Enzyme Stability
2.
Appl Microbiol Biotechnol ; 108(1): 393, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916650

ABSTRACT

Grass raw materials collected from grasslands cover more than 30% of Europe's agricultural area. They are considered very attractive for the production of different biochemicals and biofuels due to their high availability and renewability. In this study, a perennial ryegrass (Lolium perenne) was exploited for second-generation bioethanol production. Grass press-cake and grass press-juice were separated using mechanical pretreatment, and the obtained juice was used as a fermentation medium. In this work, Saccharomyces cerevisiae was utilized for bioethanol production using the grass press-juice as the sole fermentation medium. The yeast was able to release about 11 g/L of ethanol in 72 h, with a total production yield of 0.38 ± 0.2 gEthanol/gsugars. It was assessed to improve the fermentation ability of Saccharomyces cerevisiae by using the short-term adaptation. For this purpose, the yeast was initially propagated in increasing the concentration of press-juice. Then, the yeast cells were re-cultivated in 100%(v/v) fresh juice to verify if it had improved the fermentation efficiency. The fructose conversion increased from 79 to 90%, and the ethanol titers reached 18 g/L resulting in a final yield of 0.50 ± 0.06 gEthanol/gsugars with a volumetric productivity of 0.44 ± 0.00 g/Lh. The overall results proved that short-term adaptation was successfully used to improve bioethanol production with S. cerevisiae using grass press-juice as fermentation medium. KEY POINTS: • Mechanical pretreatment of grass raw materials • Production of bioethanol using grass press-juice as fermentation medium • Short-term adaptation as a tool to improve the bioethanol production.


Subject(s)
Biofuels , Culture Media , Ethanol , Fermentation , Saccharomyces cerevisiae , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Culture Media/chemistry , Lolium/metabolism , Fructose/metabolism , Adaptation, Physiological
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124584, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38838600

ABSTRACT

Saccharomyces cerevisiae is the most common microbe used for the industrial production of bioethanol, and it encounters various stresses that inhibit cell growth and metabolism during fermentation. However, little is currently known about the physiological changes that occur in individual yeast cells during ethanol fermentation. Therefore, in this work, Raman spectroscopy and chemometric techniques were employed to monitor the metabolic changes of individual yeast cells at distinct stages during high gravity ethanol fermentation. Raman tweezers was used to acquire the Raman spectra of individual yeast cells. Multivariate curve resolution-alternating least squares (MCR-ALS) and principal component analysis were employed to analyze the Raman spectra dataset. MCR-ALS extracted the spectra of proteins, phospholipids, and triacylglycerols and their relative contents in individual cells. Changes in intracellular biomolecules showed that yeast cells undergo three distinct physiological stages during fermentation. In addition, heterogeneity among yeast cells significantly increased in the late fermentation period, and different yeast cells may respond to ethanol stress via different mechanisms. Our findings suggest that the combination of Raman tweezers and chemometrics approaches allows for characterizing the dynamics of molecular components within individual cells. This approach can serve as a valuable tool in investigating the resistance mechanism and metabolic heterogeneity of yeast cells during ethanol fermentation.


Subject(s)
Ethanol , Fermentation , Principal Component Analysis , Saccharomyces cerevisiae , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Least-Squares Analysis , Optical Tweezers , Single-Cell Analysis/methods
5.
PLoS Genet ; 20(6): e1011154, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900713

ABSTRACT

Lager yeasts are limited to a few strains worldwide, imposing restrictions on flavour and aroma diversity and hindering our understanding of the complex evolutionary mechanisms during yeast domestication. The recent finding of diverse S. eubayanus lineages from Patagonia offers potential for generating new lager yeasts with different flavour profiles. Here, we leverage the natural genetic diversity of S. eubayanus and expand the lager yeast repertoire by including three distinct Patagonian S. eubayanus lineages. We used experimental evolution and selection on desirable traits to enhance the fermentation profiles of novel S. cerevisiae x S. eubayanus hybrids. Our analyses reveal an intricate interplay of pre-existing diversity, selection on species-specific mitochondria, de-novo mutations, and gene copy variations in sugar metabolism genes, resulting in high ethanol production and unique aroma profiles. Hybrids with S. eubayanus mitochondria exhibited greater evolutionary potential and superior fitness post-evolution, analogous to commercial lager hybrids. Using genome-wide screens of the parental subgenomes, we identified genetic changes in IRA2, IMA1, and MALX genes that influence maltose metabolism, and increase glycolytic flux and sugar consumption in the evolved hybrids. Functional validation and transcriptome analyses confirmed increased maltose-related gene expression, influencing greater maltotriose consumption in evolved hybrids. This study demonstrates the potential for generating industrially viable lager yeast hybrids from wild Patagonian strains. Our hybridization, evolution, and mitochondrial selection approach produced hybrids with high fermentation capacity and expands lager beer brewing options.


Subject(s)
Beer , Fermentation , Hybridization, Genetic , Saccharomyces cerevisiae , Beer/microbiology , Fermentation/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces/genetics , Saccharomyces/metabolism , Ethanol/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genome, Fungal , Evolution, Molecular , Genetic Variation , Maltose/metabolism , Mutation
6.
Microb Cell Fact ; 23(1): 180, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890644

ABSTRACT

Nowadays, biofuels, especially bioethanol, are becoming increasingly popular as an alternative to fossil fuels. Zymomonas mobilis is a desirable species for bioethanol production due to its unique characteristics, such as low biomass production and high-rate glucose metabolism. However, several factors can interfere with the fermentation process and hinder microbial activity, including lignocellulosic hydrolysate inhibitors, high temperatures, an osmotic environment, and high ethanol concentration. Overcoming these limitations is critical for effective bioethanol production. In this review, the stress response mechanisms of Z. mobilis are discussed in comparison to other ethanol-producing microbes. The mechanism of stress response is divided into physiological (changes in growth, metabolism, intracellular components, and cell membrane structures) and molecular (up and down-regulation of specific genes and elements of the regulatory system and their role in expression of specific proteins and control of metabolic fluxes) changes. Systemic metabolic engineering approaches, such as gene manipulation, overexpression, and silencing, are successful methods for building new metabolic pathways. Therefore, this review discusses systems metabolic engineering in conjunction with systems biology and synthetic biology as an important method for developing new strains with an effective response mechanism to fermentation stresses during bioethanol production. Overall, understanding the stress response mechanisms of Z. mobilis can lead to more efficient and effective bioethanol production.


Subject(s)
Biofuels , Ethanol , Fermentation , Metabolic Engineering , Stress, Physiological , Zymomonas , Zymomonas/metabolism , Zymomonas/genetics , Ethanol/metabolism , Metabolic Engineering/methods
7.
J Hazard Mater ; 475: 134903, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38878441

ABSTRACT

Copper is one of the unavoidable heavy metals in wine production. In this study, the effects on fermentation performance and physiological metabolism of Saccharomyces cerevisiae under copper stress were investigated. EC1118 was the most copper-resistant among the six strains. The ethanol accumulation of EC1118 was 26.16-20 mg/L Cu2+, which was 1.90-3.15 times higher than that of other strains. The fermentation rate was significantly reduced by copper, and the inhibition was relieved after 4-10 days of adjustment. Metabolomic-transcriptomic analysis revealed that amino acid and nucleotide had the highest number of downregulated and upregulated differentially expressed metabolites, respectively. The metabolism of fructose and mannose was quickly affected, which then triggered the metabolism of galactose in copper stress. Pathways such as oxidative and organic acid metabolic processes were significantly affected in the early time, resulting in a significant decrease in the amount of carboxylic acids. The pathways related to protein synthesis and metabolism under copper stress, such as translation and peptide biosynthetic process, was also significantly affected. In conclusion, this study analyzed the metabolite-gene interaction network and molecular response during the alcohol fermentation of S. cerevisiae under copper stress, providing theoretical basis for addressing the influence of copper stress in wine production.


Subject(s)
Copper , Ethanol , Fermentation , Saccharomyces cerevisiae , Transcriptome , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Copper/toxicity , Ethanol/toxicity , Ethanol/metabolism , Transcriptome/drug effects , Metabolomics , Wine , Gene Expression Profiling
8.
Nat Commun ; 15(1): 5323, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909053

ABSTRACT

Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community. Here, we survey the microbiome across all process steps at two biorefineries, over three timepoints in a production season. Leveraging shotgun metagenomics and cultivation-based approaches, we identify beneficial bacteria and find improved outcome when yeast-to-bacteria ratios increase during fermentation. We provide a microbial gene catalogue which reveals bacteria-specific pathways associated with performance. We also show that Limosilactobacillus fermentum overgrowth lowers production, with one strain reducing yield by ~5% in laboratory fermentations, potentially due to its metabolite profile. Temperature is found to be a major driver for strain-level dynamics. Improved microbial management strategies could unlock environmental and economic gains in this US $ 60 billion industry enabling its wider adoption.


Subject(s)
Bacteria , Ethanol , Fermentation , Ethanol/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Microbiota/physiology , Biofuels , Metagenomics , Industrial Microbiology/methods , Temperature
9.
Curr Microbiol ; 81(8): 244, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935285

ABSTRACT

A novel thermotolerant caproic acid-producing bacterial strain, Clostridium M1NH, was successfully isolated from sewage sludge. Ethanol and acetic acid at a molar ratio of 4:1 proved to be the optimal substrates, yielding a maximum caproic acid production of 3.5 g/L. Clostridium M1NH exhibited remarkable tolerance to high concentrations of ethanol (up to 5% v/v), acetic acid (up to 5% w/v), and caproic acid (up to 2% w/v). The strain also demonstrated a wide pH tolerance range (pH 5.5-7.5) and an elevated temperature optimum between 35 and 40 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that Clostridium M1NH shares a 98% similarity with Clostridium luticellarii DSM 29923 T. The robustness of strain M1NH and its efficient caproic acid production from low-cost substrates highlight its potential for sustainable bio-based chemical production. The maximum caproic acid yield achieved by Clostridium M1NH was 1.6-fold higher than that reported for C. kluyveri under similar fermentation conditions. This study opens new avenues for valorizing waste streams and advancing a circular economy model in the chemical industry.


Subject(s)
Acetic Acid , Clostridium , Ethanol , Fermentation , Phylogeny , RNA, Ribosomal, 16S , Acetic Acid/metabolism , Ethanol/metabolism , Clostridium/genetics , Clostridium/metabolism , Clostridium/classification , RNA, Ribosomal, 16S/genetics , Thermotolerance , Sewage/microbiology , Hydrogen-Ion Concentration , Caprylates/metabolism , Temperature , Caproates
10.
Molecules ; 29(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38893534

ABSTRACT

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Subject(s)
Bioreactors , Butylene Glycols , Carbon Dioxide , Carbon Monoxide , Clostridium , Fermentation , Formates , Hydrogen , Formates/metabolism , Formates/chemistry , Clostridium/metabolism , Clostridium/growth & development , Carbon Monoxide/metabolism , Hydrogen/metabolism , Carbon Dioxide/metabolism , Butylene Glycols/metabolism , Butylene Glycols/chemistry , Gases/metabolism , Gases/chemistry , Ethanol/metabolism
11.
Microb Cell Fact ; 23(1): 165, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840167

ABSTRACT

The increased use of biofuels in place of fossil fuels is one strategy to support the transition to net-zero carbon emissions, particularly in transport applications. However, expansion of the use of 1st generation crops as feedstocks is unsustainable due to the conflict with food use. The use of the lignocellulosic fractions from plants and/or co-products from food production including food wastes could satisfy the demand for biofuels without affecting the use of land and the availability of food, but organisms which can readily ferment all the carbohydrates present in these feedstocks often suffer from more severe bioethanol inhibition effects than yeast. This paper demonstrates the potential of hot gas microbubbles to strip ethanol from a thermophilic fermentation process using Parageobacillus thermoglucosidasius TM333, thereby reducing product inhibition and allowing production to continue beyond the nominal toxic ethanol concentrations of ≤ 2% v/v. Using an experimental rig in which cells were grown in fed-batch cultures on sugars derived from waste bread, and the broth continuously cycled through a purpose-built microbubble stripping unit, it was shown that non/low-inhibitory dissolved ethanol concentrations could be maintained throughout, despite reaching productivities equivalent to 4.7% v/v dissolved ethanol. Ethanol recovered in the condensate was at a concentration appropriate for dewatering to be cost effective and not prohibitively energy intensive. This suggests that hot microbubble stripping could be a valuable technology for the continuous production of bioethanol from fermentation processes which suffer from product inhibition before reaching economically viable titres, which is typical of most thermophilic ethanologenic bacteria.


Subject(s)
Biofuels , Ethanol , Fermentation , Ethanol/metabolism , Hot Temperature , Microbubbles , Gases/metabolism , Bacillaceae/metabolism
12.
Food Res Int ; 190: 114636, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945625

ABSTRACT

There has been growing interest in the use of mixed cultures comprised of Oenococcus oeni and Saccharomyces cerevisiae to produce wine with local style and typicality. This study has investigated the influence of the inoculation protocol of O. oeni on the fermentation kinetics and aromatic profile of Chardonnay wine. The one selected autochthonous O. oeni strain (ZX-1) inoculated at different stages of the alcoholic fermentation process successfully completed malolactic fermentation (MLF). Co-inoculum of S. cerevisiae and O. oeni enabled simultaneous alcoholic fermentation and MLF, leading to at least a 30 % reduction in the total fermentation time when compared to the sequential inoculation process, which was attributed to the lower ethanol stress. Meanwhile, co-inoculum stimulated the accumulation of volatile aroma compounds in Chardonnay wine. In particular, the mixed modality where the O. oeni strain ZX-1 was inoculated 48 h after S. cerevisiae allowed higher levels of terpenes, acetates, short-chain, and medium-chain fatty acid ethyl esters to be produced, which may result in the enhanced floral and fruity attributes of wine. Aroma reconstitution and omission models analysis revealed that the accumulation of linalool, geraniol, isoamyl acetate, ethyl hexanoate, and ethyl caprylate during the mixed fermentation process enhanced the stone fruit, tropical fruit, and citrus aromas in Chardonnay wine. Therefore, the simultaneous fermentation of S. cerevisiae and autochthonous O. oeni ZX-1 has a positive effect on MLF and contributes to producing wines with distinctive style.


Subject(s)
Fermentation , Odorants , Oenococcus , Saccharomyces cerevisiae , Wine , Wine/microbiology , Wine/analysis , Saccharomyces cerevisiae/metabolism , Oenococcus/metabolism , Odorants/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Ethanol/metabolism , Acetates/metabolism , Terpenes/metabolism , Food Microbiology
13.
Food Res Int ; 190: 114637, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945626

ABSTRACT

Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.


Subject(s)
Butanols , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Butanols/metabolism , Fermentation , Ethanol/metabolism , Ethanol/pharmacology , 1-Butanol/metabolism , Ultraviolet Rays , Adaptation, Physiological
14.
Anal Methods ; 16(26): 4322-4332, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38888243

ABSTRACT

Microdialysis is an important technique for in vivo sampling of tissue's biochemical composition. Understanding the factors that affect the performance of the microdialysis probes and developing methods for sample analysis are crucial for obtaining reliable results. In this work, we used experimental and numerical procedures to study the performance of microdialysis probes having different configurations, membrane materials and dimensions. For alcohol research, it is important to understand the dynamics of ethanol metabolism, particularly in the brain and in other organs, and to simultaneously measure the concentrations of ethanol and its metabolites - acetaldehyde and acetate. Our work provides a comprehensive characterization of three microdialysis probes, in terms of recovery rates and backpressure, allowing for interpretation and optimization of experimental procedures. In vivo experiments were performed to measure the time course concentration of ethanol, acetaldehyde, and acetate in the rat brain dialysate. Additionally, the combination of in vitro experimental results with numerical simulations enabled us to calculate diffusion coefficients of molecules in the microdialysis membranes and study the extent of the depletion effect caused by continuous microdialysis sampling, thus providing additional insights for probe selection and data interpretation.


Subject(s)
Brain , Ethanol , Microdialysis , Microdialysis/methods , Ethanol/metabolism , Ethanol/analysis , Ethanol/pharmacokinetics , Animals , Rats , Brain/metabolism , Acetaldehyde/analysis , Acetaldehyde/metabolism , Male , Acetates/metabolism , Acetates/pharmacokinetics
15.
World J Microbiol Biotechnol ; 40(8): 246, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38902402

ABSTRACT

Saccharomyces cerevisiae, the primary microorganism involved in ethanol production, is hindered by the accumulation of ethanol, leading to reduced ethanol production. In this study, we employed histidine-modified Fe3O4 nanoparticles (His-Fe3O4) for the first time, to the best of our knowledge, as a method to enhance ethanol yield during the S. cerevisiae fermentation process. The results demonstrated that exposing S. cerevisiae cells to Fe3O4 nanoparticles (Fe3O4 NPs) led to increased cell proliferation and glucose consumption. Moreover, the introduction of His-Fe3O4 significantly boosted ethanol content by 17.3% (p < 0.05) during fermentation. Subsequent findings indicated that the increase in ethanol content was associated with enhanced ethanol tolerance and improved electron transport efficiency. This study provided evidence for the positive effects of His-Fe3O4 on S. cerevisiae cells and proposed a straightforward approach to enhance ethanol production in S. cerevisiae fermentation. The mediation of improved ethanol tolerance offers significant potential in the fermentation and bioenergy sectors.


Subject(s)
Ethanol , Fermentation , Glucose , Histidine , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Ethanol/metabolism , Histidine/metabolism , Glucose/metabolism , Electron Transport/drug effects , Magnetite Nanoparticles
16.
Sci Rep ; 14(1): 12869, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834614

ABSTRACT

In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.


Subject(s)
Biomass , Ethanol , Fermentation , Magnetic Fields , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/growth & development , Aerobiosis , Anaerobiosis , Ethanol/metabolism , Glucose/metabolism , Bioreactors/microbiology , Glycerol/metabolism , Oxygen/metabolism , Nitrogen/metabolism
17.
BMC Genomics ; 25(1): 610, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886650

ABSTRACT

Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.


Subject(s)
Alcohol Dehydrogenase , Fetal Alcohol Spectrum Disorders , Polymorphism, Single Nucleotide , Receptors, Retinoic Acid , Humans , Fetal Alcohol Spectrum Disorders/genetics , Fetal Alcohol Spectrum Disorders/metabolism , Case-Control Studies , Female , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Male , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Child , Ethanol/metabolism , Pregnancy , Child, Preschool , Alleles
18.
Food Microbiol ; 122: 104556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839235

ABSTRACT

Wickerhamomyces anomalus is one of the most important ester-producing strains in Chinese baijiu brewing. Ethanol and lactic acid are the main metabolites produced during baijiu brewing, but their synergistic influence on the growth and ester production of W. anomalus is unclear. Therefore, in this paper, based on the contents of ethanol and lactic acid during Te-flavor baijiu brewing, the effects of different ethanol concentrations (3, 6, and 9% (v/v)) combined with 1% lactic acid on the growth and ester production of W. anomalus NCUF307.1 were studied and their influence mechanisms were analyzed by transcriptomics. The results showed that the growth of W. anomalus NCUF307.1 under the induction of lactic acid was inhibited by ethanol. Although self-repair mechanism of W. anomalus NCUF307.1 induced by lactic acid was initiated at all concentrations of ethanol, resulting in significant up-regulation of genes related to the Genetic Information Processing pathway, such as cell cycle-yeast, meiosis-yeast, DNA replication and other pathways. However, the accumulation of reactive oxygen species and the inhibition of pathways associated with carbohydrate and amino acid metabolism may be the main reason for the inhibition of growth in W. anomalus NCUF307.1. In addition, 3% and 6% ethanol combined with 1% lactic acid could promote the ester production of W. anomalus NCUF307.1, which may be related to the up-regulation of EAT1, ADH5 and TGL5 genes, while the inhibition in 9% ethanol may be related to down-regulation of ATF2, EAT1, ADH2, ADH5, and TGL3 genes.


Subject(s)
Esters , Ethanol , Fermentation , Lactic Acid , Saccharomycetales , Ethanol/metabolism , Lactic Acid/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Saccharomycetales/drug effects , Saccharomycetales/growth & development , Esters/metabolism , Transcriptome , Gene Expression Regulation, Fungal/drug effects , Gene Expression Profiling
19.
Article in English | MEDLINE | ID: mdl-38833293

ABSTRACT

Strain LMG 33000T was isolated from a Bombus lapidarius gut sample. It shared the highest percentage 16S rRNA sequence identity, average amino acid identity, and amino acid identity of conserved genes with Convivina intestini LMG 28291T (95.86 %, 69.9 and 76.2 %, respectively), and the highest percentage OrthoANIu value with Fructobacillus fructosus DSM 20349T (71.4 %). Phylogenomic analyses by means of 107 or 120 conserved genes consistently revealed Convivina as nearest neighbour genus. The draft genome of strain LMG 33000T was 1.44 Mbp in size and had a DNA G+C content of 46.1 mol%. Genomic and physiological analyses revealed that strain LMG 33000T was a typical obligately fructophilic lactic acid bacterium that lacked the adhE and aldh genes and that did not produce ethanol during glucose or fructose metabolism. In contrast, Convivina species have the adhE and aldh genes in their genomes and produced ethanol from glucose and fructose metabolism, which is typical for heterofermentative lactic acid bacteria. Moreover, strain LMG 33000T exhibited catalase activity, an unusual characteristic among lactic acid bacteria, that is not shared with Convivina species. Given its position in the phylogenomic trees, and the difference in genomic percentage G+C content and in physiological and metabolic characteristics between strain LMG 33000T and Convivina species, we considered it most appropriate to classify strain LMG 33000T into a novel genus and species within the Lactobacillaceae family for which we propose the name Eupransor demetentiae gen. nov., sp. nov., with LMG 33000T (=CECT 30958T) as the type strain.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Animals , RNA, Ribosomal, 16S/genetics , Bees/microbiology , DNA, Bacterial/genetics , Fructose/metabolism , Lactic Acid/metabolism , Glucose/metabolism , Ethanol/metabolism
20.
Arch Microbiol ; 206(6): 279, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805051

ABSTRACT

Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.


Subject(s)
Ethanol , Fermentation , Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/isolation & purification , Pichia/metabolism , Pichia/isolation & purification , Pichia/genetics , Pichia/classification , Ethanol/metabolism , Hydrogen-Ion Concentration , Coffee/microbiology , Coffea/microbiology , Temperature , Seeds/microbiology , Hydrogen Sulfide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...