Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 524
Filter
1.
Pharmazie ; 79(7): 151-158, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39152558

ABSTRACT

Substances metabolised by the intestinal microbiota can be used as colon markers and are gaining importance. The flavonoid glycoside baicalin has been described in the literature to be metabolised by the intestinal microbiota. The aim of this work was to investigate how the biotransformation of baicalin to baicalein is related to the intestinal microbiota. For this purpose, stool samples from healthy volunteers with different dietary habits were used. From the pre-cultured stool samples, different standard microbiota were obtained which were used for the subsequent metabolism studies in the in vitro model MimiCol. MimiCol represents the ascending section of the colon, the colon ascendens, in terms of available volume, pH-value, redox potential and bacterial abundance. While during the experiments with added standard microbiota a metabolism of baicalin to baicalein could be detected, this was not the case in a series of experiments without added microbiota. This confirmed the hypothesis that the metabolism of baicalin relies on the bacterial species that are present in the colon. The data collected in the MimiCol therefore support the use of baicalin as a potential marker for the determination of the colon arrival. This can be explained by the fact that baicalin in its native form is poorly absorbed from the gastrointestinal tract. Enzymes of the colonic microbiota, namely ß-glucuronidases, hydrolyze baicalin to the aglycone baicalein. The resulting aglycone can be absorbed through the intestinal mucosa and detected in blood plasma. This potentially enables the use of baicalin as a marker to determine the time of arrival in the colon.


Subject(s)
Colon , Feces , Flavanones , Flavonoids , Gastrointestinal Microbiome , Flavonoids/metabolism , Flavonoids/pharmacokinetics , Humans , Gastrointestinal Microbiome/physiology , Feces/microbiology , Flavanones/metabolism , Colon/metabolism , Colon/microbiology , Biotransformation , Adult , Bacteria/metabolism , Male
2.
Appl Microbiol Biotechnol ; 108(1): 435, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126431

ABSTRACT

Naringenin is a plant polyphenol, widely explored due to its interesting biological activities, namely anticancer, antioxidant, and anti-inflammatory. Due to its potential applications and attempt to overcome the industrial demand, there has been an increased interest in its heterologous production. The microbial biosynthetic pathway to produce naringenin is composed of tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). Herein, we targeted the efficient de novo production of naringenin in Escherichia coli by performing a step-by-step validation and optimization of the pathway. For that purpose, we first started by expressing two TAL genes from different sources in three different E. coli strains. The highest p-coumaric acid production (2.54 g/L) was obtained in the tyrosine-overproducing M-PAR-121 strain carrying TAL from Flavobacterium johnsoniae (FjTAL). Afterwards, this platform strain was used to express different combinations of 4CL and CHS genes from different sources. The highest naringenin chalcone production (560.2 mg/L) was achieved by expressing FjTAL combined with 4CL from Arabidopsis thaliana (At4CL) and CHS from Cucurbita maxima (CmCHS). Finally, different CHIs were tested and validated, and 765.9 mg/L of naringenin was produced by expressing CHI from Medicago sativa (MsCHI) combined with the other previously chosen genes. To our knowledge, this titer corresponds to the highest de novo production of naringenin reported so far in E. coli. KEY POINTS: • Best enzyme and strain combination were selected for de novo naringenin production. • After genetic and operational optimizations, 765.9 mg/L of naringenin was produced. • This de novo production is the highest reported so far in E. coli.


Subject(s)
Acyltransferases , Ammonia-Lyases , Biosynthetic Pathways , Coenzyme A Ligases , Escherichia coli , Flavanones , Flavanones/biosynthesis , Flavanones/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Biosynthetic Pathways/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Ammonia-Lyases/genetics , Ammonia-Lyases/metabolism , Metabolic Engineering/methods , Coumaric Acids/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Tyrosine/metabolism
3.
BMC Plant Biol ; 24(1): 804, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183318

ABSTRACT

BACKGROUND: 2-oxoglutarate-dependent dioxygenase (2ODD) superfamily is the second largest enzyme family in the plant genome and plays diverse roles in secondary metabolic pathways. The medicinal plant Scutellaria baicalensis Georgi contains various flavonoids, which have the potential to treat coronavirus disease 2019 (COVID-19), such as baicalein and myricetin. Flavone synthase I (FNSI) and flavanone 3-hydroxylase (F3H) from the 2ODDs of DOXC subfamily have been reported to participate in flavonoids biosynthesis. It is certainly interesting to study the 2ODD members involved in the biosynthesis of flavonoids in S. baicalensis. RESULTS: We provided a genome-wide analysis of the 2ODDs of DOXC subfamily in S. baicalensis, a total of 88 2ODD genes were identified, 82 of which were grouped into 25 distinct clades based on phylogenetic analysis of At2ODDs. We then performed a functional analysis of Sb2ODDs involved in the biosynthesis of flavones and dihydroflavonols. Sb2ODD1 and Sb2ODD2 from DOXC38 clade exhibit the activity of FNSI (Flavone synthase I), which exclusively converts pinocembrin to chrysin. Sb2ODD1 has significantly higher transcription levels in the root. While Sb2ODD7 from DOXC28 clade exhibits high expression in flowers, it encodes a F3H (flavanone 3-hydroxylase). This enzyme is responsible for catalyzing the conversion of both naringenin and pinocembrin into dihydrokaempferol and pinobanksin, kinetic analysis showed that Sb2ODD7 exhibited high catalytic efficiency towards naringenin. CONCLUSIONS: Our experiment suggests that Sb2ODD1 may serve as a supplementary factor to SbFNSII-2 and play a role in flavone biosynthesis specifically in the roots of S. baicalensis. Sb2ODD7 is mainly responsible for dihydrokaempferol biosynthesis in flowers, which can be further directed into the metabolic pathways of flavonols and anthocyanins.


Subject(s)
Dioxygenases , Flavonoids , Scutellaria baicalensis , Flavonoids/biosynthesis , Flavonoids/metabolism , Scutellaria baicalensis/genetics , Scutellaria baicalensis/metabolism , Scutellaria baicalensis/enzymology , Dioxygenases/genetics , Dioxygenases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Flavanones/metabolism , Flavanones/biosynthesis , Gene Expression Regulation, Plant , Genes, Plant
4.
Chem Biol Drug Des ; 104(2): e14604, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39147995

ABSTRACT

This study aimed to investigate the mechanism of action of myrrh in breast cancer (BC) treatment and identify its effective constituents. Data on the compounds and targets of myrrh were collected from the TCMSP, PubChem, and Swiss Target Prediction databases. BC-related targets were obtained from the Genecard database. A protein-protein interaction (PPI) analysis, gene ontology (GO) enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted on the intersecting targets of the disease and drug. The key targets of myrrh in BC treatment were identified based on the PPI network. The active constituents of myrrh were determined through reverse-screening using the top 20 KEGG pathways. Macromolecular docking studies, molecular dynamic (MD) simulations, and cell assays were utilized to validate the active constituents and critical targets. Network pharmacology indicated that VEGFA, TP53, ESR1, EGFR, and AKT1 are key targets of myrrh. Pelargonidin chloride, Quercetin, and Naringenin were identified as the active constituents of myrrh. Macromolecular docking showed that Quercetin and Naringenin have strong docking capabilities with ESR1. The results of MD simulation experiments align with those of molecular docking experiments. Cell and western blot assays demonstrated that Quercetin and Naringenin could inhibit MCF-7 cells and significantly reduce the expression of ESR1 protein. The findings reveal the active constituents, key targets, and molecular mechanisms of myrrh in BC treatment, providing scientific evidence that supports the role of myrrh in BC therapy. Furthermore, the results suggest that network pharmacology predictions require experimental validation for reliability.


Subject(s)
Breast Neoplasms , Molecular Docking Simulation , Network Pharmacology , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Molecular Dynamics Simulation , MCF-7 Cells , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/metabolism , Commiphora/chemistry , Commiphora/metabolism , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/metabolism , Protein Interaction Maps/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/chemistry , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
5.
Sci Rep ; 14(1): 15983, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987427

ABSTRACT

Cornelian cherry fruits contain a wide range of phenolic acids, flavonoids, and other secondary metabolites. Selected flavonoids may inhibit the perceiving of bitterness, however, the full mechanism with all TAS2R bitter taste receptors is not known. The aim of the study was to determine the inhibitory effect of Cornus mas phenolics against the bitterness receptors TAS2R13 and TAS2R3 through functional in vitro assays and coupling studies. The overall effect was validated by analysing the inhibition of the receptors activity in cells treated with tested cornelian cherry extracts. The strength of interaction with both TAS2R receptors varied between studied compounds with different binding affinity. Most compounds bonded with the TAS2R3 receptor through a long-distant hydrophobic interaction with Trp89A and π-π orbital overlapping-between phenolic and tryptophane aromatic rings. For TAS2R13 observed were various mechanisms of interaction with the compounds. Nonetheless, naringin and quercetin had most similar binding affinity to chloroquine and denatonium-the model agonists for the receptor.


Subject(s)
Flavonoids , Hydroxybenzoates , Molecular Docking Simulation , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Humans , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Binding , Quercetin/pharmacology , Quercetin/chemistry , Quercetin/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Flavanones/metabolism , HEK293 Cells
6.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891840

ABSTRACT

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Subject(s)
Acyltransferases , Intramolecular Lyases , Intramolecular Lyases/metabolism , Intramolecular Lyases/chemistry , Acyltransferases/metabolism , Acyltransferases/chemistry , Plant Proteins/metabolism , Plant Proteins/chemistry , Flavonoids/metabolism , Flavonoids/chemistry , Kinetics , Flavanones/chemistry , Flavanones/metabolism , Chalcones/chemistry , Chalcones/metabolism , Substrate Specificity , Crystallography, X-Ray , Molecular Docking Simulation , Models, Molecular , Protein Binding , Protein Conformation
7.
J Biosci Bioeng ; 138(2): 144-152, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38858130

ABSTRACT

Flavonoids comprise a group of natural compounds with diverse bioactivities; however, their low water solubility and limited bioavailability often impede their potential health benefits for humans. In this study, five derivatives, namely 2',5'-dihydroxyflavanone (1), 2'-dihydroxyflavanone-5'-O-4″-O-methyl-ß-d-glucoside (2), 2'-dihydroxyflavanone-6-O-4″-O-methyl-ß-d-glucoside (3), 2'-dihydroxyflavanone-3'-O-4″-O-methyl-ß-d-glucoside (4) and hydroxyflavanone-2'-O-4″-O-methyl-ß-d-glucoside (5), were biosynthesized from 2'-hydroxyflavanone through microbial transformation using Beauveria bassiana ATCC 7159. Product 1 was identified as a known compound while 2-5 were structurally characterized as new structures through extensive 1D and 2D NMR analysis. The water solubility of biotransformed products 1-5 was enhanced by 30-280 times compared to the substrate 2'-hydroxyflavanone. Moreover, the antioxidant assay revealed that 1 and 2 exhibited improved 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity relative to the substrate, decreasing the logIC50 from 8.08 ± 0.11 µM to 6.19 ± 0.08 µM and 7.15 ± 0.08 µM, respectively. Compound 5 displayed significantly improved anticancer activity compared to the substrate 2'-hydroxyflavanone against Glioblastoma 33 cancer stem cells, decreasing the IC50 from 25.05 µM to 10.59 µM. Overall, fungal biotransformation represents an effective tool to modify flavonoids for enhanced water solubility and bioactivities.


Subject(s)
Beauveria , Biotransformation , Flavanones , Humans , Flavanones/metabolism , Flavanones/chemistry , Beauveria/metabolism , Beauveria/chemistry , Solubility , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Flavonoids/metabolism , Flavonoids/chemistry
8.
Food Chem ; 452: 139600, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744138

ABSTRACT

A naringinase complex was chemically aminated prior to its immobilization on glyoxyl-agarose to develop a robust biocatalyst for juice debittering. The effects of amination on the optimal pH and temperature, thermal stability, and debittering performance were analyzed. Concentration of amino groups on catalysts surface increased in 36 %. Amination reduced the ß-glucosidase activity of naringinase complex; however, did not affect optimal pH and temperature of the enzyme and it favored immobilization, obtaining α-l-rhamnosidase and ß-d-glucosidase activities of 1.7 and 4.2 times the values obtained when the unmodified enzymes were immobilized. Amination favored the stability of the immobilized biocatalyst, retaining 100 % of both activities after 190 h at 30 °C and pH 3, while its non-aminated counterpart retained 80 and 52 % of α-rhamnosidase and ß-glucosidase activities, respectively. The immobilized catalyst showed a better performance in grapefruit juice debittering, obtaining a naringin conversion of 7 times the value obtained with the non-aminated catalyst.


Subject(s)
Enzymes, Immobilized , Fruit and Vegetable Juices , Glyoxylates , Sepharose , Fruit and Vegetable Juices/analysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Amination , Hydrogen-Ion Concentration , Sepharose/chemistry , Glyoxylates/chemistry , Citrus/chemistry , Citrus/enzymology , Enzyme Stability , Biocatalysis , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Temperature , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Flavanones/chemistry , Flavanones/metabolism , Catalysis
9.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792058

ABSTRACT

The 1092 bp F3H gene from Trapa bispinosa Roxb., which was named TbF3H, was cloned and it encodes 363 amino acids. Bioinformatic and phylogenetic tree analyses revealed the high homology of TbF3H with flavanone 3-hydroxylase from other plants. A functional analysis showed that TbF3H of Trapa bispinosa Roxb. encoded a functional flavanone 3-hydroxylase; it catalyzed the formation of dihydrokaempferol (DHK) from naringenin in S. cerevisiae. The promoter strengths were compared by fluorescence microscopy and flow cytometry detection of the fluorescence intensity of the reporter genes initiated by each constitutive promoter (FITC), and DHK production reached 216.7 mg/L by the promoter adjustment strategy and the optimization of fermentation conditions. The results presented in this study will contribute to elucidating DHK biosynthesis in Trapa bispinosa Roxb.


Subject(s)
Flavanones , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Flavanones/biosynthesis , Flavanones/metabolism , Phylogeny , Promoter Regions, Genetic , Cloning, Molecular/methods , Flavonoids/biosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Fermentation
10.
Food Chem ; 448: 139182, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569413

ABSTRACT

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Subject(s)
Bacterial Proteins , Biotransformation , Deinococcus , Flavanones , Glucosides , Glucosyltransferases , Glycoside Hydrolase Inhibitors , Flavanones/metabolism , Flavanones/chemistry , Deinococcus/enzymology , Deinococcus/metabolism , Deinococcus/chemistry , Deinococcus/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Glucosides/metabolism , Glucosides/chemistry , Molecular Docking Simulation , Kinetics , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry
11.
ACS Synth Biol ; 13(5): 1454-1466, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38662928

ABSTRACT

Chalcone synthase (CHS) catalyzes the rate-limiting step of (2S)-naringenin (the essential flavonoid skeleton) biosynthesis. Improving the activity of the CHS by protein engineering enhances (2S)-naringenin production by microbial fermentation and can facilitate the production of valuable flavonoids. A (2S)-naringenin biosensor based on the TtgR operon was constructed in Escherichia coli and its detection range was expanded by promoter optimization to 0-300 mg/L, the widest range for (2S)-naringenin reported. The high-throughput screening scheme for CHS was established based on this biosensor. A mutant, SjCHS1S208N with a 2.34-fold increase in catalytic activity, was discovered by directed evolution and saturation mutagenesis. A pathway for de novo biosynthesis of (2S)-naringenin by SjCHS1S208N was constructed in Saccharomyces cerevisiae, combined with CHS precursor pathway optimization, increasing the (2S)-naringenin titer by 65.34% compared with the original strain. Fed-batch fermentation increased the titer of (2S)-naringenin to 2513 ± 105 mg/L, the highest reported so far. These findings will facilitate efficient flavonoid biosynthesis and further modification of the CHS in the future.


Subject(s)
Acyltransferases , Biosensing Techniques , Directed Molecular Evolution , Escherichia coli , Fermentation , Flavanones , Saccharomyces cerevisiae , Flavanones/biosynthesis , Flavanones/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Directed Molecular Evolution/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Biosensing Techniques/methods , Protein Engineering/methods , Promoter Regions, Genetic , Operon/genetics , Metabolic Engineering/methods
12.
Plant Physiol ; 195(3): 1818-1834, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38573326

ABSTRACT

Bacterial wilt severely jeopardizes plant growth and causes enormous economic loss in the production of many crops, including tobacco (Nicotiana tabacum). Here, we first demonstrated that the roots of bacterial wilt-resistant tobacco mutant KCB-1 can limit the growth and reproduction of Ralstonia solanacearum. Secondly, we demonstrated that KCB-1 specifically induced an upregulation of naringenin content in root metabolites and root secretions. Further experiments showed that naringenin can disrupt the structure of R. solanacearum, inhibit the growth and reproduction of R. solanacearum, and exert a controlling effect on bacterial wilt. Exogenous naringenin application activated the resistance response in tobacco by inducing the burst of reactive oxygen species and salicylic acid deposition, leading to transcriptional reprogramming in tobacco roots. Additionally, both external application of naringenin in CB-1 and overexpression of the Nicotiana tabacum chalcone isomerase (NtCHI) gene, which regulates naringenin biosynthesis, in CB-1 resulted in a higher complexity of their inter-root bacterial communities than in untreated CB-1. Further analysis showed that naringenin could be used as a marker for resistant tobacco. The present study provides a reference for analyzing the resistance mechanism of bacterial wilt-resistant tobacco and controlling tobacco bacterial wilt.


Subject(s)
Flavanones , Mutation , Nicotiana , Plant Diseases , Plant Roots , Ralstonia solanacearum , Ralstonia solanacearum/drug effects , Ralstonia solanacearum/physiology , Ralstonia solanacearum/pathogenicity , Nicotiana/microbiology , Nicotiana/genetics , Nicotiana/drug effects , Flavanones/pharmacology , Flavanones/metabolism , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Mutation/genetics , Disease Resistance/genetics , Disease Resistance/drug effects , Gene Expression Regulation, Plant/drug effects , Reactive Oxygen Species/metabolism , Salicylic Acid/metabolism , Salicylic Acid/pharmacology
13.
Metab Eng ; 83: 1-11, 2024 May.
Article in English | MEDLINE | ID: mdl-38447910

ABSTRACT

Flavonoids are a diverse set of natural products with promising bioactivities including anti-inflammatory, anti-cancer, and neuroprotective properties. Previously, the oleaginous host Yarrowia lipolytica has been engineered to produce high titers of the base flavonoid naringenin. Here, we leverage this host along with a set of E. coli bioconversion strains to produce the flavone apigenin and its glycosylated derivative isovitexin, two potential nutraceutical and pharmaceutical candidates. Through downstream strain selection, co-culture optimization, media composition, and mutant isolation, we were able to produce168 mg/L of apigenin, representing a 46% conversion rate of 2-(R/S)-naringenin to apigenin. This apigenin platform was modularly extended to produce isovitexin by addition of a second bioconversion strain. Together, these results demonstrate the promise of microbial production and modular bioconversion to access diversified flavonoids.


Subject(s)
Apigenin , Escherichia coli , Flavanones , Metabolic Engineering , Yarrowia , Apigenin/metabolism , Apigenin/biosynthesis , Flavanones/biosynthesis , Flavanones/metabolism , Yarrowia/metabolism , Yarrowia/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Glucosides/biosynthesis , Glucosides/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403340

ABSTRACT

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Subject(s)
Dendrobium , Flavanones , Dendrobium/genetics , Dendrobium/chemistry , Flavanones/metabolism , Flavonoids , Cloning, Molecular , Glycosides/metabolism
15.
J Agric Food Chem ; 72(9): 4880-4887, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386432

ABSTRACT

Dihydroquercetin (DHQ), known for its varied physiological benefits, is widely used in the food, chemical, and pharmaceutical industries. However, the efficiency of the DHQ synthesis is significantly limited by the substantial accumulation of intermediates during DHQ biosynthesis. In this study, DHQ production was achieved by integrating genes from various organisms into the yeast chromosome for the expression of flavanone-3-hydroxylase (F3H), flavonoid-3'-hydroxylase, and cytochrome P450 reductase. A computer-aided protein design approach led to the development of optimal F3H mutant P221A, resulting in a 1.67-fold increase in DHQ yield from naringenin (NAR) compared with the control. Subsequently, by analysis of the enzyme reaction and optimization of the culture medium composition, 637.29 ± 20.35 mg/L DHQ was synthesized from 800 mg/L NAR. This corresponds to a remarkable conversion rate of 71.26%, one of the highest reported values for DHQ synthesis from NAR to date.


Subject(s)
Flavanones , Quercetin/analogs & derivatives , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Flavanones/metabolism , Quercetin/chemistry
16.
Food Funct ; 15(2): 1031-1049, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38193367

ABSTRACT

Orange juice is an important food source of bioactive compounds, mainly the flavanones hesperidin and narirutin. This study aimed to investigate the underlying molecular mechanisms of action of orange juice's health properties by analyzing changes in the plasma proteome of healthy Brazilian volunteers after consuming juices made from 'Bahia' (BOJ-source of flavanones) and 'Cara Cara' (CCOJ-source of flavanones and carotenoids) oranges cultivated in Brazil. We used an untargeted proteomic approach, with a particular emphasis on the juices' effects on blood coagulant activity. We identified 247 differentially expressed proteins, of which 170 significantly increased or decreased after BOJ consumption and 145 after CCOJ. These proteins are involved in 105 processes that can significantly regulate cell adhesion, cell signaling, cell metabolism, inflammation, or others. Bioinformatic analysis evidenced proteins with major cellular regulatory capacity (e.g., FN1 and GAPDH) and predicted transcription factors (TFs) (e.g., SP1 and CEBPA) and miRNAs (e.g., miR-1-3p and miR-615-3p) that could be involved in the regulation of differentially expressed proteins. In-silico docking analyses between flavanone metabolites and TFs evidenced the higher binding capacity of narirutin phase II metabolites with akt1 and p38, interactions that suggest how the expression of genes of differentially expressed proteins were activated or inhibited. Moreover, the study shed light on proteins of coagulation cascade that presented expression modulated by both juices, proposing the modulation of blood coagulant activity as a potential benefit of OJ (mainly CCOJ) consumption. Taken together, this study revealed that BOJ and CCOJ consumption affected plasma proteome in healthy individuals, suggesting potential molecular targets and mechanisms of OJ bioactive compounds in humans.


Subject(s)
Citrus sinensis , Coagulants , Flavanones , MicroRNAs , Humans , Citrus sinensis/chemistry , Brazil , Proteome/analysis , Proteomics , Flavanones/metabolism , Fruit and Vegetable Juices , Fruit/chemistry , MicroRNAs/metabolism , Coagulants/analysis , Coagulants/metabolism
17.
Food Res Int ; 177: 113718, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225107

ABSTRACT

Orange peel is an interesting by-product because of its composition, particularly its dietary fibre and flavanones. The aim of this work was to extract different fibre fractions from orange peel to obtain potential added-value ingredients and evaluate how the presence of fibre may interfere with (poly)phenol metabolism. Using an aqueous extraction, as a green extraction method, an insoluble fibre fraction (IFF) and a water-soluble extract (WSE) were obtained. Those fractions were analysed to determine the proximate and dietary fibre composition, hydration properties, (poly)phenol composition and antioxidant capacity, comparing the results with the orange peel (OP). The IFF presented the highest content of insoluble dietary fibre and the WSE showed the highest content of (poly)phenols, these being mainly flavanones. An in vitro faecal fermentation was carried out to evaluate the production of short-chain fatty acids (SCFAs) and lactate as prebiotic indicators; the IFF gave the highest production, derived from the greater presence of dietary fibre. Moreover, catabolites from (poly)phenol metabolism were also analysed, phenylpropanoic acids being the major ones, followed by phenylacetic acids and benzoic acids. These catabolites were found in higher quantities in WSE, because of the greater presence of (poly)phenols in its composition. IFF also showed a significant production of these catabolites, which was delayed by the greater presence of fibre. These results reveal that the new ingredients, obtained by an environmentally friendly water extraction procedure, could be used for the development of new foods with enhanced nutritional and healthy properties.


Subject(s)
Citrus sinensis , Flavanones , Phenols , Citrus sinensis/metabolism , Fermentation , Phenol , Dietary Fiber/metabolism , Flavanones/metabolism , Lactic Acid , Digestion , Water
18.
Microbiol Spectr ; 12(1): e0337423, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38088543

ABSTRACT

IMPORTANCE: Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.


Subject(s)
Flavanones , Flavonoids , Flavonoids/metabolism , Saccharomyces cerevisiae/metabolism , Flavanones/metabolism
19.
BMC Res Notes ; 16(1): 343, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37978406

ABSTRACT

OBJECTIVE: Hesperetin is an important O-methylated flavonoid produced by citrus fruits and of potential pharmaceutical relevance. The microbial biosynthesis of hesperetin could be a viable alternative to plant extraction, as plant extracts often yield complex mixtures of different flavonoids making it challenging to isolate pure compounds. In this study, hesperetin was produced from caffeic acid in the microbial host Escherichia coli. We combined a previously optimised pathway for the biosynthesis of the intermediate flavanone eriodictyol with a combinatorial library of plasmids expressing three candidate flavonoid O-methyltransferases. Moreover, we endeavoured to improve the position specificity of CCoAOMT7, a flavonoid O-methyltransferase from Arabidopsis thaliana that has been demonstrated to O-methylate eriodictyol in both the para- and meta-position, thus leading to a mixture of hesperetin and homoeriodictyol. RESULTS: The best performing flavonoid O-methyltransferase in our screen was found to be CCoAOMT7, which could produce up to 14.6 mg/L hesperetin and 3.8 mg/L homoeriodictyol from 3 mM caffeic acid in E. coli 5-alpha. Using a platform for enzyme engineering that scans the mutational space of selected key positions, predicting their structures using homology modelling and inferring their potential catalytic improvement using docking simulations, we were able to identify a CCoAOMT7 mutant with a two-fold higher position specificity for hesperetin. The mutant's catalytic activity, however, was considerably diminished. Our findings suggest that hesperetin can be created from central carbon metabolism in E. coli following the introduction of a caffeic acid biosynthesis pathway.


Subject(s)
Escherichia coli , Flavanones , Flavanones/metabolism , Flavonoids/metabolism , Methyltransferases/genetics
20.
Chem Res Toxicol ; 36(11): 1778-1788, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37783573

ABSTRACT

Naringenin, an initial synthesized flavanone in various plant species, is further utilized for production of many biologically active flavonoids, e.g., apigenin, eriodictyol, and genistein, by various plant enzymes including cytochrome P450s (P450s or CYPs). We examined how these flavonoids are oxidized by human P450 family 1 and 2A enzymes. Naringenin was principally oxidized at the 3'-position to form eriodictyol by CYP1 enzymes more efficiently than by CYP2A enzymes, and the resulting eriodictyol was further oxidized to two penta-hydroxylated products. In contrast to plant P450 enzymes, these human P450s did not mediate the desaturation of naringenin and eriodictyol to give apigenin and luteolin, respectively. Apigenin was oxidized at the C3' and C6 positions to form luteolin and scutellarein by these P450s. CYP1B1.1 and 1B1.3 had high activities in apigenin 6-hydroxylation with a homotropic cooperative manner, as has been observed previously in chrysin 6-hydroxylation (Nagayoshi et al., Chem. Res. Toxicol. 2019, 32, 1268-1280). Molecular docking analysis suggested that CYP1B1 had two apigenin binding sites and showed similarities in substrate recognition sites to plant CYP82D.1, one of the enzymes in catalyzing apigenin and chrysin 6-hydroxylations in Scutellaria baicalensis. The present results suggest that human CYP1 enzymes and CYP2A13 in some reactions have important roles in the oxidation of naringenin, eriodictyol, apigenin, and genistein and that human CYP1B1 and Scutellaria CYP82D.1 have similarities in their SRS regions, catalyzing 6-hydroxylation of both apigenin and chrysin.


Subject(s)
Apigenin , Cytochrome P450 Family 1 , Flavanones , Genistein , Humans , Apigenin/metabolism , Genistein/metabolism , Flavanones/metabolism , Cytochrome P450 Family 1/metabolism , Oxidation-Reduction , Molecular Structure , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL