Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.372
Filter
1.
J Gen Virol ; 105(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38980150

ABSTRACT

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Subject(s)
Chickens , Ferrets , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Turkeys , Animals , Turkeys/virology , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/pathogenicity , Chickens/virology , Virulence , China/epidemiology , Poultry Diseases/virology , Poultry Diseases/transmission , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Virus Shedding , Virus Replication , Zoonoses/virology , Influenza, Human/virology , Influenza, Human/transmission
2.
Sci Adv ; 10(23): eadn1640, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838158

ABSTRACT

Folding of the cerebral cortex is a key aspect of mammalian brain development and evolution, and defects are linked to severe neurological disorders. Primary folding occurs in highly stereotyped patterns that are predefined in the cortical germinal zones by a transcriptomic protomap. The gene regulatory landscape governing the emergence of this folding protomap remains unknown. We characterized the spatiotemporal dynamics of gene expression and active epigenetic landscape (H3K27ac) across prospective folds and fissures in ferret. Our results show that the transcriptomic protomap begins to emerge at early embryonic stages, and it involves cell-fate signaling pathways. The H3K27ac landscape reveals developmental cell-fate restriction and engages known developmental regulators, including the transcription factor Cux2. Manipulating Cux2 expression in cortical progenitors changed their proliferation and the folding pattern in ferret, caused by selective transcriptional changes as revealed by single-cell RNA sequencing analyses. Our findings highlight the key relevance of epigenetic mechanisms in defining the patterns of cerebral cortex folding.


Subject(s)
Cerebral Cortex , Epigenesis, Genetic , Ferrets , Gene Expression Regulation, Developmental , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/embryology , Ferrets/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Histones/metabolism , Histones/genetics , Gene Regulatory Networks
3.
Viruses ; 16(6)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38932223

ABSTRACT

The study involved five ferrets from one household in Poland, comprising three sick 9-week-old juveniles, their healthy mother, and another clinically normal adult, admitted to the veterinary clinic in June 2023. The juvenile ferrets displayed significant lethargy and a pronounced unwillingness to move with accompanying pulmonary distress. Prompted by concurrent outbreaks of A/H5N1 influenza virus infections in Polish cats, point-of-care tests were conducted that revealed type A influenza antigens in the throat swabs of all five ferrets. Despite treatment, one juvenile ferret exhibited dyspnea and neurological symptoms and eventually died. The two remaining ferrets recovered fully, including one severely affected showing persistent dyspnea and incoordination without fever that recovered after 11 days of treatment. In the RT-qPCR, the throat swabs collected from all surviving ferrets as well as the samples of lungs, trachea, heart, brain, pancreas, liver, and intestine of the succumbed ferret were found positive for A/H5N1 virus RNA. To our best knowledge, this is the first documented natural A/H5N1 avian influenza in domestic ferrets kept as pets. In addition, this outbreak suggests the possibility of asymptomatic A/H5N1 virus shedding by ferrets, highlighting their zoonotic potential and the advisability of excluding fresh or frozen poultry from their diet to reduce the A/H5N1 virus transmission risks.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Pets , Animals , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Pets/virology , Female , Male , Poland/epidemiology , Disease Outbreaks , Virus Shedding , Cats
4.
Nat Commun ; 15(1): 5025, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871701

ABSTRACT

Influenza A viruses in swine have considerable genetic diversity and continue to pose a pandemic threat to humans due to a potential lack of population level immunity. Here we describe a pipeline to characterize and triage influenza viruses for their pandemic risk and examine the pandemic potential of two widespread swine origin viruses. Our analysis reveals that a panel of human sera collected from healthy adults in 2020 has no cross-reactive neutralizing antibodies against a α-H1 clade strain (α-swH1N2) but do against a γ-H1 clade strain. The α-swH1N2 virus replicates efficiently in human airway cultures and exhibits phenotypic signatures similar to the human H1N1 pandemic strain from 2009 (H1N1pdm09). Furthermore, α-swH1N2 is capable of efficient airborne transmission to both naïve ferrets and ferrets with prior seasonal influenza immunity. Ferrets with H1N1pdm09 pre-existing immunity show reduced α-swH1N2 viral shedding and less severe disease signs. Despite this, H1N1pdm09-immune ferrets that became infected via the air can still onward transmit α-swH1N2 with an efficiency of 50%. These results indicate that this α-swH1N2 strain has a higher pandemic potential, but a moderate level of impact since there is reduced replication fitness and pathology in animals with prior immunity.


Subject(s)
Ferrets , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H1N2 Subtype , Influenza, Human , Orthomyxoviridae Infections , Pandemics , Animals , Ferrets/virology , Humans , Swine , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/blood , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/blood , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N2 Subtype/genetics , Influenza A Virus, H1N2 Subtype/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Swine Diseases/virology , Swine Diseases/epidemiology , Swine Diseases/immunology , Swine Diseases/transmission , Swine Diseases/blood , Female , Virus Shedding , Male , Adult , Virus Replication
5.
Sci Rep ; 14(1): 13524, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866913

ABSTRACT

Myxovirus resistance (Mx) proteins are products of interferon stimulated genes (ISGs) and Mx proteins of different species have been reported to mediate antiviral activity against a number of viruses, including influenza A viruses (IAV). Ferrets are widely considered to represent the 'gold standard' small animal model for studying pathogenesis and immunity to human IAV infections, however little is known regarding the antiviral activity of ferret Mx proteins. Herein, we report induction of ferret (f)Mx1/2 in a ferret lung cell line and in airway tissues from IAV-infected ferrets, noting that fMx1 was induced to higher levels that fMx2 both in vitro and in vivo. Overexpression confirmed cytoplasmic expression of fMx1 as well as its ability to inhibit infection and replication of IAV, noting that this antiviral effect of fMx1was modest when compared to cells overexpressing either human MxA or mouse Mx1. Together, these studies provide the first insights regarding the role of fMx1 in cell innate antiviral immunity to influenza viruses. Understanding similarities and differences in the antiviral activities of human and ferret ISGs provides critical context for evaluating results when studying human IAV infections in the ferret model.


Subject(s)
Ferrets , Influenza A virus , Myxovirus Resistance Proteins , Orthomyxoviridae Infections , Animals , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Influenza A virus/immunology , Humans , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Virus Replication/drug effects , Antiviral Agents/pharmacology , Cell Line , Mice , Immunity, Innate , Lung/virology , Lung/immunology
7.
Emerg Infect Dis ; 30(7): 1484-1487, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916793

ABSTRACT

Ocular inoculation of a clade 2.3.4.4b highly pathogenic avian influenza A(H5N1) virus caused severe and fatal infection in ferrets. Virus was transmitted to ferrets in direct contact. The results highlight the potential capacity of these viruses to cause human disease after either respiratory or ocular exposure.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Animals , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Orthomyxoviridae Infections/virology , Humans , Eye/virology , Influenza, Human/virology
8.
Emerg Microbes Infect ; 13(1): 2373314, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38922326

ABSTRACT

The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.


Subject(s)
Antiviral Agents , Influenza A Virus, H7N9 Subtype , Neuraminidase , Orthomyxoviridae Infections , Oseltamivir , Virus Replication , Animals , Oseltamivir/pharmacology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/physiology , Neuraminidase/genetics , Neuraminidase/metabolism , Dogs , Virus Replication/drug effects , Antiviral Agents/pharmacology , Humans , Mice , Orthomyxoviridae Infections/virology , Madin Darby Canine Kidney Cells , A549 Cells , Mice, Inbred C57BL , Drug Resistance, Viral/genetics , Amino Acid Substitution , Influenza, Human/virology , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Female , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Ann Agric Environ Med ; 31(2): 298-301, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38940116

ABSTRACT

Introduction and Objective. Pets infected with zoonotic pathogens might become a source of infections for their owners, especially those who are immuno-compromised. The aim of this report is to describe a case of chronic, untreatable pneumonia in a domestic ferret. Materials and method. The subject was a 5-year-old female ferret suffering from recurrent pneumonia. Ante-mortally, swabs from the nasal cavity, alveolus and throat were collected from the animal. Post-mortally, lesioned organ fragments were collected. Standard microbiological testing was performed. Additionally, mycobacterial diagnosis including culture and molecular tests was performed. Results. The co-infection of Mycobacterium avium and Klebsiella pneumoniae was microbiologically confirmed. Conclusions. This case demonstrates the need to pay attention to the possibility of zoonotic pathogens in ferrets. Veterinarians diagnosing ferrets are potentially exposed to Mycobacteria spp. infections and other pathogens.


Subject(s)
Coinfection , Ferrets , Klebsiella Infections , Klebsiella pneumoniae , Mycobacterium avium , Animals , Ferrets/microbiology , Female , Klebsiella pneumoniae/isolation & purification , Coinfection/veterinary , Coinfection/microbiology , Klebsiella Infections/veterinary , Klebsiella Infections/microbiology , Klebsiella Infections/diagnosis , Mycobacterium avium/isolation & purification , Tuberculosis/veterinary , Tuberculosis/microbiology , Tuberculosis/diagnosis , Fatal Outcome
10.
PLoS One ; 19(6): e0290909, 2024.
Article in English | MEDLINE | ID: mdl-38900732

ABSTRACT

Since SARS-CoV-2 emerged in late 2019, it spread from China to the rest of the world. An initial concern was the potential for vaccine- or antibody-dependent enhancement (ADE) of disease as had been reported with other coronaviruses. To evaluate this, we first developed a ferret model by exposing ferrets to SARS-CoV-2 by either mucosal inoculation (intranasal/oral/ocular) or inhalation using a small particle aerosol. Mucosal inoculation caused a mild fever and weight loss that resolved quickly; inoculation via either route resulted in virus shedding detected in the nares, throat, and rectum for 7-10 days post-infection. To evaluate the potential for ADE, we then inoculated groups of ferrets intravenously with 0.1, 0.5, or 1 mg/kg doses of a human polyclonal anti-SARS-CoV-2 IgG from hyper-immunized transchromosomic bovines (SAB-185). Twelve hours later, ferrets were challenged by mucosal inoculation with SARS-CoV-2. We found no significant differences in fever, weight loss, or viral shedding after infection between the three antibody groups or the controls. Signs of pathology in the lungs were noted in infected ferrets but no differences were found between control and antibody groups. The results of this study indicate that healthy, young adult ferrets of both sexes are a suitable model of mild COVID-19 and that low doses of specific IgG in SAB-185 are unlikely to enhance the disease caused by SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 , Disease Models, Animal , Ferrets , SARS-CoV-2 , Virus Shedding , Animals , Ferrets/virology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Humans , Female , Male , Immunoglobulin G/immunology , Antibody-Dependent Enhancement/immunology
11.
Sci Transl Med ; 16(745): eadj4685, 2024 May.
Article in English | MEDLINE | ID: mdl-38691617

ABSTRACT

Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.


Subject(s)
Ferrets , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines , Vaccination , Animals , Influenza Vaccines/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Mice , Antibodies, Viral/immunology , Humans , Influenza, Human/prevention & control , Influenza, Human/immunology , Antigens, Viral/immunology , Female , Mice, Inbred BALB C
12.
Methods Mol Biol ; 2808: 197-208, 2024.
Article in English | MEDLINE | ID: mdl-38743372

ABSTRACT

Canine distemper virus (CDV) is a highly contagious pathogen within the morbillivirus genus infecting a wide range of different carnivore species. The virus shares most biological features with other closely related morbilliviruses, including clinical signs, tissue tropism, and replication cycle in the respective host organisms.In the laboratory environment, experimental infections of ferrets with CDV were established as a potent surrogate model for the analysis of several aspects of the biology of the human morbillivirus, measles virus (MeV). The animals are naturally susceptible to CDV and display severe clinical signs resembling the disease seen in patients infected with MeV. As seen with MeV, CDV infects immune cells and is thus associated with a strong transient immunosuppression. Here we describe several methods to evaluate viral load and parameters of immunosuppression in blood-circulating immune cells isolated from CDV-infected animals.


Subject(s)
Disease Models, Animal , Distemper Virus, Canine , Distemper , Ferrets , Viral Load , Animals , Ferrets/virology , Distemper Virus, Canine/pathogenicity , Distemper/virology , Distemper/pathology
13.
Nat Commun ; 15(1): 4228, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762498

ABSTRACT

Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.


Subject(s)
Brain , Ferrets , Imaging, Three-Dimensional , Photoacoustic Techniques , Animals , Brain/diagnostic imaging , Photoacoustic Techniques/methods , Imaging, Three-Dimensional/methods , Mice , Algorithms , Machine Learning , Tomography/methods , Image Processing, Computer-Assisted/methods , Rats , Male
14.
Nat Commun ; 15(1): 4112, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750016

ABSTRACT

Outbreaks of highly pathogenic H5N1 clade 2.3.4.4b viruses in farmed mink and seals combined with isolated human infections suggest these viruses pose a pandemic threat. To assess this threat, using the ferret model, we show an H5N1 isolate derived from mink transmits by direct contact to 75% of exposed ferrets and, in airborne transmission studies, the virus transmits to 37.5% of contacts. Sequence analyses show no mutations were associated with transmission. The H5N1 virus also has a low infectious dose and remains virulent at low doses. This isolate carries the adaptive mutation, PB2 T271A, and reversing this mutation reduces mortality and airborne transmission. This is the first report of a H5N1 clade 2.3.4.4b virus exhibiting direct contact and airborne transmissibility in ferrets. These data indicate heightened pandemic potential of the panzootic H5N1 viruses and emphasize the need for continued efforts to control outbreaks and monitor viral evolution.


Subject(s)
Ferrets , Influenza A Virus, H5N1 Subtype , Mink , Orthomyxoviridae Infections , Animals , Mink/virology , Ferrets/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/veterinary , Risk Assessment , Humans , Mutation , Viral Proteins/genetics , Viral Proteins/metabolism , Female , Disease Outbreaks/veterinary , Male , Influenza, Human/virology , Influenza, Human/transmission
15.
Sci Adv ; 10(19): eadk9137, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728395

ABSTRACT

Obesity, and the associated metabolic syndrome, is a risk factor for increased disease severity with a variety of infectious agents, including influenza virus. Yet, the mechanisms are only partially understood. As the number of people, particularly children, living with obesity continues to rise, it is critical to understand the role of host status on disease pathogenesis. In these studies, we use a diet-induced obese ferret model and tools to demonstrate that, like humans, obesity resulted in notable changes to the lung microenvironment, leading to increased clinical disease and viral spread to the lower respiratory tract. The decreased antiviral responses also resulted in obese animals shedding higher infectious virus for a longer period, making them more likely to transmit to contacts. These data suggest that the obese ferret model may be crucial to understanding obesity's impact on influenza disease severity and community transmission and a key tool for therapeutic and intervention development for this high-risk population.


Subject(s)
Disease Models, Animal , Ferrets , Obesity , Orthomyxoviridae Infections , Animals , Obesity/virology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Lung/virology , Lung/pathology , Severity of Illness Index , Diet , Humans , Virus Shedding , Influenza, Human/transmission , Influenza, Human/virology
16.
Sci Data ; 11(1): 510, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760422

ABSTRACT

Data from influenza A virus (IAV) infected ferrets provides invaluable information towards the study of novel and emerging viruses that pose a threat to human health. This gold standard model can recapitulate many clinical signs of infection present in IAV-infected humans, support virus replication of human, avian, swine, and other zoonotic strains without prior adaptation, and permit evaluation of virus transmissibility by multiple modes. While ferrets have been employed in risk assessment settings for >20 years, results from this work are typically reported in discrete stand-alone publications, making aggregation of raw data from this work over time nearly impossible. Here, we describe a dataset of 728 ferrets inoculated with 126 unique IAV, conducted by a single research group under a uniform experimental protocol. This collection of morbidity, mortality, and viral titer data represents the largest publicly available dataset to date of in vivo-generated IAV infection outcomes on a per-ferret level.


Subject(s)
Ferrets , Influenza A virus , Orthomyxoviridae Infections , Animals , Disease Models, Animal , Ferrets/virology , Orthomyxoviridae Infections/virology , Viral Load
17.
Hear Res ; 447: 109025, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733712

ABSTRACT

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.


Subject(s)
Acoustic Stimulation , Auditory Cortex , Basal Forebrain , Ferrets , Animals , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Basal Forebrain/metabolism , Sound Localization , Acetylcholine/metabolism , Male , Cholinergic Neurons/metabolism , Cholinergic Neurons/pathology , Auditory Pathways/physiopathology , Auditory Pathways/metabolism , Female , Immunotoxins/toxicity , Basal Nucleus of Meynert/metabolism , Basal Nucleus of Meynert/physiopathology , Basal Nucleus of Meynert/pathology , Neurons/metabolism , Auditory Threshold , Adaptation, Physiological , Behavior, Animal
18.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805550

ABSTRACT

Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.


Two proteins, the hemagglutinin and the neuraminidase, protrude from the surface of the influenza virus. Their detection by the immune system allows the host organism to mount defences against the viral threat. The virus evolves in response to this pressure, which manifests as changes in the appearance of its hemagglutinin and neuraminidase. This process, known as antigenic drift, leads to the proteins evading detection. It is also why flu vaccines require frequent updates, as they rely on 'training' the immune system to recognise the most important strains in circulation ­ primarily by exposing it to appropriate versions of hemagglutinin. While the antigenic drift of hemagglutinin has been extensively studied, much less is known about how the neuraminidase accumulates mutations, and how these affect the immune response. To investigate this question, Catani et al. selected 43 genetically distant neuraminidases from human viral samples isolated between 2009 and 2017. Statistical analyses were applied to define their relatedness, revealing that a group of closely related neuraminidases predominated from 2009 to 2015, before they were being taken over by a second group. A third group, which was identified in viruses isolated in 2013, was remarkably close to the neuraminidase of strains that circulated in the late 1990s. The fourth and final group of neuraminidases was derived from influenza viruses that normally circulate in pigs but can also occasionally infect humans. Next, Catani et al. examined the immune response that these 43 neuraminidases could elicit in mice, as well as in ferrets ­ the animal most traditionally used in influenza research. This allowed them to pinpoint which changes in the neuraminidase sequences were important to escape recognition by the host. Data obtained from the two model species were comparable, suggesting that these experiments could be conducted on mice going forward, which are easier to work with than ferrets. Finally, Catani et al. used machine learning to build a computational model that could predict how strongly the immune system would respond to a specific neuraminidase variant. These findings could help guide the development of new vaccines that include neuraminidases tailored to best prime and train the immune system against a larger variety of strains. This may aid the development of 'supra-seasonal' vaccines that protect against a broad range of influenza viruses, reducing the need for yearly updates.


Subject(s)
Antigens, Viral , Ferrets , Influenza A Virus, H3N2 Subtype , Influenza, Human , Neuraminidase , Neuraminidase/immunology , Neuraminidase/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/enzymology , Humans , Animals , Antigens, Viral/immunology , Antigens, Viral/genetics , Mice , Influenza, Human/prevention & control , Influenza, Human/immunology , Influenza, Human/virology , Antibodies, Viral/immunology , Influenza Vaccines/immunology , Antigenic Variation , Viral Proteins/immunology , Viral Proteins/genetics , Viral Proteins/chemistry , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology
19.
Neurosci Biobehav Rev ; 162: 105701, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718987

ABSTRACT

There is a lack of consensus on anatomical nomenclature, standards of documentation, and functional equivalence of the frontal cortex between species. There remains a major gap between human prefrontal function and interpretation of findings in the mouse brain that appears to lack several key prefrontal areas involved in cognition and psychiatric illnesses. The ferret is an emerging model organism that has gained traction as an intermediate model species for the study of top-down cognitive control and other higher-order brain functions. However, this research has yet to benefit from synthesis. Here, we provide a summary of all published research pertaining to the frontal and/or prefrontal cortex of the ferret across research scales. The targeted location within the ferret brain is summarized visually for each experiment, and the anatomical terminology used at time of publishing is compared to what would be the appropriate term to use presently. By doing so, we hope to improve clarity in the interpretation of both previous and future publications on the comparative study of frontal cortex.


Subject(s)
Ferrets , Prefrontal Cortex , Prefrontal Cortex/physiology , Prefrontal Cortex/anatomy & histology , Animals , Ferrets/anatomy & histology , Models, Animal , Humans
20.
Nat Commun ; 15(1): 4145, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773083

ABSTRACT

During development, cortical activity is organized into distributed modular patterns that are a precursor of the mature columnar functional architecture. Theoretically, such structured neural activity can emerge dynamically from local synaptic interactions through a recurrent network with effective local excitation with lateral inhibition (LE/LI) connectivity. Utilizing simultaneous widefield calcium imaging and optogenetics in juvenile ferret cortex prior to eye opening, we directly test several critical predictions of an LE/LI mechanism. We show that cortical networks transform uniform stimulations into diverse modular patterns exhibiting a characteristic spatial wavelength. Moreover, patterned optogenetic stimulation matching this wavelength selectively biases evoked activity patterns, while stimulation with varying wavelengths transforms activity towards this characteristic wavelength, revealing a dynamic compromise between input drive and the network's intrinsic tendency to organize activity. Furthermore, the structure of early spontaneous cortical activity - which is reflected in the developing representations of visual orientation - strongly overlaps that of uniform opto-evoked activity, suggesting a common underlying mechanism as a basis for the formation of orderly columnar maps underlying sensory representations in the brain.


Subject(s)
Ferrets , Nerve Net , Optogenetics , Animals , Nerve Net/physiology , Photic Stimulation , Visual Cortex/physiology , Visual Cortex/growth & development , Neurons/physiology , Calcium/metabolism , Cerebral Cortex/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...