Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Anim. Reprod. (Online) ; 19(4): e20220063, 2022. graf, ilus
Article in English | VETINDEX | ID: biblio-1403214

ABSTRACT

Extracellular vesicles (EVs) derived from stem cells (SCs) have regenerative potential and the possibility of being used in treating chronic diseases. EVs present lower risk of tumorigenicity and easily to isolation and storage. Therefore, this research aims to compare the morphological characteristics of the EVs (up to 150nm) derived from stem cells obtained from canine amniotic membranes in different passages during the in vitro culture. For this, cells from the amniotic membranes were isolated, cultured, and characterized. In order to answer our aim, the number of cells was normalized at each passage to generate conditioned media for EVs separation. The cells were differentiated into adipogenic, chondrogenic, and osteogenic tissue, to characterize these cells as mesenchymal stem cells (MSC). Moreover, flow cytometry analysis was performed and showed that the MSC were positive for CD90, CD105 and negative for CD34, CD45, mesenchymal and hematopoietic markers, respectively. For EVs analysis, MSC in different passages (P0-P2) were culture until 80% of confluence, then the medium was replaced by EVs depleted medium. After 48h, culture medium was collected and centrifuged to separate EVs, followed by nanoparticle tracking analysis. The EVs were also characterized by western blot and transmission electron microscopy (TEM). EVs were positive for Alix and negative for Cytochrome C as well as presented the traditional cup-shape by transmission electronic microscopy. Our results demonstrated that the concentration in the different passages was increased in P0 compared to P1 and P2 (p<0.05). No differences were found in EVs size (P0=132nm, P1=130nm and P2=120nm). Together, these results demonstrate that P0 of MSC is enriched of EVs when compared to later passages, suggesting that this passage would be the best to be applied in pre-clinical tests. Despite that, more studies are necessary to identify the EVs content and how the cells will respond to treatment with them.(AU)


Subject(s)
Animals , Fetal Stem Cells/physiology , Extracellular Vesicles , Secretory Rate
2.
Int. braz. j. urol ; 44(3): 608-616, May-June 2018. tab, graf
Article in English | LILACS | ID: biblio-954055

ABSTRACT

ABSTRACT Purpose: To identify the fetal stem cell (FSC) response to maternal renal injury with emphasis on renal integrity improvement and Y chromosome detection in damaged maternal kidney. Materials and Methods: Eight non-green fluorescent protein (GFP) transgenic Sprague-Dawley rats were mated with GFP-positive transgenic male rats. Renal damage was induced on the right kidney at gestational day 11. The same procedure was performed in eight non-pregnant rats as control group. Three months after delivery, right ne- phrectomy was performed in order to evaluate the injured kidney. The fresh perfused kidneys were stained with anti-GFP antibody. Polymerase chain reaction (PCR) assay was also performed for the Y chromosome detection. Cell culture was performed to detect the GFP-positive cells. Technetium-99m-DMSA renal scan and single-photon emission computed tomography (SPECT) were performed after renal damage induction and 3 months later to evaluate the improvement of renal integrity. Results: The presence of FSCs was confirmed by immune histochemical staining as well as immunofluorescent imaging of the damaged part. Gradient PCR of female rat purified DNA demonstrated the presence of Y-chromosome in the damaged maternal kidney. Moreover, the culture of kidney cells showed GPF- positive cells by immuno- fluorescence microscopy. The acute renal scar was repaired and the integrity of dam- aged kidney reached to near normal levels in experimental group as shown in DMSA scan. However, no significant improvement was observed in control group. Conclusion: FSC seems to be the main mechanism in repairing of the maternal renal injury during pregnancy as indicated by Y chromosome and GFP-positive cells in the sub-cultured medium.


Subject(s)
Animals , Male , Female , Pregnancy , Wound Healing/physiology , Chimerism , Fetal Stem Cells/physiology , Kidney Diseases/physiopathology , Maternal-Fetal Exchange/physiology , Time Factors , Y Chromosome , Immunohistochemistry , Tomography, Emission-Computed, Single-Photon , Cells, Cultured , Polymerase Chain Reaction , Fluorescent Antibody Technique , Rats, Sprague-Dawley , Radiopharmaceuticals , Technetium Tc 99m Dimercaptosuccinic Acid , Disease Models, Animal , Kidney Diseases/pathology , Kidney Diseases/diagnostic imaging
3.
Int Braz J Urol ; 44(3): 608-616, 2018.
Article in English | MEDLINE | ID: mdl-29211403

ABSTRACT

PURPOSE: To identify the fetal stem cell (FSC) response to maternal renal injury with emphasis on renal integrity improvement and Y chromosome detection in damaged maternal kidney. MATERIALS AND METHODS: Eight non-green fluorescent protein (GFP) transgenic Sprague- Dawley rats were mated with GFP-positive transgenic male rats. Renal damage was induced on the right kidney at gestational day 11. The same procedure was performed in eight non-pregnant rats as control group. Three months after delivery, right nephrectomy was performed in order to evaluate the injured kidney. The fresh perfused kidneys were stained with anti-GFP antibody. Polymerase chain reaction (PCR) assay was also performed for the Y chromosome detection. Cell culture was performed to detect the GFP-positive cells. Technetium-99m-DMSA renal scan and single-photon emission computed tomography (SPECT) were performed after renal damage induction and 3 months later to evaluate the improvement of renal integrity. RESULTS: The presence of FSCs was confirmed by immune histochemical staining as well as immunofluorescent imaging of the damaged part. Gradient PCR of female rat purified DNA demonstrated the presence of Y-chromosome in the damaged maternal kidney. Moreover, the culture of kidney cells showed GPF- positive cells by immunofluorescence microscopy. The acute renal scar was repaired and the integrity of damaged kidney reached to near normal levels in experimental group as shown in DMSA scan. However, no significant improvement was observed in control group. CONCLUSION: FSC seems to be the main mechanism in repairing of the maternal renal injury during pregnancy as indicated by Y chromosome and GFP-positive cells in the sub-cultured medium.


Subject(s)
Chimerism , Fetal Stem Cells/physiology , Kidney Diseases/physiopathology , Maternal-Fetal Exchange/physiology , Wound Healing/physiology , Animals , Cells, Cultured , Disease Models, Animal , Female , Fluorescent Antibody Technique , Immunohistochemistry , Kidney Diseases/diagnostic imaging , Kidney Diseases/pathology , Male , Polymerase Chain Reaction , Pregnancy , Radiopharmaceuticals , Rats, Sprague-Dawley , Technetium Tc 99m Dimercaptosuccinic Acid , Time Factors , Tomography, Emission-Computed, Single-Photon , Y Chromosome
4.
Rev. Ateneo Argent. Odontol ; 55(1): 69-70, 2016. ilus
Article in Spanish | LILACS | ID: lil-794296

ABSTRACT

La utilización de células indiferenciadas embrionarias y de células diferenciadas inducidas para que se comporten como las anteriores permite dar origen adiferentes tejidos que pueden ser usados en medicina reconstructiva en reemplazo de los deteriorados...


Subject(s)
Humans , Multipotent Stem Cells/physiology , Pluripotent Stem Cells/physiology , Totipotent Stem Cells/physiology , Stem Cells/physiology , Plastic Surgery Procedures/methods , Mesenchymal Stem Cells/physiology , Fetal Stem Cells/physiology , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL