Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Physiol ; 602(15): 3833-3852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38985827

ABSTRACT

Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.


Subject(s)
Acetylcysteine , Epigenesis, Genetic , Fetal Growth Retardation , Hydrogen Sulfide , Hypoxia , Animals , Hydrogen Sulfide/metabolism , Acetylcysteine/pharmacology , Chick Embryo , Humans , Female , Pregnancy , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/genetics , Fetal Growth Retardation/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , DNA Methylation , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Vasodilation/drug effects , Placenta/metabolism , Placenta/blood supply , Umbilical Arteries/metabolism
2.
Reprod Sci ; 30(8): 2416-2428, 2023 08.
Article in English | MEDLINE | ID: mdl-36849856

ABSTRACT

We used uncontrolled maternal diabetes as a model to provoke fetal growth restriction in the female in the first generation (F1) and to evaluate reproductive outcomes and the possible changes in metabolic systems during pregnancy, as well as the repercussions at birth in the second generation (F2). For this, nondiabetic and streptozotocin-induced severely diabetic Sprague-Dawley rats were mated to obtain female pups (F1), which were classified as adequate (AGA) or small (SGA) for gestational weight. Afterward, we composed two groups: F1 AGA from nondiabetic dams (Control) and F1 SGA from severely diabetic dams (Restricted) (n minimum = 10 animals/groups). At adulthood, these rats were submitted to the oral glucose tolerance test, mated, and at day 17 of pregnancy, blood samples were collected to determine glucose and insulin levels for assessment of insulin resistance. At the end of the pregnancy, the blood and liver samples were collected to evaluate redox status markers, and reproductive, fetal, and placental outcomes were analyzed. Maternal diabetes was responsible for increased SGA rates and a lower percentage of AGA fetuses (F1 generation). The restricted female pups from severely diabetic dams presented rapid neonatal catch-up growth, glucose intolerance, and insulin resistance status before and during pregnancy. At term pregnancy of F1 generation, oxidative stress status was observed in the maternal liver and blood samples. In addition, their offspring (F2 generation) had lower fetal weight and placental efficiency, regardless of gender, which caused fetal growth restriction and confirmed the fetal programming influence.


Subject(s)
Diabetes, Gestational , Insulin Resistance , Humans , Rats , Pregnancy , Animals , Female , Placenta/metabolism , Rats, Wistar , Fetal Growth Retardation/etiology , Fetal Growth Retardation/metabolism , Rats, Sprague-Dawley , Diabetes, Gestational/metabolism , Blood Glucose/metabolism
3.
Mol Hum Reprod ; 27(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33528567

ABSTRACT

Prenatal exposure to glucocorticoids (GC) is a central topic of interest in medicine since GCs are essential for the maturation of fetal organs and intrauterine growth. Synthetic glucocorticoids, which are used in obstetric practice, exert beneficial effects on the fetus, but have also been reported to lead to intrauterine growth retardation (IUGR). In this study, a model of growth restriction in mice was established through maternal administration of dexamethasone during late gestation. We hypothesised that GC overexposure may adversely affect placental angiogenesis and fetal and placental growth. Female BALB/c mice were randomly assigned to control or dexamethasone treatment, either left to give birth or euthanised on days 15, 16, 17 and 18 of gestation followed by collection of maternal and fetal tissue. The IUGR rate increased to 100% in the dexamethasone group (8 mg/kg body weight on gestational days 14 and 15) and pups had clinical features of symmetrical IUGR at birth. Dexamethasone administration significantly decreased maternal body weight gain and serum corticosterone levels. Moreover, prenatal dexamethasone treatment not only induced fetal growth retardation but also decreased placental weight. In IUGR placentas, VEGFA protein levels and mRNA expression of VEGF receptors were reduced and NOS activity was lower. Maternal dexamethasone administration also reduced placental expression of the GC receptor, αGR. We demonstrated that maternal dexamethasone administration causes fetal and placental growth restriction. Furthermore, we propose that the growth retardation induced by prenatal GC overexposure may be caused, at least partially, by an altered placental angiogenic profile.


Subject(s)
Dexamethasone , Fetal Growth Retardation/metabolism , Placenta/metabolism , Placentation , Vascular Endothelial Growth Factor A/metabolism , Animals , Disease Models, Animal , Down-Regulation , Female , Fetal Growth Retardation/chemically induced , Fetal Growth Retardation/physiopathology , Gene Expression Regulation, Developmental , Gestational Age , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase/metabolism , Placenta/physiopathology , Pregnancy , Receptors, Glucocorticoid/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/genetics
4.
J Cardiovasc Pharmacol ; 76(6): 715-729, 2020 12.
Article in English | MEDLINE | ID: mdl-32976209

ABSTRACT

Perivascular adipose tissue (PVAT) modulates the vascular tone. Hydrogen sulfide (H2S) is synthetized by cystathionine gamma-lyase (CSE) in brown PVAT. Modulation of vascular contractility by H2S is, in part, adenosine triphosphate (ATP)-sensitive potassium channels dependent. However, the role of PVAT-derived H2S in hypertensive pregnancy (HTN-Preg) is unclear. Therefore, we aimed to examine the involvement of H2S in the anticontractile effect of PVAT in aortae from normotensive and hypertensive pregnant rats. To this end, phenylephrine-induced contractions in the presence and absence of PVAT and endothelium in aortae from normotensive pregnant (Norm-Preg) and HTN-Preg rats were investigated. Maternal blood pressure, fetal-placental parameters, angiogenesis-related biomarkers, and H2S levels were also assessed. We found that circulating H2S is elevated in hypertensive pregnancy associated with angiogenic imbalance, fetal and placental growth restrictions, which revealed that there is H2S pathway activation. Moreover, under stimulated H2S formation PVAT, but not endothelium, reduced phenylephrine-induced contractions in aortae from HTN-Preg rats. Also, H2S synthesis inhibitor abolished anticontractile effects of PVAT and endothelium. Furthermore, anticontractile effect of PVAT, but not of endothelium, was eliminated by ATP-sensitive potassium channels blocker. In accordance, increases in H2S levels in PVAT and placenta, but not in aortae without PVAT, were also observed. In conclusion, anticontractile effect of PVAT is lost, at least in part, in HTN-Preg aortae and PVAT effect is ATP-sensitive potassium channels dependent in normotensive and hypertensive pregnant rat aortae. PVAT but not endothelium is responsive to the H2S stimulation in hypertensive pregnant rat aortae, implying a key role for PVAT-derived H2S under endothelial dysfunction.


Subject(s)
Adipose Tissue/metabolism , Aorta, Thoracic/metabolism , Endothelium, Vascular/metabolism , Hydrogen Sulfide/metabolism , Hypertension, Pregnancy-Induced/metabolism , Vasoconstriction , Adaptation, Physiological , Adipose Tissue/physiopathology , Animals , Aorta, Thoracic/physiopathology , Desoxycorticosterone Acetate , Disease Models, Animal , Endothelium, Vascular/physiopathology , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/physiopathology , Hypertension, Pregnancy-Induced/etiology , Hypertension, Pregnancy-Induced/physiopathology , KATP Channels/metabolism , Pregnancy , Rats, Wistar , Signal Transduction , Sodium Chloride, Dietary , Up-Regulation
6.
Int J Mol Sci ; 21(10)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443673

ABSTRACT

Preeclampsia (PE) and Intrauterine Growth Restriction (IUGR) are major contributors to perinatal morbidity and mortality. These pregnancy disorders are associated with placental dysfunction and share similar pathophysiological features. The aim of this study was to compare the placental gene expression profiles including mRNA and lncRNAs from pregnant women from four study groups: PE, IUGR, PE-IUGR, and normal pregnancy (NP). Gene expression microarray analysis was performed on placental tissue obtained at delivery and results were validated using RTq-PCR. Differential gene expression analysis revealed that the largest transcript variation was observed in the IUGR samples compared to NP (n = 461; 314 mRNAs: 252 up-regulated and 62 down-regulated; 133 lncRNAs: 36 up-regulated and 98 down-regulated). We also detected a group of differentially expressed transcripts shared between the PE and IUGR samples compared to NP (n = 39), including 9 lncRNAs with a high correlation degree (p < 0.05). Functional enrichment of these shared transcripts showed that cytokine signaling pathways, protein modification, and regulation of JAK-STAT cascade are over-represented in both placental ischemic diseases. These findings contribute to the molecular characterization of placental ischemia showing common epigenetic regulation implicated in the pathophysiology of PE and IUGR.


Subject(s)
Fetal Growth Retardation/genetics , Placenta/metabolism , Pre-Eclampsia/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome , Adult , Birth Weight , Female , Fetal Growth Retardation/metabolism , Humans , Infant, Newborn , Male , Pre-Eclampsia/metabolism , Pregnancy , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
7.
J Anat ; 236(5): 840-853, 2020 05.
Article in English | MEDLINE | ID: mdl-31997379

ABSTRACT

Intrauterine growth restriction (IUGR) is a serious condition which impairs the achievement of the fetus' full growth potential and occurs in a natural and severe manner in pigs as a result of placental insufficiency. Reduced skeletal muscle mass in the fetus with IUGR persists into adulthood and may contribute to increased metabolic disease risk. To investigate skeletal muscle postnatal development, histomorphometrical patterns of the semitendinosus muscle, myosin heavy chain (MyHC; embryonic I, IIA, IIB and IIX isoforms) fiber composition and the relative expression of genes related to myogenesis, adipogenesis and growth during three specific periods: postnatal myogenesis (newborn to 100 days old), hypertrophy (100-150 days old), and postnatal development (newborn to 150 days old) were evaluated in female pigs with IUGR and normal birth weight (NW) female littermates. NW females presented higher body weights compared to their IUGR counterparts at all ages evaluated (P < 0.05). Moreover, growth restriction in utero affected the semitendinosus muscle weight, muscle fiber diameter, and muscle cross-sectional area, which were smaller in IUGR pigs at birth (P < 0.05). Notwithstanding the effects on muscle morphology, IUGR also affected muscle fiber composition, as the percentage of MyHC-I myofibers was higher at birth (P < 0.05), and, in 150-day-old gilts, a lower percentage of MyHC-IIX isoform (P < 0.05) and the presence of embryonic MyHC isoform were also observed. Regarding the pattern of gene expression in both the postnatal myogenesis and postnatal development periods, IUGR led to the downregulation of myogenic factors, which delayed skeletal muscle myogenesis (PAX7, MYOD, MYOG, MYF5 and DES). Altogether, growth restriction in utero affects muscle fiber number and size at birth and muscle fiber composition through the downregulation of myogenic factors, which determines the individual´s postnatal growth rate. This fact, associated with delayed myofiber development in growth-restricted animals, may affect meat quality characteristics in animal production. Hence, knowledge of the morphofunctional phenotype of the skeletal muscle throughout postnatal development in individuals with IUGR, and the mechanism that governs it, may provide a better understanding of the mechanisms that limit postnatal muscle growth, and help the establishment of potential strategies to improve muscle development and prevent the onset of later-life metabolic diseases.


Subject(s)
Fetal Growth Retardation/physiopathology , Muscle Development/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/growth & development , Animals , Female , Fetal Growth Retardation/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Myosin Heavy Chains/metabolism , Phenotype , Pregnancy , Sus scrofa , Swine
8.
Hematology Am Soc Hematol Educ Program ; 2019(1): 359-366, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31808864

ABSTRACT

Pregnancy in women with sickle cell disease (SCD) is associated with increased maternal and fetal morbidity and mortality. Outcomes vary widely owing to methodological limitations of clinical studies, but overall, hypertensive disorders of pregnancy, venothromboembolism, poor fetal growth, and maternal and perinatal mortality are increased globally. Few therapeutic interventions have been explored other than prophylactic and selective transfusion therapy. Unfortunately, existing data are limited, and it remains unclear whether prophylactic use of chronic transfusions will improve pregnancy outcomes. Management of pregnant women with SCD is best accomplished with a multidisciplinary team that includes a sickle cell expert and an obstetrician familiar with high-risk pregnancies. Women with SCD should have individualized care plans that outline management of acute pain and guidelines for transfusion therapy. Neonates require close monitoring for neonatal abstinence syndrome and hemolytic disease of the newborn. Ideally all young women with SCD will have a "reproductive life plan" developed as a component of preconception counseling and health promotion. Research leading to improved pregnancy management focused on diminishing adverse maternal and neonatal outcomes is overdue. International collaborations should be considered to improve subject recruitment and foster timely completion of clinical trials. Additional therapeutic interventions outside of transfusion therapy should be explored.


Subject(s)
Anemia, Sickle Cell , Blood Transfusion , Erythroblastosis, Fetal , Fetal Growth Retardation , Neonatal Abstinence Syndrome , Pregnancy Complications, Hematologic , Venous Thromboembolism , Adult , Anemia, Sickle Cell/metabolism , Anemia, Sickle Cell/pathology , Anemia, Sickle Cell/therapy , Erythroblastosis, Fetal/metabolism , Erythroblastosis, Fetal/pathology , Erythroblastosis, Fetal/prevention & control , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/therapy , Humans , Neonatal Abstinence Syndrome/metabolism , Neonatal Abstinence Syndrome/pathology , Neonatal Abstinence Syndrome/prevention & control , Pregnancy , Pregnancy Complications, Hematologic/metabolism , Pregnancy Complications, Hematologic/pathology , Pregnancy Complications, Hematologic/therapy , Venous Thromboembolism/metabolism , Venous Thromboembolism/pathology , Venous Thromboembolism/therapy
9.
Naunyn Schmiedebergs Arch Pharmacol ; 392(12): 1561-1568, 2019 12.
Article in English | MEDLINE | ID: mdl-31363805

ABSTRACT

Hydrogen sulfide (H2S) is a vasorelaxant gas with therapeutic potential in several diseases. However, effects of H2S donors in hypertensive pregnancy complicated by feto-placental growth restriction are unclear. Therefore, we aimed to examine and compare the effects of fast-releasing H2S donor (sodium hydrosulfide-NaHS) and slow-releasing H2S donor (GYY4137) in hypertension-in-pregnancy. Pregnant rats were distributed into four groups: normal pregnancy (Norm-Preg), hypertensive pregnancy (HTN-Preg), hypertensive pregnancy + NaHS (HTN-Preg + NaHS), and hypertensive pregnancy + GYY4137 (HTN-Preg + GYY). Systolic blood pressure, plasma H2S levels, fetal and placental weights, number of viable fetuses, litter size, and endothelium-dependent vasodilation were examined. Also, oxidative stress was assessed in placenta. We found that GYY4137 attenuated hypertension on gestational days 16 and 18, while NaHS presented antihypertensive effect only on gestational day 18. GYY4137, but not NaHS, increased plasma H2S levels. Greater fetal and placental weights were found with GYY4137 than NaHS treatment. Also, HTN-Preg + NaHS presented further reductions in placental weights when compared to HTN-Preg group. Number of viable fetuses and litter size presented no significant changes. GYY4137 reduced placental oxidative stress caused by hypertension, while greater increases in oxidative stress were found in HTN-Preg + NaHS than HTN-Preg group. Hypertensive pregnancy caused impaired endothelium-dependent vasodilation, while GYY4137 and NaHS treatments blunted endothelial dysfunction. Endothelium-dependent vasodilation was completely blocked by the nitric oxide synthase inhibitor. We conclude that slow-releasing H2S donor GYY4137 is advantageous compared with fast-releasing H2S-donor NaHS to attenuate hypertension-in-pregnancy and to protect against feto-placental growth restriction and oxidative stress.


Subject(s)
Antihypertensive Agents/therapeutic use , Fetal Growth Retardation/drug therapy , Hydrogen Sulfide , Hypertension/drug therapy , Morpholines/therapeutic use , Organothiophosphorus Compounds/therapeutic use , Sulfides/therapeutic use , Animals , Antihypertensive Agents/metabolism , Antihypertensive Agents/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/physiopathology , Fetus/drug effects , Hydrogen Sulfide/blood , Hypertension/blood , Hypertension/metabolism , Hypertension/physiopathology , Litter Size/drug effects , Malondialdehyde/metabolism , Morpholines/pharmacology , Organothiophosphorus Compounds/pharmacology , Placenta/drug effects , Pregnancy , Rats, Wistar , Sulfides/pharmacology
10.
J. pediatr. (Rio J.) ; J. pediatr. (Rio J.);94(6): 582-595, Nov.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-976004

ABSTRACT

Abstract Objective: The literature suggests that a fetus will adapt to surrounding adversities by optimizing its use of energy to improve survival, ultimately leading to the programming of the individual's energy intake and expenditure. While recent reviews focused on the fetal programming of energy intake and food preferences, there is also some evidence that fetal adversity is associated with diminished physical activity levels. Therefore, we aimed to review (a) the evidence for an association between being born with intrauterine growth restriction and sedentarism over the life-course and (b) the potential benefits of physical activity over cardiometabolic risk factors for this population. Sources: PubMed, Scielo, Scopus and Embase. Summary of findings: Most clinical studies that used objective measures found no association between intrauterine growth restriction and physical activity levels, while most studies that used self-reported questionnaires revealed such relationships, particularly leisure time physical activity. Experimental studies support the existence of fetal programming of physical activity, and show that exposure to exercise during IUGR individuals' life improves metabolic outcomes but less effect was seen on muscle architecture or function. Conclusions: Alterations in muscle strength and metabolism, as well as altered aerobic performance, may predispose IUGR individuals to be spontaneously less physically active, suggesting that this population may be an important target for preventive interventions. Although very heterogeneous, the different studies allow us to infer that physical activity may have beneficial effects especially for individuals that are more vulnerable to metabolic modifications such as those with IUGR.


Resumo Objetivo: A literatura sugere que um feto se adaptará às adversidades externas ao aprimorar seu gasto energético para melhorar a sobrevida, o que leva, em última instância, à programação do consumo e gasto energético do indivíduo. Apesar de análises recentes terem focado na programação fetal do consumo energético e preferências alimentares, ainda há alguma comprovação de que as adversidades fetais estão associadas aos baixos níveis de atividade física. Portanto, visamos a analisar: a) a comprovação de uma associação entre nascer com restrição de crescimento intrauterino (RCIU) e sedentarismo durante o curso de vida e b) os possíveis benefícios da atividade física sobre os fatores de risco cardiometabólico dessa população. Fontes: PubMed, Scielo, Scopus e Embase. Resumo dos achados: A maior parte dos estudos clínicos que usaram medidas objetivas não constatou associação entre RCIU e os níveis de atividade física, ao passo que a maior parte dos estudos que usaram questionários de autorrelato revelou essas relações, principalmente no que diz respeito à atividade física de lazer. Estudos experimentais corroboram a existência de programação fetal de atividade física e mostram que a exposição a exercícios durante a vida de indivíduos com RCIU melhora os resultados metabólicos, porém menos efeito foi visto sobre a arquitetura ou função muscular. Conclusões: Alterações na força muscular e no metabolismo, bem como o desempenho aeróbico alterado, podem predispor indivíduos com RCIU a serem espontaneamente menos ativos fisicamente, sugere que essa população pode ser um importante alvo de intervenções preventivas. Apesar de muito heterogêneos, os diferentes estudos nos possibilitam deduzir que a atividade física pode ter efeitos benéficos principalmente em indivíduos mais vulneráveis a modificações metabólicas, como aqueles com RCIU.


Subject(s)
Humans , Male , Female , Exercise/physiology , Fetal Development/physiology , Sedentary Behavior , Fetal Growth Retardation/metabolism , Time Factors , Birth Weight/physiology , Risk Factors , Energy Metabolism/physiology , Fetal Growth Retardation/physiopathology , Motivation/physiology
11.
J Pediatr (Rio J) ; 94(6): 582-595, 2018.
Article in English | MEDLINE | ID: mdl-29476706

ABSTRACT

OBJECTIVE: The literature suggests that a fetus will adapt to surrounding adversities by optimizing its use of energy to improve survival, ultimately leading to the programming of the individual's energy intake and expenditure. While recent reviews focused on the fetal programming of energy intake and food preferences, there is also some evidence that fetal adversity is associated with diminished physical activity levels. Therefore, we aimed to review (a) the evidence for an association between being born with intrauterine growth restriction and sedentarism over the life-course and (b) the potential benefits of physical activity over cardiometabolic risk factors for this population. SOURCES: PubMed, Scielo, Scopus and Embase. SUMMARY OF FINDINGS: Most clinical studies that used objective measures found no association between intrauterine growth restriction and physical activity levels, while most studies that used self-reported questionnaires revealed such relationships, particularly leisure time physical activity. Experimental studies support the existence of fetal programming of physical activity, and show that exposure to exercise during IUGR individuals' life improves metabolic outcomes but less effect was seen on muscle architecture or function. CONCLUSIONS: Alterations in muscle strength and metabolism, as well as altered aerobic performance, may predispose IUGR individuals to be spontaneously less physically active, suggesting that this population may be an important target for preventive interventions. Although very heterogeneous, the different studies allow us to infer that physical activity may have beneficial effects especially for individuals that are more vulnerable to metabolic modifications such as those with IUGR.


Subject(s)
Exercise/physiology , Fetal Development/physiology , Fetal Growth Retardation/metabolism , Sedentary Behavior , Birth Weight/physiology , Energy Metabolism/physiology , Female , Fetal Growth Retardation/physiopathology , Humans , Male , Motivation/physiology , Risk Factors , Time Factors
12.
Int J Mol Sci ; 18(10)2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28981462

ABSTRACT

Epigenetic mechanisms play an important role in the regulation of the Growth Hormone- Insulin-like Growth Factor 1 (GH-IGF1) axis and in processes for controlling long bone growth, and carbohydrate and lipid metabolism. Improvement of methodologies that allow for the assessment of epigenetic regulation have contributed enormously to the understanding of GH action, but many questions still remain to be clarified. The reversible nature of epigenetic factors and, particularly, their role as mediators between the genome and the environment, make them viable therapeutic target candidates. Rather than reviewing the molecular and epigenetic pathways regulated by GH action, in this review we have focused on the use of epigenetic modulators as potential drugs to improve the GH response. We first discuss recent progress in the understanding of intracellular molecular mechanisms controlling GH and IGF-I action. We then emphasize current advances in genetic and epigenetic mechanisms that control gene expression, and which support a key role for epigenetic regulation in the cascade of intracellular events that trigger GH action when coupled to its receptor. Thirdly, we focus on fetal programming and epigenetic regulation at the IGF1 locus. We then discuss epigenetic alterations in intrauterine growth retardation, and the possibility for a potential epigenetic pharmaceutical approach in short stature associated with this fetal condition. Lastly, we review an example of epigenetic therapeutics in the context of growth-related epigenetic deregulation disorders. The advance of our understanding of epigenetic changes and the impact they are having on new forms of therapy creates exciting prospects for the future.


Subject(s)
Epigenesis, Genetic/genetics , Growth Hormone/metabolism , Insulin-Like Growth Factor I/metabolism , Animals , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Growth Hormone/genetics , Humans , Insulin-Like Growth Factor I/genetics , Pregnancy
13.
Article in English | MEDLINE | ID: mdl-28987718

ABSTRACT

Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR.


Subject(s)
Erythrocytes/metabolism , Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Fetal Growth Retardation/metabolism , Placenta/metabolism , Adult , Fatty Acid Transport Proteins/genetics , Fatty Acid-Binding Proteins/genetics , Female , Fetal Growth Retardation/genetics , Humans , Lipoprotein Lipase/genetics , Maternal-Fetal Exchange , Pregnancy , RNA, Messenger/genetics , Young Adult
14.
Braz J Med Biol Res ; 50(11): e6237, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-28902925

ABSTRACT

Intrauterine growth retardation (IUGR) is associated with the development of adult-onset diseases, including pulmonary hypertension. However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular dysfunction later in life is not fully understood. Here, we investigated the role of tyrosine phosphorylation of voltage-gated potassium channel 1.5 (Kv1.5) in this prenatal event that results in exaggerated adult vascular dysfunction. A rat model of chronic hypoxia (2 weeks of hypoxia at 12 weeks old) following IUGR was used to investigate the physiological and structural effect of intrauterine malnutrition on the pulmonary artery by evaluating pulmonary artery systolic pressure and vascular diameter in male rats. Kv1.5 expression and tyrosine phosphorylation in pulmonary artery smooth muscle cells (PASMCs) were determined. We found that IUGR increased mean pulmonary artery pressure and resulted in thicker pulmonary artery smooth muscle layer in 14-week-old rats after 2 weeks of hypoxia, while no difference was observed in normoxia groups. In the PASMCs of IUGR-hypoxia rats, Kv1.5 mRNA and protein expression decreased while that of tyrosine-phosphorylated Kv1.5 significantly increased. These results demonstrate that IUGR leads to exaggerated chronic hypoxia pulmonary arterial hypertension (CH-PAH) in association with decreased Kv1.5 expression in PASMCs. This phenomenon may be mediated by increased tyrosine phosphorylation of Kv1.5 in PASMCs and it provides new insight into the prevention and treatment of IUGR-related CH-PAH.


Subject(s)
Fetal Growth Retardation/metabolism , Fetal Hypoxia/complications , Fetal Hypoxia/physiopathology , Hypertension, Pulmonary/etiology , Kv1.5 Potassium Channel/analysis , Muscle, Smooth, Vascular/chemistry , Organophosphates/metabolism , Polymers/metabolism , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/etiology , Fluorescent Antibody Technique , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Immunoblotting , Immunohistochemistry , Male , Malnutrition/complications , Muscle, Smooth, Vascular/pathology , Phosphorylation , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , RNA, Messenger/analysis , Random Allocation , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Time Factors , Up-Regulation
15.
An Acad Bras Cienc ; 89(1): 223-230, 2017.
Article in English | MEDLINE | ID: mdl-28423082

ABSTRACT

The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.


Subject(s)
Fetal Development/physiology , Physical Conditioning, Animal/methods , Physical Conditioning, Animal/physiology , Swimming/physiology , Animals , Animals, Newborn/physiology , Blood Glucose/analysis , Blood Glucose/metabolism , Body Weight/physiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/physiopathology , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/physiopathology , Glucose Tolerance Test , Male , Models, Animal , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Random Allocation , Rats, Wistar , Reference Values , Time Factors
16.
Mol Hum Reprod ; 23(7): 509-519, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28402512

ABSTRACT

STUDY QUESTION: What is the impact of chronic hypertension on placental development, fetal growth and maternal outcome in the stroke-prone spontaneously hypertensive rat (SHRSP)? SUMMARY ANSWER: SHRSP showed an impaired remodeling of the spiral arteries and abnormal pattern of trophoblast invasion during placentation, which were associated with subsequent maternal glomerular injury and increased baseline hypertension as well as placental insufficiency and asymmetric fetal growth restriction (FGR). WHAT IS KNOWN ALREADY: A hallmark in the pathogenesis of preeclampsia (PE) is abnormal placentation with defective remodeling of the spiral arteries preceding the onset of the maternal syndrome. Pregnancies affected by chronic hypertension display an increased risk for PE, often associated with poor maternal and fetal outcomes. However, the impact of chronic hypertension on the placentation process as well as the nature of the factors promoting the development of PE in pregnant hypertensive women remain elusive. STUDY DESIGN, SIZE, DURATION: Timed pregnancies [n = 5] were established by mating 10-12-week-old SHRSP and Wistar Kyoto (WKY, normotensive controls) females with congenic males. Maternal systolic blood pressures (SBPs) were recorded pre-mating, throughout pregnancy (GD1-19) and post-partum by the tail-cuff method. On selected dates, 24 h urine- and blood samples were collected, and animals were euthanized for isolation of implantation sites and kidneys for morphometrical analyses. PARTICIPANTS/MATERIALS, SETTING, METHODS: The 24 h proteinuria and the albumin:creatinine ratio were used for evaluation of maternal renal function. Renal injury was assessed on periodic acid Schiff, Masson's trichrome and Sirius red stainings. Placental and fetal weights were recorded on gestation day (GD)18 and GD20, followed by determination of fetal cephalization indexes and developmental stage, according to the Witschi scale. Morphometric analyses of placental development were conducted on hematoxylin-eosin stained tissue sections collected on GD14 and GD18, and complemented with immunohistochemical evaluation of isolectin B4 binding for assessment of placental vascularization. Analyses of vascular wall alpha actin content, perforin-positive natural killer (NK) cells and cytokeratin expression by immunohistochemistry were used for evaluation of spiral artery remodeling and trophoblast invasion. MAIN RESULTS AND THE ROLE OF CHANCE: SHRSP females presented significantly increased SBP records from GD13 to GD17 (SBPGD13 = 183.9 ± 3.9 mmHg, P < 0.005 versus baseline) and increased proteinuria at GD18 (P < 0.01 versus WKY). Histological examination of GD18 kidneys revealed glomerular enlargement and mesangial matrix expansion, which were not evident in pregnant WKY or age-matched virgin SHRSP. At GD20, SHRSP displayed a significant reduction of placental mass (P < 0.01 versus WKY) and signs of placental insufficiency (i.e. hypertrophy and reduced branching morphogenesis of the labyrinth layer), associated with decreased offspring weights and increased cephalization index (both P < 0.001 versus WKY) indicating asymmetric FGR. Notably, SHRSP placentas displayed an incomplete remodeling of spiral arteries starting as early as GD14, with luminal narrowing and reduced densities of perivascular NK cells followed by decreased infiltration of endovascular trophoblasts at GD18. LARGE SCALE DATA: n/a. LIMITATIONS, REASONS FOR CAUTION: A pitfall of the present study is the differences in the blood pressure profiles between rats and humans (i.e. unlike pregnancies affected by PE, blood pressure in SHRSP and other hypertensive rat models decreases pre-delivery), which limits extrapolation of the results. WIDER IMPLICATIONS OF THE FINDINGS: Our findings provide new insights on the role of chronic hypertension as a risk factor for PE by interfering with early events during the placentation process. The SHRSP strain represents an attractive model for further studies aimed at addressing the relative contribution of intrinsic (i.e. placental) and extrinsic (i.e. decidual/vascular) factors to defective spiral artery remodeling in pregnancies affected by PE. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by research grants from Fundación Florencio Fiorini to G.B., from Charité Stiftung to S.M.B. and University of Buenos Aires (UBACyt) to J.T. The authors have no competing interests to declare.


Subject(s)
Fetal Growth Retardation/physiopathology , Pre-Eclampsia/physiopathology , Proteinuria/physiopathology , Stroke/physiopathology , Trophoblasts/pathology , Actins/genetics , Actins/metabolism , Animals , Biomarkers , Decidua/metabolism , Decidua/pathology , Decidua/physiopathology , Female , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Fetus , Gene Expression , Keratins/genetics , Keratins/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Placentation , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Proteinuria/metabolism , Proteinuria/pathology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Stroke/metabolism , Stroke/pathology , Trophoblasts/metabolism , Uterine Artery/metabolism , Uterine Artery/pathology , Uterine Artery/physiopathology , Vascular Remodeling
17.
J Proteome Res ; 16(4): 1515-1525, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28314371

ABSTRACT

Programming of hypothalamic functions regulating energy homeostasis may play a role in intrauterine growth restriction (IUGR)-induced adulthood obesity. The present study investigated the effects of IUGR on the hypothalamus proteome and metabolome of adult rats submitted to 50% protein-energy restriction throughout pregnancy. Proteomic and metabolomic analyzes were performed by data independent acquisition mass spectrometry and multiple reaction monitoring, respectively. At age 4 months, the restricted rats showed elevated adiposity, increased leptin and signs of insulin resistance. 1356 proteins were identified and 348 quantified while 127 metabolites were quantified. The restricted hypothalamus showed down-regulation of 36 proteins and 5 metabolites and up-regulation of 21 proteins and 9 metabolites. Integrated pathway analysis of the proteomics and metabolomics data indicated impairment of hypothalamic glucose metabolism, increased flux through the hexosamine pathway, deregulation of TCA cycle and the respiratory chain, and alterations in glutathione metabolism. The data suggest IUGR modulation of energy metabolism and redox homeostasis in the hypothalamus of male adult rats. The present results indicated deleterious consequences of IUGR on hypothalamic pathways involved in pivotal physiological functions. These results provide guidance for future mechanistic studies assessing the role of intrauterine malnutrition in the development of metabolic diseases later in life.


Subject(s)
Fetal Growth Retardation/metabolism , Metabolomics , Obesity/metabolism , Protein Biosynthesis/genetics , Proteomics , Animals , Animals, Newborn , Energy Metabolism/genetics , Female , Fetal Growth Retardation/genetics , Hypothalamus/metabolism , Obesity/genetics , Obesity/pathology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats
18.
An. acad. bras. ciênc ; 89(1): 223-230, Jan,-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-886620

ABSTRACT

ABSTRACT The aim of this study was to compare two models of swimming applied to pregnant rats born small for pregnancy age (SPA). Diabetes was chemically induced in adult female rats to develop an inadequate intrauterine environment, leading to birth of a SPA offspring. In adulthood, the female SPA rats were mated and submitted to different swimming programs. The exercise program 1 (Ex1) consisted of swimming for 15 minutes, followed by 15 minutes of rest and another 15 minutes of swimming, 3 days a week before and during pregnancy. Another program (Ex2) was applied during 60 minutes uninterrupted a day, 6 days/week during pregnancy. The pregnant rats presented no interference on body weight and glycemia. The rats submitted to Ex2 model showed decreased insulin and blood glucose levels by oral glucose tolerance test, and reduction in area under curve values. The offspring from dams submitted to both exercise protocols presented an increased rate of newborns SPA. However, the offspring from Ex2 dams showed percentage twice higher of newborns SPA than Ex1 offspring. Our data suggests that continuous exercise of 60 min/day ameliorated the enhanced peripheral insulin sensitivity in growth-restricted females. However, this protocol employed at pregnancy leads to intrauterine growth restriction.


Subject(s)
Animals , Male , Female , Pregnancy , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Swimming/physiology , Fetal Development/physiology , Prenatal Exposure Delayed Effects/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Reference Values , Time Factors , Blood Glucose/analysis , Blood Glucose/metabolism , Body Weight/physiology , Random Allocation , Rats, Wistar , Models, Animal , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/metabolism , Fetal Growth Retardation/physiopathology , Fetal Growth Retardation/metabolism , Glucose Tolerance Test , Animals, Newborn/physiology
19.
J Physiol ; 595(4): 1077-1092, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27739590

ABSTRACT

KEY POINTS: Intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial epigenetic programming of the umbilical vessels. There is no evidence that this epigenetic programming is occurring on systemic fetal arteries. In IUGR guinea pigs we studied the functional and epigenetic programming of endothelial nitric oxide synthase (eNOS) (Nos3 gene) in umbilical and systemic fetal arteries, addressing the role of oxidative stress in this process by maternal treatment with N-acetylcysteine (NAC) during the second half of gestation. The present study suggests that IUGR endothelial cells have common molecular markers of programming in umbilical and systemic arteries. Notably, maternal treatment with NAC restores fetal growth by increasing placental efficiency and reverting the functional and epigenetic programming of eNOS in arterial endothelium in IUGR guinea pigs. ABSTRACT: In humans, intrauterine growth restriction (IUGR) is associated with vascular dysfunction, oxidative stress and signs of endothelial programming in umbilical vessels. We aimed to determine the effects of maternal antioxidant treatment with N-acetylcysteine (NAC) on fetal endothelial function and endothelial nitric oxide synthase (eNOS) programming in IUGR guinea pigs. IUGR was induced by implanting ameroid constrictors on uterine arteries of pregnant guinea pigs at mid gestation, half of the sows receiving NAC in the drinking water (from day 34 until term). Fetal biometry and placental vascular resistance were followed by ultrasound throughout gestation. At term, umbilical arteries and fetal aortae were isolated to assess endothelial function by wire-myography. Primary cultures of endothelial cells (ECs) from fetal aorta, femoral and umbilical arteries were used to determine eNOS mRNA levels by quantitative PCR and analyse DNA methylation in the Nos3 promoter by pyrosequencing. Doppler ultrasound measurements showed that NAC reduced placental vascular resistance in IUGR (P < 0.05) and recovered fetal weight (P < 0.05), increasing fetal-to-placental ratio at term (∼40%) (P < 0.001). In IUGR, NAC treatment restored eNOS-dependent relaxation in aorta and umbilical arteries (P < 0.05), normalizing eNOS mRNA levels in EC fetal and umbilical arteries (P < 0.05). IUGR-derived ECs had a decreased DNA methylation (∼30%) at CpG -170 (from the transcription start site) and this epigenetic signature was absent in NAC-treated fetuses (P < 0.001). These data show that IUGR-ECs have common molecular markers of eNOS programming in umbilical and systemic arteries and this effect is prevented by maternal treatment with antioxidants.


Subject(s)
Acetylcysteine/pharmacology , Antioxidants/pharmacology , Cellular Reprogramming , Endothelial Cells/metabolism , Epigenesis, Genetic , Fetal Growth Retardation/metabolism , Acetylcysteine/therapeutic use , Animals , Antioxidants/therapeutic use , Cells, Cultured , DNA Methylation , Endothelial Cells/cytology , Endothelial Cells/drug effects , Female , Fetal Growth Retardation/drug therapy , Guinea Pigs , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Promoter Regions, Genetic , Umbilical Arteries/drug effects , Umbilical Arteries/metabolism , Umbilical Arteries/pathology
20.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;50(11): e6237, 2017. tab, graf
Article in English | LILACS | ID: biblio-888952

ABSTRACT

Intrauterine growth retardation (IUGR) is associated with the development of adult-onset diseases, including pulmonary hypertension. However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular dysfunction later in life is not fully understood. Here, we investigated the role of tyrosine phosphorylation of voltage-gated potassium channel 1.5 (Kv1.5) in this prenatal event that results in exaggerated adult vascular dysfunction. A rat model of chronic hypoxia (2 weeks of hypoxia at 12 weeks old) following IUGR was used to investigate the physiological and structural effect of intrauterine malnutrition on the pulmonary artery by evaluating pulmonary artery systolic pressure and vascular diameter in male rats. Kv1.5 expression and tyrosine phosphorylation in pulmonary artery smooth muscle cells (PASMCs) were determined. We found that IUGR increased mean pulmonary artery pressure and resulted in thicker pulmonary artery smooth muscle layer in 14-week-old rats after 2 weeks of hypoxia, while no difference was observed in normoxia groups. In the PASMCs of IUGR-hypoxia rats, Kv1.5 mRNA and protein expression decreased while that of tyrosine-phosphorylated Kv1.5 significantly increased. These results demonstrate that IUGR leads to exaggerated chronic hypoxia pulmonary arterial hypertension (CH-PAH) in association with decreased Kv1.5 expression in PASMCs. This phenomenon may be mediated by increased tyrosine phosphorylation of Kv1.5 in PASMCs and it provides new insight into the prevention and treatment of IUGR-related CH-PAH.


Subject(s)
Animals , Male , Female , Pregnancy , Organophosphates/metabolism , Polymers/metabolism , Kv1.5 Potassium Channel/analysis , Fetal Hypoxia/complications , Fetal Hypoxia/physiopathology , Fetal Growth Retardation/metabolism , Hypertension, Pulmonary/etiology , Muscle, Smooth, Vascular/chemistry , Phosphorylation , Prenatal Exposure Delayed Effects/metabolism , Pulmonary Artery/physiopathology , Pulmonary Artery/pathology , Time Factors , RNA, Messenger/analysis , Immunohistochemistry , Immunoblotting , Random Allocation , Up-Regulation , Fluorescent Antibody Technique , Rats, Sprague-Dawley , Malnutrition/complications , Disease Models, Animal , Fetal Growth Retardation/etiology , Real-Time Polymerase Chain Reaction , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/pathology
SELECTION OF CITATIONS
SEARCH DETAIL