Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.168
Filter
1.
Oncol Rep ; 52(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39092576

ABSTRACT

Senescent cells are known to secrete proteins, including inflammatory cytokines and damage­associated molecular patterns. This phenomenon is known as the senescence­associated secretory phenotype (SASP). SASP in cancer stromal fibroblasts is involved in cancer growth and progression. Conversely, metformin, an antidiabetic drug, has been reported to inhibit SASP induction by inhibiting the activation of NF­κB, a regulator of SASP. To date, at least to the best of our knowledge, there have been no reports regarding cellular senescence in fibroblasts and tumor progression via the SASP­mediated paracrine pathway. The present study thus aimed to elucidate the induction mechanisms of SASP in radiation­induced fibroblasts and to determine its effects on cancer progression via the paracrine pathway. Furthermore, the present study aimed to determine whether controlling SASP using metformin suppresses cancer progression. A well­differentiated esophageal cancer cell line established by the authors' department and fibroblasts isolated and cultured from the non­cancerous esophageal mucosa of resected esophageal cancer cases were used for the experiments. Fibroblasts were irradiated with 8 Gy radiation, and the changes in the expression of the senescence markers, SA­ß­gal, p21, p16 and NF­κB were evaluated using immunofluorescent staining and western blot analysis in the presence or absence of metformin treatment. The culture supernatants of irradiated fibroblasts treated with metformin and those treated without metformin were collected and added to the cancer cells to evaluate their proliferative, invasive and migratory abilities. Vimentin and E­cadherin expression levels were also evaluated using immunofluorescent staining and western blot analysis. The expression levels of p16, p21 and NF­κB in irradiated fibroblasts were attenuated by treatment with metformin. Supernatants collected from irradiated fibroblasts exhibited the proliferative activity of esophageal cancer cells, and the promotion of migratory and invasion abilities, which may be due to epithelial­mesenchymal transition and changes in cell morphology. These reactions were confirmed to be suppressed by the addition of the supernatant of cultured fibroblasts pre­treated with metformin. On the whole, the present study demonstrates that fibroblasts in the cancer stroma may be involved in tumor progression through cellular senescence.


Subject(s)
Cancer-Associated Fibroblasts , Cell Proliferation , Cellular Senescence , Esophageal Neoplasms , Metformin , Metformin/pharmacology , Humans , Cellular Senescence/drug effects , Cellular Senescence/radiation effects , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/radiation effects , Cancer-Associated Fibroblasts/pathology , Cell Proliferation/drug effects , Disease Progression , NF-kappa B/metabolism , Cell Line, Tumor , Senescence-Associated Secretory Phenotype , Cell Movement/drug effects , Cell Movement/radiation effects , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/radiation effects , Hypoglycemic Agents/pharmacology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Fibroblasts/drug effects
2.
Bull Exp Biol Med ; 177(2): 185-189, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090469

ABSTRACT

Inflammation plays a crucial role in progression of fibrosis. Epoxyeicosatrienoic acids (EET) have multiple protective effects in different diseases, but their ability to inhibit the development of LPS-induced fibrosis remains unknown. The potential therapeutic effects of 11,12-EET were studied in in vitro model of LPS-induced fibrosis. Mouse embryonic fibroblast cells NIH/3T3 were pre-incubated with 1 µM 11,12-EET and/or a structural analogue and selective EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid before exposing to LPS. The effect of EET was evaluated by the protein and mRNA expression of NF-κB, collagens I and III, and α-smooth muscle actin by Western blotting and quantitative reverse transcription PCR, respectively. LPS provoked inflammation and fibrosis-like changes accompanied by elevated expression of NF-κB and collagens in NIH/3T3 cells. We also studied the effects of 11,12-EET on the A2AR and PI3K/Akt signaling pathways in intact and LPS-treated NIH/3T3 cells. 11,12-EET prevented inflammation and fibrosis-like changes through up-regulation of A2AR and PI3K/Akt signaling pathways. Our findings demonstrate the potential antifibrotic effects of 11,12-EET, which can be natural antagonists of tissue fibrosis.


Subject(s)
8,11,14-Eicosatrienoic Acid , Fibrosis , Lipopolysaccharides , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Mice , Lipopolysaccharides/toxicity , Signal Transduction/drug effects , NIH 3T3 Cells , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Fibrosis/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , NF-kappa B/metabolism , Actins/metabolism , Actins/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology
3.
Microb Cell Fact ; 23(1): 220, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107838

ABSTRACT

BACKGROUND: Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS: A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS: These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Silver Compounds , Humans , Metal Nanoparticles/chemistry , Silver Compounds/pharmacology , Silver Compounds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Microbial Sensitivity Tests , Bacillaceae/metabolism , Oxides/pharmacology , Oxides/chemistry , Fibroblasts/drug effects , Apoptosis/drug effects
4.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126066

ABSTRACT

Pathogenic variations in the fused in sarcoma (FUS) gene are associated with rare and aggressive forms of amyotrophic lateral sclerosis (ALS). As FUS-ALS is a dominant disease, a targeted, allele-selective approach to FUS knockdown is most suitable. Antisense oligonucleotides (AOs) are a promising therapeutic platform for treating such diseases. In this study, we have explored the potential for allele-selective knockdown of FUS. Gapmer-type AOs targeted to two common neutral polymorphisms in FUS were designed and evaluated in human fibroblasts. AOs had either methoxyethyl (MOE) or thiomorpholino (TMO) modifications. We found that the TMO modification improved allele selectivity and efficacy for the lead sequences when compared to the MOE counterparts. After TMO-modified gapmer knockdown of the target allele, up to 93% of FUS transcripts detected were from the non-target allele. Compared to MOE-modified AOs, the TMO-modified AOs also demonstrated reduced formation of structured nuclear inclusions and SFPQ aggregation that can be triggered by phosphorothioate-containing AOs. How overall length and gap length of the TMO-modified AOs affected allele selectivity, efficiency and off-target gene knockdown was also evaluated. We have shown that allele-selective knockdown of FUS may be a viable therapeutic strategy for treating FUS-ALS and demonstrated the benefits of the TMO modification for allele-selective applications.


Subject(s)
Alleles , Amyotrophic Lateral Sclerosis , Oligonucleotides, Antisense , RNA-Binding Protein FUS , Humans , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/therapy , RNA-Binding Protein FUS/genetics , Fibroblasts/metabolism , Fibroblasts/drug effects , Gene Knockdown Techniques , Morpholinos/therapeutic use , Morpholinos/genetics
5.
Gen Physiol Biophys ; 43(5): 469-484, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39140687

ABSTRACT

Ruthenium nitrosyl (Ru-NO) complexes are of interest as photoactive nitric oxide (NO) donor candidates for local therapeutic applications. NO plays a crucial regulatory role in skin homeostasis, concentration-dependently affecting processes like the proliferation, apoptosis, autophagy and redox balance. In this context, we investigated HE-10, a ruthenium-based photoinducible NO donor, for its pro-oxidant and cytotoxic effects under light and dark conditions in VH10 human foreskin fibroblast cells. We also tested its intracellular and extracellular NO-releasing function. Our study reveals a significant dose-dependent cytotoxic effect of HE-10, an increase in intracellular reactive oxygen and nitrogen species, and the occurrence of apoptosis in skin fibroblast cells. Furthermore, exposure to both increasing doses of HE-10 and white LED light led to substantial cellular events, including a significant induction of autophagy and G2/M phase cell cycle arrest. Paradoxically, these effects were not solely attributable to NO release based on DAF2-DA NO probe results, suggesting that intracellular photochemical reactions additional to NO photolysis contribute to HE-10's biological activity. This study shows that HE-10 exhibits both cytotoxic and potential therapeutic effects, depending on concentration and light exposure. These findings are crucial for developing targeted Ru-NO complex treatments for skin diseases and potentially certain types of skin cancer, where controlled NO release could be beneficial.


Subject(s)
Fibroblasts , Nitric Oxide , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Nitric Oxide/metabolism , Cell Line , Cell Survival/drug effects , Ruthenium/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Dose-Response Relationship, Drug , Light
6.
Int J Immunopathol Pharmacol ; 38: 3946320241274225, 2024.
Article in English | MEDLINE | ID: mdl-39140804

ABSTRACT

OBJECTIVES: Tuberostemonine has several biological activity, the aim of study examined the impact of tuberostemonine on the proliferation of TGF-ß1 induced cell model, and its ability to alleviate pulmonary fibrosis stimulated by bleomycin in mice. METHODS: In vitro, we assessed the effect of tuberostemonine (350, 550 and 750 µM) on the proliferation of cells stimulated by TGF-ß1 (10 µg/L), as well as on parameters such as α-SMA vitality, human fibronectin, collagen, and hydroxyproline levels in cells. In vivo, we analyzed inflammation, hydroxyproline, collagen activity and metabolomics in the lungs of mice. Additionally, a comprehensive investigation into the TGF-ß/smad signaling pathway was undertaken, targeting lung tissue as well as HFL cells. RESULTS: Within the confines of an in vitro setup, the tuberostemonine manifested a discerned IC50 of 1.9 mM. Furthermore, a significant reduction of over fifty percent was ascertained in the secretion levels of hydroxyproline, fibronectin, collagen type I, collagen type III and α-SMA. In vivo, tuberostemonine obviously improved the respiratory function percentage over 50% of animal model and decreased the hydroxyproline, lung inflammation and collagen deposition. A prominent decline in TGF-ß/smad pathway functioning was identified within both the internal and external cellular contexts. CONCLUSIONS: Tuberostemonine is considered as a modulator to alleviate fibrosis and may become a new renovation for pulmonary fibrosis.


Subject(s)
Bleomycin , Cell Proliferation , Fibroblasts , Lung , Pulmonary Fibrosis , Signal Transduction , Transforming Growth Factor beta1 , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Lung/drug effects , Lung/pathology , Lung/metabolism , Humans , Mice , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Hydroxyproline/metabolism , Smad Proteins/metabolism , Mice, Inbred C57BL , Male , Cell Line , Collagen/metabolism , Disease Models, Animal , Fibronectins/metabolism , Actins/metabolism
7.
Nat Commun ; 15(1): 6820, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122702

ABSTRACT

Biomaterial wound dressings, such as hydrogels, interact with host cells to regulate tissue repair. This study investigates how crosslinking of gelatin-based hydrogels influences immune and stromal cell behavior and wound healing in female mice. We observe that softer, lightly crosslinked hydrogels promote greater cellular infiltration and result in smaller scars compared to stiffer, heavily crosslinked hydrogels. Using single-cell RNA sequencing, we further show that heavily crosslinked hydrogels increase inflammation and lead to the formation of a distinct macrophage subpopulation exhibiting signs of oxidative activity and cell fusion. Conversely, lightly crosslinked hydrogels are more readily taken up by macrophages and integrated within the tissue. The physical properties differentially affect macrophage and fibroblast interactions, with heavily crosslinked hydrogels promoting pro-fibrotic fibroblast activity that drives macrophage fusion through RANKL signaling. These findings suggest that tuning the physical properties of hydrogels can guide cellular responses and improve healing, offering insights for designing better biomaterials for wound treatment.


Subject(s)
Fibroblasts , Hydrogels , Macrophages , Wound Healing , Animals , Hydrogels/chemistry , Wound Healing/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Macrophages/metabolism , Macrophages/drug effects , Mice , Female , Cell Communication/drug effects , Biocompatible Materials/chemistry , RANK Ligand/metabolism , Mice, Inbred C57BL , Cross-Linking Reagents/chemistry , Gelatin/chemistry , Inflammation/metabolism , Inflammation/pathology
8.
Sci Rep ; 14(1): 18345, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112598

ABSTRACT

Pressure ulcers (PU) are caused by persistent long-term pressure, which compromises the integrity of the epidermis, dermis, and subcutaneous adipose tissue layer by layer, making it difficult to heal. Platelet products such as platelet lysate (PL) can promote tissue regeneration by secreting numerous growth factors based on clinical studies on skin wound healing. However, the components of PL are difficult to retain in wounds. Gelatin methacrylate (GelMA) is a photopolymerizable hydrogel that has lately emerged as a promising material for tissue engineering and regenerative medicine. The PL liquid was extracted, flow cytometrically detected for CD41a markers, and evenly dispersed in the GelMA hydrogel to produce a surplus growth factor hydrogel system (PL@GM). The microstructure of the hydrogel system was observed under a scanning electron microscope, and its sustained release efficiency and biological safety were tested in vitro. Cell viability and migration of human dermal fibroblasts, and tube formation assays of human umbilical vein endothelial cells were applied to evaluate the ability of PL to promote wound healing and regeneration in vitro. Real-time polymerase chain reaction (PCR) and western blot analyses were performed to elucidate the skin regeneration mechanism of PL. We verified PL's therapeutic effectiveness and histological analysis on the PU model. PL promoted cell viability, migration, wound healing and angiogenesis in vitro. Real-time PCR and western blot indicated PL suppressed inflammation and promoted collagen I synthesis by activating STAT3. PL@GM hydrogel system demonstrated optimal biocompatibility and favorable effects on essential cells for wound healing. PL@GM also significantly stimulated PU healing, skin regeneration, and the formation of subcutaneous collagen and blood vessels. PL@GM could accelerate PU healing by promoting fibroblasts to migrate and secrete collagen and endothelial cells to vascularize. PL@GM promises to be an effective and convenient treatment modality for PU, like chronic wound treatment.


Subject(s)
Angiogenesis , Blood Platelets , Gelatin , Methacrylates , Pressure Ulcer , Skin , Wound Healing , Animals , Humans , Mice , Angiogenesis/drug effects , Blood Platelets/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Gelatin/chemistry , Gelatin/pharmacology , Human Umbilical Vein Endothelial Cells , Hydrogels/chemistry , Methacrylates/chemistry , Methacrylates/pharmacology , Neovascularization, Physiologic/drug effects , Pressure Ulcer/therapy , Regeneration/drug effects , Skin/blood supply , Skin/drug effects , Skin/metabolism , Skin/pathology , STAT3 Transcription Factor/metabolism , Wound Healing/drug effects
9.
Cells ; 13(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39120291

ABSTRACT

A substantial challenge in human brain aging is to find a suitable model to mimic neuronal aging in vitro as accurately as possible. Using directly converted neurons (iNs) from human fibroblasts is considered a promising tool in human aging since it retains the aging-associated mitochondrial donor signature. Still, using iNs from aged donors can pose certain restrictions due to their lower reprogramming and conversion efficacy than those from younger individuals. To overcome these limitations, our study aimed to establish an in vitro neuronal aging model mirroring features of in vivo aging by acute exposure on young iNs to either human stress hormone cortisol or the mitochondrial stressor rotenone, considering stress as a trigger of in vivo aging. The impact of rotenone was evident in mitochondrial bioenergetic properties by showing aging-associated deficits in mitochondrial respiration, cellular ATP, and MMP and a rise in glycolysis, mitochondrial superoxide, and mitochondrial ROS; meanwhile, cortisol only partially induced an aging-associated mitochondrial dysfunction. To replicate the in vivo aging-associated mitochondrial dysfunctions, using rotenone, a mitochondrial complex I inhibitor, proved to be superior to the cortisol model. This work is the first to use stress on young iNs to recreate aging-related mitochondrial impairments.


Subject(s)
Mitochondria , Neurons , Rotenone , Humans , Neurons/metabolism , Neurons/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Rotenone/pharmacology , Aging , Fibroblasts/metabolism , Fibroblasts/drug effects , Cellular Senescence/drug effects , Hydrocortisone/metabolism , Reactive Oxygen Species/metabolism , Tissue Donors , Glycolysis/drug effects , Adenosine Triphosphate/metabolism
10.
Cells ; 13(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39120336

ABSTRACT

Platelet-rich fibrin (PRF) is prepared by spontaneous coagulation of fractionated blood. When squeezed between two plates, PRF is separated into solid PRF membranes and a liquid exudate, the PRF serum. The question arises regarding how much the overall activity remains in the PRF membranes and what is discarded into the PRF serum. To this end, we have exposed gingival fibroblasts to lysates prepared from PRF membranes and PRF serum, followed by bulk RNA sequencing. A total of 268 up- and 136 down-regulated genes in gingival fibroblasts exposed to PRF membrane lysates were significantly regulated under the premise of a minimum log2 with 2.5-fold change and a minus log10 significance level of two, respectively. PRF serum only caused 62 up- and 32 down-regulated genes under these conditions. Among the 46 commonly up-regulated genes were CXCL1, CXCL5, CXCL6, CXCL8, IL33, IL6, and PTGS2/COX2, stanniocalcin-1-all linked to an inflammatory response. PRF membrane lysates further increased chemokines CCL2, CCL7, CXCL2, CXCL3, and IL1R1, IL1RL1, and IL1RN, as well as the paracrine factors IL11, LIF, IGF1, BMP2, BMP6, FGF2, and CCN2/CTGF, and all hyaluronan synthases. On the other hand, PRF serum increased DKK1. The genes commonly down-regulated by PRF membrane lysates and PRF serum included interferon-induced protein with tetratricopeptide repeats (IFIT1, IFIT2, IFIT3) and odd-skipped-related transcription factors (OSR1 and OSR2), as well as FGF18 and GDF15, respectively. Taken together, PRF membrane lysates, compared to PRF serum, cause a more complex response in gingival fibroblasts, but each increased chemokine expression in gingival fibroblasts.


Subject(s)
Fibroblasts , Gingiva , Platelet-Rich Fibrin , Humans , Fibroblasts/metabolism , Fibroblasts/drug effects , Gingiva/cytology , Gingiva/metabolism , Platelet-Rich Fibrin/metabolism , Gene Expression Regulation/drug effects
11.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125660

ABSTRACT

Colostrum is gaining popularity in cosmetic products. The present study compared the composition and selected biological properties of colostrum from Polish sheep (colostrum 1) and Swiss sheep (colostrum 2), particularly those that can affect healthy or diseased skin. The antioxidant activity of the colostrums was measured using ABTS and DPPH assays. The effect on the proliferation of human skin fibroblasts, neonatal epidermal keratinocytes, and human diabetic fibroblast (dHF) cells isolated from diabetic foot ulcers was also assayed in vitro by MTT and Presto Blue tests, respectively. The colostrum simulated dHF cell proliferation by up to 115.4%. The highest used concentration of colostrum 1 stimulated normal fibroblast proliferation by 191.2% (24 h) and 222.2% (48 h). Both colostrums inhibited epidermal keratinocyte viability. The influence of the colostrums on the expression of genes related to proliferation (Ki67) and immune response (IL-6, PTGS-2, TSG-6) in dHF cells were compared. Colostrum 1 increased the rate of wound closure (scar test). Analysis of total fat, protein and fatty acid content found the Polish colostrum to be a richer source of fat than the Swiss colostrum, which contained a larger amount of protein. Both colostrums exhibit properties that suggest they could be effective components in cosmetic or medicinal formulations for skin care, especially supporting its regeneration, rejuvenation, and wound healing.


Subject(s)
Cell Proliferation , Colostrum , Fibroblasts , Keratinocytes , Skin Care , Colostrum/chemistry , Animals , Sheep , Humans , Cell Proliferation/drug effects , Fibroblasts/metabolism , Fibroblasts/drug effects , Keratinocytes/drug effects , Keratinocytes/metabolism , Skin Care/methods , Antioxidants/pharmacology , Female , Wound Healing/drug effects , Skin/metabolism , Cell Survival/drug effects , Pregnancy , Administration, Topical , Diabetic Foot/therapy , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Cells, Cultured
12.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125720

ABSTRACT

Freesia refracta (FR), a perennial flower of the Iris family (Iridaceae), is widely used in cosmetics despite limited scientific evidence of its skin benefits and chemical composition, particularly of FR callus extract (FCE). This study identified biologically active compounds in FCE and assessed their skin benefits, focusing on anti-aging. FR calli were cultured, extracted with water at 40 °C, and analyzed using Centrifugal Partition Chromatography (CPC), Nuclear Magnetic Resonance (NMR), and HCA, revealing key compounds, namely nicotinamide and pyroglutamic acid. FCE significantly increased collagen I production by 52% in normal and aged fibroblasts and enhanced fibroblast-collagen interaction by 37%. An in vivo study of 43 female volunteers demonstrated an 11.1% reduction in skin roughness and a 2.3-fold increase in collagen density after 28 days of cream application containing 3% FCE. Additionally, the preservation tests of cosmetics containing FCE confirmed their stability over 12 weeks. These results suggest that FCE offers substantial anti-aging benefits by enhancing collagen production and fibroblast-collagen interactions. These findings highlighted the potential of FCE in cosmetic applications, providing significant improvements in skin smoothness and overall appearance. This study fills a gap in the scientific literature regarding the skin benefits and chemical composition of FR callus extract, supporting its use in the development of effective cosmeceuticals.


Subject(s)
Fibroblasts , Oxidative Stress , Plant Extracts , Skin Aging , Skin , Skin Aging/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Oxidative Stress/drug effects , Skin/metabolism , Skin/drug effects , Transcriptome/drug effects , Adult , Collagen/metabolism , Cosmetics/pharmacology , Middle Aged , Niacinamide/pharmacology , Pyrrolidonecarboxylic Acid/analogs & derivatives , Pyrrolidonecarboxylic Acid/pharmacology , Pyrrolidonecarboxylic Acid/metabolism
13.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125958

ABSTRACT

Diabetic foot ulceration is one of the most common complications in patients treated for diabetes mellitus. The presented pilot study describes the successful treatment of diabetic ulceration of the heel with ongoing osteomyelitis in a 39-year-old patient after using a combination of modified chitosan-based biomaterial in combination with autologous mesenchymal stem cells isolated from bone marrow and dermal fibroblasts. The isolated population of bone marrow mesenchymal stem cells fulfilled all of the attributes given by the International Society for Stem Cell Research, such as fibroblast-like morphology, the high expression of positive surface markers (CD29: 99.1 ± 0.4%; CD44: 99.8 ± 0.2% and CD90: 98.0 ± 0.6%) and the ability to undergo multilineage differentiation. Likewise, the population of dermal fibroblasts showed high positivity for the widely accepted markers collagen I, collagen III and vimentin, which was confirmed by immunocytochemical staining. Moreover, we were able to describe newly formed blood vessels shown by angio CT and almost complete closure of the skin defect after 8 months of the treatment.


Subject(s)
Biocompatible Materials , Chitosan , Diabetic Foot , Diabetic Foot/therapy , Diabetic Foot/pathology , Humans , Chitosan/chemistry , Pilot Projects , Adult , Fibroblasts/metabolism , Fibroblasts/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Male , Cell Differentiation/drug effects , Cell- and Tissue-Based Therapy/methods
14.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125961

ABSTRACT

Garlic is a vegetable with numerous pro-health properties, showing high antioxidant capacity, and cytotoxicity for various malignant cells. The inhibition of cell proliferation by garlic is mainly attributed to the organosulfur compounds (OSCs), but it is far from obvious which constituents of garlic indeed participate in the antioxidant and cytotoxic action of garlic extracts. This study aimed to obtain insight into this question by examining the antioxidant activity and cytotoxicity of six OSCs and five phenolics present in garlic. Three common assays of antioxidant activity were employed (ABTS● decolorization, DPPH● decolorization, and FRAP). Cytotoxicity of both classes of compounds to PEO1 and SKOV-3 ovarian cancer cells, and MRC-5 fibroblasts was compared. Negligible antioxidant activities of the studied OSCs (alliin, allicin, S-allyl-D-cysteine, allyl sulfide, diallyl disulfide, and diallyl trisulfide) were observed, excluding the possibility of any significant contribution of these compounds to the total antioxidant capacity (TAC) of garlic extracts estimated by the commonly used reductive assays. Comparable cytotoxic activities of OSCs and phenolics (caffeic, p-coumaric, ferulic, gallic acids, and quercetin) indicate that both classes of compounds may contribute to the cytotoxic action of garlic.


Subject(s)
Allyl Compounds , Antioxidants , Disulfides , Garlic , Phenols , Plant Extracts , Sulfides , Sulfinic Acids , Garlic/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Phenols/pharmacology , Phenols/chemistry , Disulfides/pharmacology , Disulfides/chemistry , Cell Line, Tumor , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sulfinic Acids/pharmacology , Sulfinic Acids/chemistry , Sulfides/pharmacology , Sulfides/chemistry , Allyl Compounds/pharmacology , Allyl Compounds/chemistry , Sulfur Compounds/pharmacology , Sulfur Compounds/chemistry , Cysteine/analogs & derivatives , Cysteine/chemistry , Cysteine/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism
15.
Int J Nanomedicine ; 19: 7673-7689, 2024.
Article in English | MEDLINE | ID: mdl-39099793

ABSTRACT

Purpose: In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well. Methods: Wild bilberry leaves extract was prepared by ultrasound-assisted extraction in ethanol and its properties were evaluated by UV-Vis spectroscopy (radical scavenging activity, total amount of polyphenols, flavonoids, anthocyanins, and condensed tannins). The extract components were identified by HPLC, and the antidiabetic properties of the extract were evaluated via α-glucosidase inhibitory activity. Spherical MSN were modified with propionic acid or proline moieties by post-synthesis method and used as carriers for the WB leaves extract. The textural and structural features of functionalized MSN were assessed by nitrogen adsorption/desorption isotherms, small-angle XRD, SEM, TEM, and FTIR spectroscopy. The composite porous scaffolds were prepared by freeze drying of the zinc-modified collagen suspension containing WB extract loaded silica nanoparticles. Results: The properties of the new composites demonstrated enhanced properties in terms of thermal stability of the zinc-collagen scaffold, without altering the protein conformation, and stimulation of NCTC fibroblasts mobility. The results of the scratch assay showed contributions of both zinc ions from collagen and the polyphenolic extract incorporated in functionalized silica in the wound healing process. The extract encapsulated in functionalized MSN proved enhanced biological activities compared to the extract alone: better inhibition of P. aeruginosa and S. aureus strains, higher biocompatibility on HaCaT keratinocytes, and anti-inflammatory potential demonstrated by reduced IL-1ß and TNF-α levels. Conclusion: The experimental data shows that the novel composites can be used for the development of effective wound dressings.


Subject(s)
Bandages , Collagen , Nanoparticles , Plant Extracts , Plant Leaves , Silicon Dioxide , Wound Healing , Zinc , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Collagen/chemistry , Collagen/pharmacology , Zinc/chemistry , Zinc/pharmacology , Nanoparticles/chemistry , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Tissue Scaffolds/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cell Line , Porosity , Fibroblasts/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry
16.
Molecules ; 29(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39124987

ABSTRACT

(1) Background: Angiotensin-converting enzyme 2 (ACE2) is a crucial functional receptor of the SARS-CoV-2 virus. Although the scale of infections is no longer at pandemic levels, there are still fatal cases. The potential of the virus to infect the skin raises questions about new preventive measures. In the context of anti-SARS-CoV-2 applications, the interactions of antimicrobial nanomaterials (silver, Ag; diamond, D; graphene oxide, GO and their complexes) were examined to assess their ability to affect whether ACE2 binds with the virus. (2) Methods: ACE2 inhibition competitive tests and in vitro treatments of primary human adult epidermal keratinocytes (HEKa) and primary human adult dermal fibroblasts (HDFa) were performed to assess the blocking capacity of nanomaterials/nanocomplexes and their toxicity to cells. (3) Results: The nanocomplexes exerted a synergistic effect compared to individual nanomaterials. HEKa cells were more sensitive than HDFa cells to Ag treatments and high concentrations of GO. Cytotoxic effects were not observed with D. In the complexes, both carbonic nanomaterials had a soothing effect against Ag. (4) Conclusions: The Ag5D10 and Ag5GO10 nanocomplexes seem to be most effective and safe for skin applications to combat SARS-CoV-2 infection by blocking ACE2-S binding. These nanocomplexes should be evaluated through prolonged in vivo exposure. The expected low specificity enables wider applications.


Subject(s)
Angiotensin-Converting Enzyme 2 , Fibroblasts , Graphite , Keratinocytes , Nanostructures , SARS-CoV-2 , Silver , Humans , Angiotensin-Converting Enzyme 2/metabolism , Silver/chemistry , Silver/pharmacology , SARS-CoV-2/drug effects , Keratinocytes/drug effects , Keratinocytes/virology , Keratinocytes/metabolism , Fibroblasts/drug effects , Fibroblasts/virology , Nanostructures/chemistry , Graphite/chemistry , Graphite/pharmacology , COVID-19/virology , Cell Line , Skin/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
17.
Carbohydr Polym ; 342: 122372, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048222

ABSTRACT

Wound healing is a complex process involving a complicated interplay between numerous cell types and vascular systems. Hyaluronic acid (HA)-based hydrogel facilitates wound healing, and is involved in all processes. However, slow gelation speed and weak adhesion strength limit its ability to form a stable physical barrier quickly. Herein, we propose a HA-based composite hydrogel as the wound dressing based on oxidative coupling reaction. Tannic acid and dopamine-coated carbon particles (DCPs) containing abundant phenolic hydroxyl groups are incorporated into the HA-based hydrogel for increasing the number of crosslinking sites of oxidative coupling of the hydrogel and enhancing adhesion through the formation of covalent bonds and hydrogen bonds between hydrogel and wound sites. The composite hydrogel exhibits short gelation time (<6 s) and high adhesion strength (>8.1 kPa), which are superior to the references and commercial products of its kind. The in vitro experiments demonstrate that the hydrogel has low hemolytic reaction, negligible cytotoxicity, and the ability to promote fibroblast proliferation and migration. The in vivo full-thickness skin defect model experiments demonstrate that the hydrogel can accelerate wound healing under mild photothermal stimulation of DCPs by reducing inflammation, relieving tissue hypoxia, and promoting angiogenesis and epithelialization.


Subject(s)
Hyaluronic Acid , Hydrogels , Polyphenols , Tannins , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Tannins/chemistry , Tannins/pharmacology , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Polyphenols/chemistry , Polyphenols/pharmacology , Cell Proliferation/drug effects , Humans , Skin/drug effects , Fibroblasts/drug effects , Cell Movement/drug effects , Male
18.
Int J Nanomedicine ; 19: 7353-7365, 2024.
Article in English | MEDLINE | ID: mdl-39050869

ABSTRACT

Introduction: Pathological scars, such as hypertrophic scars and keloids, are characterized by the proliferation of fibroblasts and the deposition of collagen that often cause pruritus, pain, and disfigurement. Due to their high incidence and deformity, pathological scars have resulted in severe physical and psychological trauma for patients. Intralesional injection of 5-fluorouracil (5-Fu) is a recommended option for treating pathological scars. However, the efficacy of 5-Fu injection was limited and unstable due to limited drug penetration and short retention time. Methods: Liposomes are promising carriers that have advantages, such as high biocompatibility, controlled release property, and enhanced clinical efficacy. Here, we constructed a transdermal 5-Fu-loaded liposome (5-Fu-Lip) to provide a more effective and safer modality to scar treatment. Results: Compared to 5-Fu, 5-Fu-Lip showed superior ability in inhibiting primary keloid fibroblasts proliferation, migration, and collagen deposition, and also significantly inhibited human umbilical vein endothelial cells (HUVECs) proliferation and microvessel construction. In vivo experiments demonstrated that 5-Fu-Lip can significantly reduce the severity of hypertrophic scars in a rabbit ear wounding model. Discussion: 5-Fu-Lip provides a promising strategy to improve drug efficacy, which has great potential in the treatment of pathological scars.


Subject(s)
Cell Proliferation , Cicatrix, Hypertrophic , Fibroblasts , Fluorouracil , Human Umbilical Vein Endothelial Cells , Keloid , Liposomes , Fluorouracil/administration & dosage , Fluorouracil/pharmacology , Fluorouracil/chemistry , Rabbits , Animals , Liposomes/chemistry , Humans , Cicatrix, Hypertrophic/drug therapy , Fibroblasts/drug effects , Keloid/drug therapy , Keloid/pathology , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Collagen/chemistry , Cell Movement/drug effects , Administration, Cutaneous
19.
Immunopharmacol Immunotoxicol ; 46(4): 496-508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38951964

ABSTRACT

OBJECTIVE: This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS: NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor­ß1 (TGF-ß1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-ß1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS: The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-ß1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/ß-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION: These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-ß1/Smad and non-Smad pathways.


Subject(s)
Bleomycin , Fibroblasts , Pulmonary Fibrosis , Transforming Growth Factor beta1 , Animals , Mice , Transforming Growth Factor beta1/metabolism , NIH 3T3 Cells , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Bleomycin/toxicity , Fibroblasts/drug effects , Fibroblasts/metabolism , Flavones/pharmacology , Mice, Inbred C57BL , Cell Movement/drug effects , Male , Cell Proliferation/drug effects
20.
Pharm Biol ; 62(1): 621-633, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39056547

ABSTRACT

CONTEXT: Pyrus calleryana Decne (Rosaceae), renowned for its therapeutic properties, is known to moisturize the lungs (removing dryness; relieving cough), clear heat (acting as an antipyretic; febrifuge) and aid in detoxification (relieving pyogenic inflammation; eliminating toxins). However, scientific evidence supporting its efficacy in wound healing is lacking. OBJECTIVE: This study investigated P. calleryana samples collected over a year to explore metabolite variations and their impact on skin wound-healing activities. MATERIALS AND METHODS: P. calleryana (PC) twigs and leaves were collected from the Matsu Islands, Taiwan, spanning 2018-2020. Extracts were prepared using 95% ethanol or water, and we assessed the chemical composition, total phenolic/triterpenoid contents and antioxidant properties. Metabolites were analysed via LC-MS/MS and molecular networking. Wound healing potential was evaluated on WS-1 cells through MTT and migration assays, and gene expression analyses, with tests including control (DMSO), compounds 1 (3'-hydroxylbenzyl-4-hydroxybenzoate-4'-O-ß-glucopyranoside) and 2 (vanilloylcalleryanin) (100 µM), and a positive control (ascorbic acid, 100 µM) for 24 h. RESULTS: Significant variations in extract compositions were observed based on the solvent used, with distinct metabolomic profiles in extracts collected during different months. Notably, compounds 1 and 2 showed no cytotoxic effects on human dermal fibroblast cells and significantly accelerated wound closure at 100 µM. A gene expression analysis indicated upregulation of wound healing-associated genes, including MMP-1 (matrix metalloproteinase-1) and COL1A1 (collagen, type 1, alpha 1). CONCLUSIONS: This study reports the first evidence of PC compounds aiding wound healing. Utilizing Global Natural Products Social Molecular Networking (GNPS) and principal component analysis (PCA) approaches, we unveiled metabolomic profiles, suggesting the potential to expedite wound-healing.


Subject(s)
Plant Extracts , Pyrus , Wound Healing , Wound Healing/drug effects , Humans , Plant Extracts/pharmacology , Pyrus/chemistry , Seasons , Taiwan , Antioxidants/pharmacology , Plant Leaves , Tandem Mass Spectrometry , Cell Line , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Movement/drug effects , Skin/metabolism , Skin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL