Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(4): 853-860, 2024 Jul 20.
Article in Chinese | MEDLINE | ID: mdl-39170003

ABSTRACT

Objective: This study aims to develop a medical patch surface material featuring a microporous polyurethane (PU) membrane and to assess the material's properties and biological performance. The goal is to enhance the clinical applicability of pelvic floor repair patch materials. Methods: PU films with a microporous surface were prepared using PU prepolymer foaming technology. The films were produced by optimizing the PU prepolymer isocyanate index (R value) and the relative humidity (RH) of the foaming environment. The surface morphology of the PU microporous films was observed by scanning electron microscopy, and the chemical properties of the PU microporous films, including hydrophilicity, were analyzed using infrared spectroscopy, Raman spectroscopy, and water contact angle measurements. In vitro evaluations included testing the effects of PU microporous film extracts on the proliferation of L929 mouse fibroblasts and observing the adhesion and morphology of these fibroblasts. Additionally, the effect of the PU microporous films on RAW264.7 mouse macrophages was studied. Immune response and tissue regeneration were assessed in vivo using Sprague Dawley (SD) rats. Results: The PU films exhibited a well-defined and uniform microporous structure when the R value of PU prepolymer=1.5 and the foaming environment RH=70%. The chemical structure of the PU microporous films was not significantly altered compared to the PU films, with a significantly lower water contact angle ([55.7±1.5]° ) compared to PU films ([69.5±1.7]° ) and polypropylene (PP) ([ 104.3±2.5]°), indicating superior hydrophilicity. The extracts from PU microporous films demonstrated good in vitro biocompatibility, promoting the proliferation of L929 mouse fibroblasts. The surface morphology of the PU microporous films facilitated fibroblast adhesion and spreading. The films also inhibited the secretion of tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß by RAW264.7 macrophages while enhancing IL-10 and IL-4 secretion. Compared to 24 hours, after 72 hours of culture, the expression levels of TNF-α and IL-1ß were reduced in both the PU film and PU microporous film groups and were significantly lower than those in the PP film group (P<0.05), with the most notable decreases observed in the PU microporous film group. IL-10 and IL-4 levels increased significantly in the PU microporous film group, surpassing those in the PP film group (P<0.01), with the most pronounced increase in IL-4. The PU microporous film induced mild inflammation with no significant fibrous capsule formation in vivo. After 60 days of implantation, the film partially degraded, showing extensive collagen fiber growth and muscle formation in its central region. Conclusion: The PU microporous film exhibits good hydrophilicity and biocompatibility. Its surface morphology enhances cell adhesion, regulates the function of RAW264.7 macrophages, and promotes tissue repair, offering new insights for the design of pelvic floor repair and reconstruction patch materials.


Subject(s)
Fibroblasts , Polypropylenes , Polyurethanes , Rats, Sprague-Dawley , Polyurethanes/chemistry , Animals , Mice , Rats , Polypropylenes/chemistry , Fibroblasts/cytology , Biocompatible Materials/chemistry , Surgical Mesh , RAW 264.7 Cells , Surface Properties , Cell Line , Porosity , Materials Testing , Cell Proliferation/drug effects , Macrophages/cytology
2.
Matrix Biol ; 132: 47-58, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147560

ABSTRACT

BACKGROUND: Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-ß (TGF-ß) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS: Stimulation of lung fibroblasts with TGF-ß1 and TGF-ß2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-ß1 and TGF-ß2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-ß1 or TGF-ß2. Mechanistically, IL-1α administration led to the suppression of TGF-ß1 and TGF-ß2 signaling, through downregulation of mRNA and protein for TGF-ß receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION: IL-1α acts as a master regulator, modulating TGF-ß1 and TGF-ß2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-ß signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS: Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-ß1 or TGF-ß2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.


Subject(s)
Extracellular Matrix , Fibroblasts , Interleukin-1alpha , Lung , Signal Transduction , Transforming Growth Factor beta1 , Humans , Interleukin-1alpha/metabolism , Interleukin-1alpha/genetics , Extracellular Matrix/metabolism , Transforming Growth Factor beta1/metabolism , Lung/metabolism , Lung/cytology , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/cytology , Cell Differentiation , Myofibroblasts/metabolism , Myofibroblasts/drug effects , Cells, Cultured , Collagen Type I/metabolism , Collagen Type I/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Fibronectins/metabolism , Fibronectins/genetics , Gene Expression Regulation/drug effects , Transforming Growth Factor beta2
3.
Methods Mol Biol ; 2828: 119-145, 2024.
Article in English | MEDLINE | ID: mdl-39147975

ABSTRACT

The electric cell-substrate impedance sensing (ECIS) is a well-established technique that allows for the real-time monitoring of cell cultures growing on gold-electrodes embedded in culture dishes. Its foundation lays on the insulating effect that cells present against the free-flow of electrons, as these passive electrical properties generate a characteristic complex impedance spectrum when a small-amplitude, non-invasive alternating current (AC) is provided through the electrodes, the living cells, and the culture media in the culture ware. In addition, it possesses the ability to create a wound that is highly confined to the electrode area by simply increasing the amplitude of the AC current in dependence of the pre-resistor strength for a defined pulse duration and at a specific frequency. Therefore, it represents a controlled and reproducible tool to carry out in vitro wound healing experiments. Accordingly, in this methods protocol, the use of the ECIS will be described in the context of the wound healing research: cardiac 3T3 fibroblasts will be wounded and their recovery dynamics analyzed based on the typical methodologies applied to the processing of ECIS data. In addition, cellular micromotions will be evaluated. Finally, fluorescence immunostaining of ECIS samples will be described in order to showcase the potential of the ECIS in combination with other well-established techniques to add further knowledge depth to the understanding of the complex wound healing dynamics.


Subject(s)
Electric Impedance , Fibroblasts , Wound Healing , Animals , Mice , Fibroblasts/cytology , Fibroblasts/metabolism , Electrodes , Cell Movement , Cell Culture Techniques/methods , Biosensing Techniques/methods
4.
Sci Rep ; 14(1): 18063, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117679

ABSTRACT

In recent years, research on organ-on-a-chip technology has been flourishing, particularly for drug screening and disease model development. Fibroblasts and vascular endothelial cells engage in crosstalk through paracrine signaling and direct cell-cell contact, which is essential for the normal development and function of the heart. Therefore, to faithfully recapitulate cardiac function, it is imperative to incorporate fibroblasts and vascular endothelial cells into a heart-on-a-chip model. Here, we report the development of a human heart-on-a-chip composed of induced pluripotent stem cell (iPSC)-derived cardiomyocytes, fibroblasts, and vascular endothelial cells. Vascular endothelial cells cultured on microfluidic channels responded to the flow of culture medium mimicking blood flow by orienting themselves parallel to the flow direction, akin to in vivo vascular alignment in response to blood flow. Furthermore, the flow of culture medium promoted integrity among vascular endothelial cells, as evidenced by CD31 staining and lower apparent permeability. The tri-culture condition of iPSC-derived cardiomyocytes, fibroblasts, and vascular endothelial cells resulted in higher expression of the ventricular cardiomyocyte marker IRX4 and increased contractility compared to the bi-culture condition with iPSC-derived cardiomyocytes and fibroblasts alone. Such tri-culture-derived cardiac tissues exhibited cardiac responses similar to in vivo hearts, including an increase in heart rate upon noradrenaline administration. In summary, we have achieved the development of a heart-on-a-chip composed of cardiomyocytes, fibroblasts, and vascular endothelial cells that mimics in vivo cardiac behavior.


Subject(s)
Endothelial Cells , Fibroblasts , Induced Pluripotent Stem Cells , Lab-On-A-Chip Devices , Myocytes, Cardiac , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Fibroblasts/cytology , Fibroblasts/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/physiology , Cell Differentiation , Cells, Cultured , Coculture Techniques/methods , Microphysiological Systems
5.
Stem Cell Res Ther ; 15(1): 250, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39135129

ABSTRACT

BACKGROUND: In the repair of massive tissue defects using expanded large skin flaps, the incidence of complications increases with the size of the expanded area. Currently, stem cell therapy has limitations to solve this problem. We hypothesized that conditioned medium of adipose-derived stem cells (ADSC-CM) collected following mechanical pretreatment can assist skin expansion. METHODS: Rat aortic endothelial cells and fibroblasts were cultured with ADSC-CM collected under 0%, 10%, 12%, and 15% stretching force. Ten-milliliter cylindrical soft tissue expanders were subcutaneously implanted into the backs of 36 Sprague-Dawley rats. The 0% and 10% stretch groups were injected with ADSC-CM collected under 0% and 10% stretching force, respectively, while the control group was not injected. After 3, 7, 14, and 30 days of expansion, expanded skin tissue was harvested for staining and qPCR analyses. RESULTS: Endothelial cells had the best lumen formation and highest migration rate, and fibroblasts secreted the most collagen upon culture with ADSC-CM collected under 10% stretching force. The skin expansion rate was significantly increased in the 10% stretch group. After 7 days of expansion, the number of blood vessels in the expanded area, expression of the angiogenesis-associated proteins vascular endothelial growth factor, basic fibroblast growth factor, and hepatocyte growth factor, and collagen deposition were significantly increased in the 10% stretch group. CONCLUSIONS: The optimal mechanical force upregulates specific paracrine proteins in ADSCs to increase angiogenesis and collagen secretion, and thereby promote skin regeneration and expansion. This study provides a new auxiliary method to expand large skin flaps.


Subject(s)
Adipose Tissue , Paracrine Communication , Rats, Sprague-Dawley , Skin , Animals , Rats , Adipose Tissue/cytology , Adipose Tissue/metabolism , Skin/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Culture Media, Conditioned/pharmacology , Tissue Expansion/methods , Male , Stem Cells/metabolism , Stem Cells/cytology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cells, Cultured , Neovascularization, Physiologic , Stress, Mechanical
6.
Methods Mol Biol ; 2835: 99-110, 2024.
Article in English | MEDLINE | ID: mdl-39105909

ABSTRACT

Induced pluripotent stem cells (iPSCs) are generated through the reprogramming of somatic cells to an embryonic-like state by activating specific genes. They closely resemble embryonic stem cells (ESCs), in various aspects, including the expression of key stem cell genes, potency, and differentiation capabilities. iPSCs can be derived from various cell types such as fibroblasts, keratinocytes, and peripheral blood mononuclear cells (PBMCs). The ease of obtaining origin cells through non-invasive methods simplifies the generation of human iPSCs. Therefore, PBMCs are commonly preferred, with erythroid progenitor cells (EPCs) obtained through EPC enrichment being used as origin cells in this protocol. The EPC enrichment performed in this protocol not only reduces costs but also increases efficiency by enhancing the percentage of reprogrammable cells with progenitor characteristics. Human iPSCs are incredibly valuable for in vitro research, cell therapy, drug discovery, and tissue engineering. The outlined procedures below provide a general framework for inducing iPSCs from erythroid progenitor cells, pluripotency confirmation experiments, and cultivating them for downstream experiments.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Erythroid Precursor Cells , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Cell Culture Techniques/methods , Cellular Reprogramming/genetics , Cells, Cultured , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism
7.
Methods Mol Biol ; 2835: 155-164, 2024.
Article in English | MEDLINE | ID: mdl-39105914

ABSTRACT

Direct reprogramming provides a novel breakthrough for generating functional endothelial cells (ECs) without the need for intermediate stem or progenitor states, offering a promising resource for cardiovascular research and treatment. ETV2 is a key transcription factor that has been identified as a pioneering factor for specifying endothelial lineage. Achieving precise ETV2 induction is essential for effective endothelial reprogramming, and maintaining the reprogrammed cellular phenotype relies on a specific combination of growth factors and small molecules. Thus, we hereby provide a straightforward and comprehensive protocol for generating two distinct types of reprogrammed ECs (rECs) from human dermal fibroblasts (HDFs). Early rECs demonstrate a robust neovascularization property but lack the mature EC phenotype, while late rECs exhibit phenotypical similarity to human postnatal ECs and have a neovascularization capacity similar to early rECs. Both cell types can be derived from human somatic source cells, making them suitable for personalized disease investigations, drug discovery, and disease therapy.


Subject(s)
Cell Culture Techniques , Cellular Reprogramming , Endothelial Cells , Fibroblasts , Humans , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Neovascularization, Physiologic , Cell Differentiation , Transcription Factors/metabolism , Transcription Factors/genetics , Cellular Reprogramming Techniques/methods
8.
J Vis Exp ; (208)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38975788

ABSTRACT

Tendons and ligaments (T/L) are strong hierarchically organized structures uniting the musculoskeletal system. These tissues have a strictly arranged collagen type I-rich extracellular matrix (ECM) and T/L-lineage cells mainly positioned in parallel rows. After injury, T/L require a long time for rehabilitation with high failure risk and often unsatisfactory repair outcomes. Despite recent advancements in T/L biology research, one of the remaining challenges is that the T/L field still lacks a standardized differentiation protocol that is able to recapitulate T/L formation process in vitro. For example, bone and fat differentiation of mesenchymal precursor cells require just standard two-dimensional (2D) cell culture and the addition of specific stimulation media. For differentiation to cartilage, three-dimensional (3D) pellet culture and supplementation of TGFß is necessary. However, cell differentiation to tendon needs a very orderly 3D culture model, which ideally should also be subjectable to dynamic mechanical stimulation. We have established a 3-step (expansion, stimulation, and maturation) organoid model to form a 3D rod-like structure out of a self-assembled cell sheet, which delivers a natural microenvironment with its own ECM, autocrine, and paracrine factors. These rod-like organoids have a multi-layered cellular architecture within rich ECM and can be handled quite easily for exposure to static mechanical strain. Here, we demonstrated the 3-step protocol by using commercially available dermal fibroblasts. We could show that this cell type forms robust and ECM-abundant organoids. The described procedure can be further optimized in terms of culture media and optimized toward dynamic axial mechanical stimulation. In the same way, alternative cell sources can be tested for their potential to form T/L organoids and thus undergo T/L differentiation. In sum, the established 3D T/L organoid approach can be used as a model for tendon basic research and even for scaffold-free T/L engineering.


Subject(s)
Cell Culture Techniques , Fibroblasts , Ligaments , Organoids , Tendons , Humans , Tendons/cytology , Fibroblasts/cytology , Organoids/cytology , Ligaments/cytology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Dermis/cytology
9.
Biomed Eng Online ; 23(1): 68, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020369

ABSTRACT

BACKGROUND: A strong seal of soft-tissue around dental implants is essential to block pathogens from entering the peri-implant interface and prevent infections. Therefore, the integration of soft-tissue poses a challenge in implant-prosthetic procedures, prompting a focus on the interface between peri-implant soft-tissues and the transmucosal component. The aim of this study was to analyse the effects of sandblasted roughness levels on in vitro soft-tissue healing around dental implant abutments. In parallel, proteomic techniques were applied to study the interaction of these surfaces with human serum proteins to evaluate their potential to promote soft-tissue regeneration. RESULTS: Grade-5 machined titanium discs (MC) underwent sandblasting with alumina particles of two sizes (4 and 8 µm), resulting in two different surface types: MC04 and MC08. Surface morphology and roughness were characterised employing scanning electron microscopy and optical profilometry. Cell adhesion and collagen synthesis, as well as immune responses, were assessed using human gingival fibroblasts (hGF) and macrophages (THP-1), respectively. The profiles of protein adsorption to the surfaces were characterised using proteomics; samples were incubated with human serum, and the adsorbed proteins analysed employing nLC-MS/MS. hGFs exposed to MC04 showed decreased cell area compared to MC, while no differences were found for MC08. hGF collagen synthesis increased after 7 days for MC08. THP-1 macrophages cultured on MC04 and MC08 showed a reduced TNF-α and increased IL-4 secretion. Thus, the sandblasted topography led a reduction in the immune/inflammatory response. One hundred seventy-six distinct proteins adsorbed on the surfaces were identified. Differentially adsorbed proteins were associated with immune response, blood coagulation, angiogenesis, fibrinolysis and tissue regeneration. CONCLUSIONS: Increased roughness through MC08 treatment resulted in increased collagen synthesis in hGF and resulted in a reduction in the surface immune response in human macrophages. These results correlate with the changes in protein adsorption on the surfaces observed through proteomics.


Subject(s)
Fibroblasts , Macrophages , Surface Properties , Humans , Fibroblasts/metabolism , Fibroblasts/cytology , Macrophages/metabolism , Macrophages/cytology , Dental Abutments , Titanium/chemistry , Gingiva/cytology , Gingiva/metabolism , Proteomics , Cell Adhesion , Collagen/metabolism , Collagen/chemistry , Adsorption
10.
ACS Appl Mater Interfaces ; 16(28): 36983-37006, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953207

ABSTRACT

Repairing multiphasic defects is cumbersome. This study presents new soft and hard scaffold designs aimed at facilitating the regeneration of multiphasic defects by enhancing angiogenesis and improving cell attachment. Here, the nonimmunogenic, nontoxic, and cost-effective human serum albumin (HSA) fibril (HSA-F) was used to fabricate thermostable (up to 90 °C) and hard printable polymers. Additionally, using a 10.0 mg/mL HSA-F, an innovative hydrogel was synthesized in a mixture with 2.0% chitosan-conjugated arginine, which can gel in a cell-friendly and pH physiological environment (pH 7.4). The presence of HSA-F in both hard and soft scaffolds led to an increase in significant attachment of the scaffolds to the human periodontal ligament fibroblast (PDLF), human umbilical vein endothelial cell (HUVEC), and human osteoblast. Further studies showed that migration (up to 157%), proliferation (up to 400%), and metabolism (up to 210%) of these cells have also improved in the direction of tissue repair. By examining different in vitro and ex ovo experiments, we observed that the final multiphasic scaffold can increase blood vessel density in the process of per-vascularization as well as angiogenesis. By providing a coculture environment including PDLF and HUVEC, important cross-talk between these two cells prevails in the presence of roxadustat drug, a proangiogenic in this study. In vitro and ex ovo results demonstrated significant enhancements in the angiogenic response and cell attachment, indicating the effectiveness of the proposed design. This approach holds promise for the regeneration of complex tissue defects by providing a conducive environment for vascularization and cellular integration, thus promoting tissue healing.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Neovascularization, Physiologic/drug effects , Serum Albumin, Human/chemistry , Glycine/chemistry , Glycine/pharmacology , Glycine/analogs & derivatives , Fibroblasts/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Cell Proliferation/drug effects , Amyloid/chemistry , Amyloid/metabolism , Osteoblasts/drug effects , Osteoblasts/cytology , Osteoblasts/metabolism , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Tissue Engineering , Hydrogels/chemistry , Hydrogels/pharmacology , Temperature , Isoquinolines
11.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062847

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production. Isolated ADMSC-EVs were added into cultured human dermal fibroblasts (NHDF-1), keratinocytes (HaCat), endothelial cells (HUVEC), and THP-1 cell-derived macrophages to evaluate cellular responses (i.e., cell proliferation, cell migration, angiogenesis induction, and macrophage phenotype-switching). ADMSC viability and phenotype were assessed during cell culture and isolated ADMSC-EVs were monitored by nanotracking particle analysis, electron microscopy, and immunophenotyping. We observed an enhancement of HaCat proliferation; NHDF-1 and HaCat migration; endothelial tube formation on HUVEC; and the expression of inflammatory cytokines in THP-1-derived macrophages. The increased expression of TGF-ß and IL-1ß was observed in M1 macrophages treated with higher doses of ADMSC-EVs. Hence, EVs from microcarrier-cultivated ADMSCs are shown to modulate cell behavior, being able to induce skin tissue related cells to migrate and proliferate as well as stimulate angiogenesis and cause balance between pro- and anti-inflammatory responses in macrophages. Based on these findings, we suggest that the isolation of EVs from ADMSC suspension cultures makes it possible to induce in vitro cellular responses of interest and obtain sufficient particle numbers for the development of in vivo concept tests for tissue regeneration studies.


Subject(s)
Cell Proliferation , Extracellular Vesicles , Macrophages , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Extracellular Vesicles/metabolism , Macrophages/metabolism , Macrophages/cytology , Cell Movement , THP-1 Cells , Fibroblasts/metabolism , Fibroblasts/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Cell Culture Techniques/methods , Cells, Cultured , Keratinocytes/metabolism , Keratinocytes/cytology , Cytokines/metabolism
12.
Int J Mol Sci ; 25(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39062918

ABSTRACT

The aging process is linked to numerous cellular changes, among which are modifications in the functionality of dermal fibroblasts. These fibroblasts play a crucial role in sustaining the healing of skin wounds. Reduced cell proliferation is a hallmark feature of aged dermal fibroblasts. Long intergenic non-coding RNA (lincRNAs), such as LincRNA-EPS (Erythroid ProSurvival), has been implicated in various cellular processes. However, its role in aged dermal fibroblasts and its impact on the cell cycle and its regulator, Cyclin D1 (CCND1), remains unclear. Primary dermal fibroblasts were isolated from the skin of 17-week-old (young) and 88-week-old (aged) mice. Overexpression of LincRNA-EPS was achieved through plasmid transfection. Cell proliferation was detected using the MTT assay. Real-time PCR was used to quantify relative gene expressions. Our findings indicate a noteworthy decline in the expression of LincRNA-EPS in aged dermal fibroblasts, accompanied by reduced levels of CCND1 and diminished cell proliferation in these aging cells. Significantly, the overexpression of LincRNA-EPS in aged dermal fibroblasts resulted in an upregulation of CCND1 expression and a substantial increase in cell proliferation. Mechanistically, LincRNA-EPS induces CCND1 expression by sequestering miR-34a, which was dysregulated in aged dermal fibroblasts, and directly targeting CCND1. These outcomes underscore the crucial role of LincRNA-EPS in regulating CCND1 and promoting cell proliferation in aged dermal fibroblasts. Our study provides novel insights into the molecular mechanisms underlying age-related changes in dermal fibroblasts and their implications for skin wound healing. The significant reduction in LincRNA-EPS expression in aged dermal fibroblasts and its ability to induce CCND1 expression and enhance cell proliferation highlight its potential as a therapeutic target for addressing age-related skin wound healing.


Subject(s)
Cell Proliferation , Cyclin D1 , Fibroblasts , RNA, Long Noncoding , Cyclin D1/metabolism , Cyclin D1/genetics , Fibroblasts/metabolism , Fibroblasts/cytology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Mice , Skin/metabolism , Skin/cytology , MicroRNAs/genetics , MicroRNAs/metabolism , Cells, Cultured , Skin Aging/genetics , Dermis/cytology , Dermis/metabolism , Cellular Senescence/genetics , Gene Expression Regulation , Wound Healing/genetics , Aging/genetics
13.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063147

ABSTRACT

Primary cell culture is a powerful model system to address fundamental questions about organismal physiology at the cellular level, especially for species that are difficult, or impossible, to study under natural or semi-natural conditions. Due to their ease of use, primary fibroblast cultures are the dominant model system, but studies using both somatic and germ cells are also common. Using these models, genome evolution and phylogenetic relationships, the molecular and biochemical basis of differential longevities among species, and the physiological consequences of life history evolution have been studied in depth. With the advent of new technologies such as gene editing and the generation of induced pluripotent stem cells (iPSC), the field of molecular evolutionary physiology will continue to expand using both descriptive and experimental approaches.


Subject(s)
Evolution, Molecular , Primary Cell Culture , Animals , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Phylogeny , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/physiology
14.
ACS Appl Mater Interfaces ; 16(31): 40483-40498, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39058959

ABSTRACT

Three-dimensional (3D) spheroid cell cultures of fibroblast (L929) and tumor mammary mouse (4T1) were chosen as in vitro tissue models for tissue imaging of ternary AgInS/ZnS fraction quantum dots (QDs). We showed that the tissue-mimetic morphology of cell spheroids through well-developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics makes it possible to predict the effect of ternary AgInS/ZnS fraction QDs on the vital activity of cells while simultaneously comparing with classical two-dimensional (2D) cell cultures. The AgInS/ZnS fractions, emitting in a wide spectral range from 635 to 535 nm with a mean size from ∼3.1 ± 0.8 to ∼1.8 ± 0.4 nm and a long photoluminescence lifetime, were separated from the initial QD ensemble by using antisolvent-induced precipitation. For ternary AgInS/ZnS fraction QDs, the absence of toxicity at different QD concentrations was demonstrated on 2D and 3D cell structures. QDs show a robust correlation between numerous factors: their sizes in biological fluids over time, penetration capabilities into 2D and 3D cell structures, and selectivity with respect to penetration into cancerous and healthy cell spheroids. A reproducible protocol for the preparation of QDs along with their unique biological properties allows us to consider ternary AgInS/ZnS fraction QDs as attractive fluorescent contrast agents for tissue imaging.


Subject(s)
Quantum Dots , Spheroids, Cellular , Sulfides , Zinc Compounds , Quantum Dots/chemistry , Quantum Dots/toxicity , Animals , Mice , Sulfides/chemistry , Zinc Compounds/chemistry , Spheroids, Cellular/drug effects , Cell Line, Tumor , Indium/chemistry , Fibroblasts/cytology , Fibroblasts/drug effects , Silver/chemistry , Particle Size , Silver Compounds/chemistry
15.
Int J Biol Macromol ; 275(Pt 1): 133602, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964681

ABSTRACT

Various strategies have extensively explored enhancing the physical and biological properties of chitosan and cellulose scaffolds for skin tissue engineering. This study presents a straightforward method involving the addition of glycerol into highly porous structures of two polysaccharide complexes: chitosan/carboxymethyl cellulose (Chit/CMC) and chitosan/oxidized cellulose (Chit/OC); during a one-step freeze-drying process. Adding glycerol, especially to Chit/CMC, significantly increased stability, prevented degradation, and improved mechanical strength by nearly 50%. Importantly, after 21 days of incubation in enzymatic medium Chit/CMC scaffold has almost completely decomposed, while foams reinforced with glycerol exhibited only 40% mass loss. It is possible due to differences in multivalent cations and polymer chain contraction, resulting in varied hydrogen bonding and, consequently, distinct physicochemical outcomes. Additionally, the scaffolds with glycerol improved the cellular activities resulting in over 40% higher proliferation of fibroblast after 21 days of incubation. It was achieved by imparting water resistance to the highly absorbent material and aiding in achieving a balance between hydrophilic and hydrophobic properties. This study clearly indicates the possible elimination of additional crosslinkers and multiple fabrication steps that can reduce the cost of scaffold production for skin tissue engineering applications while tailoring mechanical strength and degradation.


Subject(s)
Cellulose , Chitosan , Freeze Drying , Glycerol , Skin , Tissue Engineering , Tissue Scaffolds , Tissue Engineering/methods , Chitosan/chemistry , Glycerol/chemistry , Tissue Scaffolds/chemistry , Cellulose/chemistry , Porosity , Fibroblasts/cytology , Fibroblasts/drug effects , Cell Proliferation/drug effects , Biocompatible Materials/chemistry , Animals , Tensile Strength , Mechanical Phenomena , Humans
16.
ACS Appl Bio Mater ; 7(8): 5519-5529, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39037196

ABSTRACT

In this study, we report on the preparation, characterization, and cytocompatibility of hydrogels for biomedical applications made from two different molecular weights of chitosan (CS) blended with poly(vinyl alcohol) (PVA) and chemically cross-linked with tetraethyl orthosilicate (TEOS) followed by freeze-drying. A series of CS-PVA hydrogels were synthesized with different amounts of chitosan (1%, 2%, and 3% by weight). The structure of these CS-PVA hydrogels was characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The hydrogel samples were also characterized for tensile strength, contact angle, swelling behavior, and degradation at physiological body temperature. Their physicochemical properties, biocompatibility, and cell viability when cultured with human dermal fibroblasts were assessed using alamarBlue and live/dead assays and compared to optimize their functionality. SEM analysis showed that the concentration and molecular weight of the chitosan component affected the pore size. Furthermore, the contact angle decreased with increasing chitosan content, indicating that chitosan increased its hydrophilic properties. The in vitro degradation study revealed a nonlinear time-dependent relationship between chitosan concentration or molecular weight, and the rate of degradation was affected by the pore size of the hydrogel. All of the CS-PVA hydrogels exhibited good cell proliferation, particularly with the high molecular weight chitosan samples.


Subject(s)
Biocompatible Materials , Cell Survival , Chitosan , Hydrogels , Materials Testing , Polyvinyl Alcohol , Tissue Engineering , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cell Survival/drug effects , Fibroblasts/drug effects , Fibroblasts/cytology , Particle Size
17.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958026

ABSTRACT

Thymic epithelial cells (TECs) are crucial to the ability of the thymus to generate T cells for the adaptive immune system in vertebrates. However, no in vitro system for studying TEC function exists. Overexpressing the transcription factor FOXN1 initiates transdifferentiation of fibroblasts into TEC-like cells (iTECs) that support T-cell differentiation in culture or after transplant. In this study, we have characterized iTEC programming at the cellular and molecular level in mouse to determine how it proceeds, and have identified mechanisms that can be targeted for improving this process. These data show that iTEC programming consists of discrete gene expression changes that differ early and late in the process, and that iTECs upregulate markers of both cortical and medullary TEC (cTEC and mTEC) lineages. We demonstrate that promoting proliferation enhances iTEC generation, and that Notch inhibition allows the induction of mTEC differentiation. Finally, we show that MHCII expression is the major difference between iTECs and fetal TECs. MHCII expression was improved by co-culturing iTECs with fetal double-positive T-cells. This study supports future efforts to improve iTEC generation for both research and translational uses.


Subject(s)
Cell Differentiation , Epithelial Cells , Fibroblasts , Forkhead Transcription Factors , Thymus Gland , Animals , Epithelial Cells/metabolism , Epithelial Cells/cytology , Thymus Gland/cytology , Thymus Gland/metabolism , Thymus Gland/embryology , Fibroblasts/metabolism , Fibroblasts/cytology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Mice , Cell Proliferation , Cell Transdifferentiation , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Coculture Techniques , Receptors, Notch/metabolism
18.
Nat Commun ; 15(1): 5891, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003263

ABSTRACT

Synthetic Notch (synNotch) receptors are genetically encoded, modular synthetic receptors that enable mammalian cells to detect environmental signals and respond by activating user-prescribed transcriptional programs. Although some materials have been modified to present synNotch ligands with coarse spatial control, applications in tissue engineering generally require extracellular matrix (ECM)-derived scaffolds and/or finer spatial positioning of multiple ligands. Thus, we develop here a suite of materials that activate synNotch receptors for generalizable engineering of material-to-cell signaling. We genetically and chemically fuse functional synNotch ligands to ECM proteins and ECM-derived materials. We also generate tissues with microscale precision over four distinct reporter phenotypes by culturing cells with two orthogonal synNotch programs on surfaces microcontact-printed with two synNotch ligands. Finally, we showcase applications in tissue engineering by co-transdifferentiating fibroblasts into skeletal muscle or endothelial cell precursors in user-defined micropatterns. These technologies provide avenues for spatially controlling cellular phenotypes in mammalian tissues.


Subject(s)
Cell Differentiation , Receptors, Notch , Signal Transduction , Tissue Engineering , Receptors, Notch/metabolism , Tissue Engineering/methods , Animals , Humans , Mice , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibroblasts/cytology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Ligands , Tissue Scaffolds/chemistry , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , HEK293 Cells
19.
Sci Rep ; 14(1): 17475, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080431

ABSTRACT

Miniscrews offer controlled anchorage and thus optimize tooth movement in orthodontic treatment. Nevertheless, failures such as soft tissue problems, instability due to loosening, partial osseointegration, or even device fracture can occur. While clinical technique can play a role in some of these problems, the manufacturer's design and material choice influence how the implant interacts with the surrounding tissue. In some cases, the design and material may trigger unwanted bone and soft tissue responses. This in vitro study investigates how the implant surface affects cell adhesion and growth of human primary fibroblasts and osteoblasts on commercially available orthodontic TiAl6V4 miniscrews from three producers: tomas-pin SD N 08 (Dentaurum), OrthoEasy Pin (Forestadent), and Dual Top G2 (Promedia, Jeil Medical). Cell-implant interaction at the top, neck, and drilling part of the screws was assessed qualitatively by scanning electron microscopy. While both cell types adhered to and grew on all products, subtle differences in cell shape and spreading were detected, depending on the microstructure of the implant surface. This indicates that cell adhesion to implant surfaces can be controlled by manipulating the machining conditions.


Subject(s)
Cell Adhesion , Fibroblasts , Gingiva , Microscopy, Electron, Scanning , Orthodontic Anchorage Procedures , Osteoblasts , Humans , Fibroblasts/cytology , Osteoblasts/cytology , Gingiva/cytology , Microscopy, Electron, Scanning/methods , Orthodontic Anchorage Procedures/methods , Orthodontic Anchorage Procedures/instrumentation , Cells, Cultured , Bone Screws , Dental Implants , Surface Properties
20.
Sci Rep ; 14(1): 17015, 2024 07 24.
Article in English | MEDLINE | ID: mdl-39043765

ABSTRACT

This study investigates how dynamic fluctuations in matrix stiffness affect the behavior of cardiac fibroblasts (CFs) within a three-dimensional (3D) hydrogel environment. Using hybrid hydrogels with tunable stiffness, we created an in vitro model to mimic the varying stiffness of the cardiac microenvironment. By manipulating hydrogel stiffness, we examined CF responses, particularly the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation. Our findings reveal that increased matrix stiffness promotes the differentiation of CFs into myofibroblasts, while matrix softening reverses this process. Additionally, we identified the role of focal adhesions and integrin ß1 in mediating stiffness-induced phenotypic switching. This study provides significant insights into the mechanobiology of cardiac fibrosis and suggests that modulating matrix stiffness could be a potential therapeutic strategy for treating cardiovascular diseases.


Subject(s)
Cell Differentiation , Extracellular Matrix , Fibroblasts , Hydrogels , Myofibroblasts , Phenotype , Hydrogels/chemistry , Extracellular Matrix/metabolism , Animals , Fibroblasts/metabolism , Fibroblasts/cytology , Myofibroblasts/metabolism , Myofibroblasts/cytology , Integrin beta1/metabolism , Focal Adhesions/metabolism , Myocardium/cytology , Myocardium/metabolism , Cells, Cultured , Rats , Actins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL