Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.399
Filter
1.
Sci Rep ; 14(1): 20659, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39232078

ABSTRACT

Unionid mussels deposit growth rings (annuli) within the shell, which can be used to estimate age and growth. Thin-sectioning is a common technique for counting annuli, wherein a cross-section of a shell valve is taken and evaluated by multiple readers. Correctly identifying annuli can be challenging because ambiguous annuli can bias growth estimates. Staining with calcein, a fluorescent chemical, is a technique that has been used with marine and freshwater species to improve accuracy of growth estimates. This method chelates calcium, causing a permanent mark that fluoresces under ultraviolet light. Calcein has seen limited testing on unionid mussels so it remains unclear if this method has adverse effects on survival and growth. We evaluated calcein against 2 concentrations (125 mg L-1 and 250 mg L-1) at 2 exposure times (12 and 24 h) on Cyclonaias pustulosa, a common North American unionid. Survivorship remained above 80% 6 months post-immersion. Mark quality and retention for 250 mg L-1 were high for both 12- and 24-h immersions, although historical annuli were not highlighted. These findings corroborate studies indicating calcein immersion is generally safe and effective in juveniles and adults and suggest it may be useful in validating new growth.


Subject(s)
Fluoresceins , Animals , Fluoresceins/chemistry , Fresh Water , Unionidae , Staining and Labeling/methods
2.
Int J Pharm ; 663: 124576, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39134288

ABSTRACT

Extracellular vesicles (EVs) have emerged as a promising drug delivery system. Connectosomes are a specialized type of EVs that contain connexins in their membranes. Connexin is a surface transmembrane protein that forms connexin hemichannels. When a connexin hemichannel on a connectosome docks with another connexin hemichannel of a target cell, they form a gap junction that allows direct intracellular delivery of therapeutic cargos from within the connectosome to the cytoplasm of the recipient cell. In the present study, we tested the feasibility of converting connectosomes into dry powders by (thin-film) freeze-drying to enable their potential storage in temperatures higher than the recommended -80 °C, while maintaining their activity. Connectosomes were isolated from a genetically engineered HeLa cell line that overexpressing connexin-43 subunit protein tagged with red fluorescence protein. To facilitate the testing of the function of the connectosomes, they were loaded with calcein green dye. Calcein green-loaded connectosomes were thin-film freeze-dried with trehalose alone or trehalose and a polyvinylpyrrolidone polymer as lyoprotectant(s) to produce amorphous powders with high glass transition temperatures (>100 °C). Thin-film freeze-drying did not significantly change the morphology and structure of the connectosomes, nor their particle size distribution. Based on data from confocal microscopy, flow cytometry, and fluorescence spectrometry, the connexin hemichannels in the connectosomes reconstituted from the thin-film freeze-dried powder remained functional, allowing the passage of calcein green through the hemichannels and the release of the calcein green from the connectosomes when the channels were opened by chelating calcium in the reconstituted medium. The function of connectosomes was assessed after one month storage at different temperatures. The connexin hemichannels in connectosomes in liquid lost their function when stored at -19.5 ± 2.2 °C or 6.0 ± 0.5 °C for a month, while those in dry powder form remained functional under the same storage conditions. Finally, using doxorubicin-loaded connectosomes, we showed that the connectosomes reconstituted from thin-film freeze-dried powder remained pharmacologically active. These findings demonstrate that (thin-film) freeze-drying represents a viable method to prepare stable and functional powders of EVs that contain connexins in their membranes.


Subject(s)
Extracellular Vesicles , Freeze Drying , Powders , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , HeLa Cells , Connexin 43/metabolism , Trehalose/chemistry , Fluoresceins/chemistry , Povidone/chemistry , Connexins/metabolism , Particle Size
3.
J Med Chem ; 67(16): 13909-13924, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39093920

ABSTRACT

Multidrug resistance (MDR) of human tumors has resulted in an immediate need to develop appropriate new drugs. This work outlines the development of 20 potent IQQ N-oxide derivatives in two isomeric families, both exhibiting nanomolar GI50 against human tumor cell lines. Preliminary NCI-60 tumor screening sees the C(6) isomers achieve a mean GI50 > 2 times lower than the corresponding C(7) isomers. MDR evaluation of nine selected compounds reveals that each presents lower GI50 concentrations in two MDR tumor cell lines. Four of the series display nanomolar GI50 values against MDR cells, having selectivity ratios up to 2.7 versus the sensitive (parental) cells. The most potent compound 25 inhibits the activity of drug efflux pumps in MDR cells, causes significant ROS accumulation, and potently inhibits cell proliferation, causing alterations in the cell cycle profile. Our findings are confirmed by 3D spheroid models, providing new candidates for studies against MDR cancers.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Isoquinolines/pharmacology , Isoquinolines/chemistry , Isoquinolines/chemical synthesis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Fluoresceins/chemical synthesis , Fluoresceins/chemistry , Fluoresceins/pharmacology
4.
Res Vet Sci ; 175: 105314, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823354

ABSTRACT

Over the course of the last twenty years, there has been a growing recognition of the pig's potential as a valuable model for studying human drug metabolism. This study aimed to investigate the expression, enzymatic activity, inhibitory susceptibility, and cellular localization of carboxylesterases (CES) in porcine lung tissue not yet explored. Our results showed that CESs hydrolysis activity followed Michaelis-Menten kinetics in both cytosolic and microsomal fractions of porcine lung tissues (N = 8), with comparable hydrolysis rates for tested substrates, namely 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD). We also determined the CESs hydrolysis activity in a representative sample of the porcine liver that, as expected, displayed higher activity than the lung ones. The study demonstrated variable levels of enzyme activities and interindividual variability in both porcine lung fractions. Inhibition studies used to assess the CESs' involvement in the hydrolysis of pNPA, 4-MUA, and FD suggested that CESs may be the enzymes primarily involved in the metabolism of ester compounds in the pig lung tissue. Overall, this study provides insight into the distribution and diversity of CES isoforms involved in substrate hydrolysis across different cellular fractions (cytosol and microsomes) in porcine lungs.


Subject(s)
Carboxylic Ester Hydrolases , Lung , Animals , Lung/enzymology , Lung/metabolism , Swine , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Microsomes/enzymology , Nitrophenols/metabolism , Umbelliferones/metabolism , Fluoresceins , Hydrolysis , Cytosol/enzymology , Liver/enzymology
5.
J Oleo Sci ; 73(6): 839-846, 2024.
Article in English | MEDLINE | ID: mdl-38825537

ABSTRACT

Controlling the morphology of molecular assemblies formed by surfactants by photoirradiation enables the controlled release of incorporated substances, which can be applied to delivery systems for drugs and active ingredients. On the other hand, conventional photoresponsive surfactants and molecular assemblies have a slow response speed, making it difficult to control their functions at the desired time. In this review, I discuss our recent progress in the accelerated control of functions of photoresponsive molecular assemblies by using lophine dimer as a photochromic compound. The lophine dimer derivative dissociates into a pair of lophyl radicals that upon ultraviolet (UV) light irradiation, and these radical species thermally recombine although the recombination reaction is extremely slow due to the diffusion of lophyl radicals. By using the confined inner space of micelles formed by surfactants, the recombination reaction was extremely accelerated. With UV light irradiation, rapid morphological changes in micelles, formed by amphiphilic lophine dimers were observed by using in situ small-angle neutron scattering (in situ SANS) system. Moreover, the rapid controlled release of calcein as a model drug was achieved by UV light irradiation using the photoresponsive micelles. This rapid system can realize the controlled release of drugs truly at the desired time, developing an efficient and precise drug delivery system (DDS). Furthermore, it can be applied in a wide range of fields such as release control of active ingredients, efficient heat exchange control, and actuating systems.


Subject(s)
Delayed-Action Preparations , Micelles , Surface-Active Agents , Ultraviolet Rays , Surface-Active Agents/chemistry , Drug Delivery Systems , Dimerization , Drug Liberation , Fluoresceins/chemistry , Photochemical Processes , Solubility , Free Radicals/chemistry
6.
Sci Rep ; 14(1): 14071, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38890456

ABSTRACT

In advanced drug delivery, versatile liposomal formulations are commonly employed for safer and more accurate therapies. Here we report a method that allows a straightforward production of synthetic monodisperse (~ 100 µm) giant unilamellar vesicles (GUVs) using a microfluidic system. The stability analysis based on the microscopy imaging showed that at ambient conditions the produced GUVs had a half-life of 61 ± 2 h. However, it was observed that ~ 90% of the calcein dye that was loaded into GUVs was transported into a surrounding medium in 24 h, thus indicating that the GUVs may release these small dye molecules without distinguishable membrane disruption. We further demonstrated the feasibility of our method by loading GUVs with larger and very different cargo objects; small soluble fluorescent proteins and larger magnetic microparticles in a suspension. Compared to previously reported microfluidics-based production techniques, the obtained results indicate that our simplified method could be equally harnessed in creating GUVs with less cost, effort and time, which could further benefit studying closed membrane systems.


Subject(s)
Microfluidics , Unilamellar Liposomes , Unilamellar Liposomes/chemistry , Microfluidics/methods , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Microfluidic Analytical Techniques/methods
7.
Colloids Surf B Biointerfaces ; 241: 114043, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38901266

ABSTRACT

Responsiveness of liposomes to external stimuli, such as light, should allow a precise spatial and temporal control of release of therapeutic agents or ion transmembrane transport. Here, some aryl-azo derivatives of thymol are synthesized and embedded into liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to obtain light-sensitive membranes whose photo-responsiveness, release behaviour, and permeability towards Cl- ions are investigated. The hybrid systems are in-depth characterized by dynamic light scattering, atomic force microscopy and Raman spectroscopy. In liposomal bilayer the selected guests undergo reversible photoinduced isomerization upon irradiation with UV and visible light, alternately. Non-irradiated hybrid liposomes retain entrapped 5(6)-carboxyfluorescein (CF), slowing its spontaneous leakage, whereas UV-irradiation promotes CF release, due to guest trans-to-cis isomerization. Photoisomerization also influences membrane permeability towards Cl- ions. Data processing, according to first-order kinetics, demonstrates that Cl- transmembrane transport is enhanced by switching the guest from trans to cis but restored by back-switching the guest from cis to trans upon illumination with blue light. Finally, the passage of Cl- ions across the bilayer can be fine-tuned by irradiation with light of longer λ and different light-exposure times. Fine-tuning the photo-induced structural response of the liposomal membrane upon isomerization is a promising step towards effective photo-dynamic therapy.


Subject(s)
Liposomes , Nanoparticles , Thymol , Thymol/chemistry , Isomerism , Liposomes/chemistry , Nanoparticles/chemistry , Phosphatidylcholines/chemistry , Light , Lipid Bilayers/chemistry , Ultraviolet Rays , Photochemical Processes , Cell Membrane Permeability , Chlorides/chemistry , Fluoresceins/chemistry , Permeability
8.
J Oral Biosci ; 66(3): 554-566, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38942193

ABSTRACT

OBJECTIVES: This study aimed to elucidate whether the administration of parathyroid hormone (PTH) results in remodeling- or modeling-based bone formation in different regions of the murine femora, and whether the PTH-driven bone formation would facilitate osteoblastic differentiation into osteocytes. METHODS: Six-week-old male C57BL/6J mice were employed to examine the distribution of alkaline phosphatase (ALP), PHOSPHO1, podoplanin, and calcein labeling in two distinct long bone regions: the metaphyseal trabeculae close to the chondro-osseous junction (COJ) and those distant from the COJ in three mouse groups, a control group receiving a vehicle (sham group) and groups receiving hPTH (1-34) twice a day (PTH BID group) or four times a day (PTH QID group) for two weeks. RESULTS: The sham group showed PHOSPHO1-reactive mature osteoblasts localized primarily at the COJ, whereas the PTH BID/QID groups exhibited extended lines of PHOSPHO1-reactive osteoblasts even in regions distant from the COJ. The PTH QID group displayed fragmented calcein labeling in trabeculae close to the COJ, whereas continuous labeling was observed in trabeculae distant from the COJ. Osteoblasts tended to express podoplanin and PHOSPHO1 independently in the close and distant regions of the sham group, while osteoblasts in the PTH-administered groups showed immunoreactivity of podoplanin and PHOSPHO1 together in the close and distant regions. CONCLUSIONS: Administration of PTH may accelerate remodeling-based bone formation in regions close to the COJ while predominantly inducing modeling-based bone formation in distant regions. PTH appeared to simultaneously facilitate osteoblastic bone mineralization and differentiation into osteocytes in both remodeling- and modeling-based bone formation.


Subject(s)
Alkaline Phosphatase , Femur , Fluoresceins , Mice, Inbred C57BL , Osteoblasts , Parathyroid Hormone , Animals , Alkaline Phosphatase/metabolism , Mice , Male , Femur/drug effects , Femur/metabolism , Parathyroid Hormone/metabolism , Parathyroid Hormone/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Membrane Glycoproteins/metabolism , Bone Remodeling/drug effects , Osteocytes/metabolism , Osteocytes/drug effects , Osteogenesis/drug effects , Cell Differentiation/drug effects , Phosphoric Monoester Hydrolases
9.
Cells ; 13(12)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38920639

ABSTRACT

The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.


Subject(s)
Epithelial Cells , Kidney Tubules, Proximal , Humans , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/cytology , Epithelial Cells/metabolism , Models, Biological , Pyridinium Compounds/metabolism , Anions/metabolism , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Biological Transport , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Cell Line , Cations/metabolism , Fluoresceins/metabolism , Organic Cation Transport Proteins/metabolism , Organic Cation Transport Proteins/genetics
10.
NanoImpact ; 35: 100521, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38901707

ABSTRACT

To facilitate Safe and Sustainable by Design (SSbD) strategies during the development of nanomaterials (NMs), quick and easy in vitro assays to test for hazard potential at an early stage of NM development are essential. The formation of reactive oxygen species (ROS) and the induction of oxidative stress are considered important mechanisms that can lead to NM toxicity. In vitro assays measuring oxidative stress are therefore commonly included in NM hazard assessment strategies. The fluorescence-based dichloro-dihydro-fluorescein (DCFH) assay for cellular oxidative stress is a simple and cost-effective assay, making it a good candidate assay for SSbD hazard testing strategies. It is however subject to several pitfalls and caveats. Here, we provide further optimizations to the assay using 5-(6)-Chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA-AE, referred to as DCFH probe), known for its improved cell retention. We measured the release of metabolic products of the DCFH probe from cells to supernatant, direct reactions of CM-H2DCFDA-AE with positive controls, and compared the commonly used plate reader-based DCFH assay protocol with fluorescence microscopy and flow cytometry-based protocols. After loading cells with DCFH probe, translocation of several metabolic products of the DCFH probe to the supernatant was observed in multiple cell types. Translocated DCFH products are then able to react with test substances including positive controls. Our results also indicate that intracellularly oxidized fluorescent DCF is able to translocate from cells to the supernatant. In either way, this will lead to a fluorescent supernatant, making it difficult to discriminate between intra- and extra-cellular ROS production, risking misinterpretation of possible oxidative stress when measuring fluorescence on a plate reader. The use of flow cytometry instead of plate reader-based measurements resolved these issues, and also improved assay sensitivity. Several optimizations of the flow cytometry-based DCFH ISO standard (ISO/TS 19006:2016) were suggested, including loading cells with DCFH probe before incubation with the test materials, and applying an appropriate gating strategy including live-death staining, which was not included in the ISO standard. In conclusion, flow cytometry- and fluorescence microscopy-based read-outs are preferred over the classical plate reader-based read-out to assess the level of intracellular oxidative stress using the cellular DCFH assay.


Subject(s)
Fluoresceins , Nanostructures , Oxidative Stress , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Humans , Nanostructures/chemistry , Oxidative Stress/drug effects , Fluorescent Dyes/chemistry
11.
Biosens Bioelectron ; 258: 116373, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38729048

ABSTRACT

Breast cancer is reported to be one of the most lethal cancers in women, and its multi-target detection can help improve the accuracy of diagnosis. In this work, a cluster regularly interspaced short palindromic repeats (CRISPR)-Cas13a/Cas12a-based system was established for the simultaneous fluorescence detection of breast cancer biomarkers circROBO1 and BRCA1. CRISPR-Cas13a and CRISPR-Cas12a were directly activated by their respective targets, resulting in the cleavage of short RNA and DNA reporters, respectively, thus the signals of 6-carboxyfluorescein (FAM) and 6-carboxy-xrhodamine (ROX) were restored. As the fluorescence intensities of FAM and ROX were dependent on the concentrations of circROBO1 and BRCA1, respectively, synchronous fluorescence scanning could achieve one-step detection of circROBO1 and BRCA1 with detection limits of 0.013 pM and 0.26 pM, respectively. The system was highly sensitive and specific, holding high diagnostic potential for the detection of clinical samples. Furthermore, the competing endogenous RNA mechanism between circROBO1 and BRCA1 was also explored, providing a reliable basis for the intrinsic regulatory mechanism of breast cancer.


Subject(s)
BRCA1 Protein , Biomarkers, Tumor , Biosensing Techniques , Breast Neoplasms , CRISPR-Cas Systems , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Female , Biomarkers, Tumor/genetics , Biosensing Techniques/methods , BRCA1 Protein/genetics , RNA, Circular/genetics , Limit of Detection , Fluoresceins/chemistry , CRISPR-Associated Proteins/genetics
12.
J Colloid Interface Sci ; 669: 198-210, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38713958

ABSTRACT

A widespread strategy to increase the transport of therapeutic peptides across cellular membranes has been to attach lipid moieties to the peptide backbone (lipidation) to enhance their intrinsic membrane interaction. Efforts in vitro and in vivo investigating the correlation between lipidation characteristics and peptide membrane translocation efficiency have traditionally relied on end-point read-out assays and trial-and-error-based optimization strategies. Consequently, the molecular details of how therapeutic peptide lipidation affects it's membrane permeation and translocation mechanisms remain unresolved. Here we employed salmon calcitonin as a model therapeutic peptide and synthesized nine double lipidated analogs with varying lipid chain lengths. We used single giant unilamellar vesicle (GUV) calcein influx time-lapse fluorescence microscopy to determine how tuning the lipidation length can lead to an All-or-None GUV filling mechanism, indicative of a peptide mediated pore formation. Finally, we used a GUVs-containing-inner-GUVs assay to demonstrate that only peptide analogs capable of inducing pore formation show efficient membrane translocation. Our data provided the first mechanistic details on how therapeutic peptide lipidation affects their membrane perturbation mechanism and demonstrated that fine-tuning lipidation parameters could induce an intrinsic pore-forming capability. These insights and the microscopy based workflow introduced for investigating structure-function relations could be pivotal for optimizing future peptide design strategies.


Subject(s)
Calcitonin , Unilamellar Liposomes , Calcitonin/chemistry , Calcitonin/metabolism , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Animals , Fluoresceins/chemistry , Cell Membrane/metabolism , Cell Membrane/chemistry
13.
Vox Sang ; 119(7): 764-768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697641

ABSTRACT

BACKGROUND AND OBJECTIVES: Platelets for transfusion are evaluated for in vivo quality using recovery and survival measurements in healthy human subjects. Radiolabelling is the standard for tracing platelets post-transfusion but imposes logistical and technical limitations. This study investigates the in vitro feasibility of labelling platelets with the calcein family of fluorescent dyes as an alternative to radioisotopes or biotin. MATERIALS AND METHODS: Protocols for radiolabelling were adapted for use with calcein acetoxymethyl ester (CAM) and biotin. Labelled platelets were analysed by flow cytometry and evaluated for activation and function. We tested feasibility for labelling without manipulation of platelets and for multiplexing of samples. RESULTS: Labelling at 2 µg CAM/1010 platelets resulted in >99% of CAM+ platelets. There was no significant difference in activation or aggregation between CAM-labelled or biotinylated platelets and vehicle controls although %CD62P+ was significantly lower in platelets that were not processed for labelling. Addition of CAM to the platelet storage bag labelled >95% of platelets. Platelet populations labelled with different dyes could be distinguished by flow cytometry. CONCLUSION: These data provide a rationale for further development of CAM and other fluorescent dyes as tools for measuring post-transfusion kinetics of platelets.


Subject(s)
Blood Platelets , Flow Cytometry , Fluoresceins , Fluorescent Dyes , Humans , Blood Platelets/cytology , Blood Platelets/metabolism , Flow Cytometry/methods , Staining and Labeling/methods , Platelet Transfusion/methods , Cell Survival , Male , Female
14.
Reprod Toxicol ; 127: 108615, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815770

ABSTRACT

Zebrafish embryo assays are used by pharmaceutical and chemical companies as new approach methodologies (NAMs) in developmental toxicity screening. Despite an overall high concordance of zebrafish embryo assays with in vivo mammalian studies, false negative and false positive results have been reported. False negative results in risk assessment models are of particular concern for human safety, as developmental anomalies may be missed. Interestingly, for several chemicals and drugs that were reported to be false negative in zebrafish, skeletal findings were noted in the in vivo studies. As the number of skeletal endpoints assessed in zebrafish is very limited compared to the in vivo mammalian studies, the aim of this study was to investigate whether the sensitivity could be increased by including a skeletal staining method. Three staining methods were tested on zebrafish embryos that were exposed to four teratogens that caused skeletal anomalies in rats and/or rabbits and were false negative in zebrafish embryo assays. These methods included a fixed alizarin red-alcian blue staining, a calcein staining, and a live alizarin red staining. The results showed a high variability in staining intensity of larvae exposed to mammalian skeletal teratogens, as well as variability between control larvae originating from the same clutch of zebrafish. Hence, biological variability in (onset of) bone development in zebrafish hampers the detection of (subtle) treatment-related bone effects that are not picked-up by gross morphology. In conclusion, the used skeletal staining methods did not increase the sensitivity of zebrafish embryo developmental toxicity assays.


Subject(s)
Embryo, Nonmammalian , Teratogens , Toxicity Tests , Zebrafish , Animals , Zebrafish/embryology , Teratogens/toxicity , Embryo, Nonmammalian/drug effects , Toxicity Tests/methods , Staining and Labeling , Bone and Bones/drug effects , Bone and Bones/abnormalities , Embryonic Development/drug effects , Fluoresceins/toxicity , Anthraquinones/toxicity
15.
Methods Cell Biol ; 186: 1-24, 2024.
Article in English | MEDLINE | ID: mdl-38705595

ABSTRACT

Broadly speaking, cell tracking dyes are fluorescent compounds that bind stably to components on or within the cells so the fate of the labeled cells can be followed. Their staining should be bright and homogeneous without affecting cell function. For purposes of monitoring cell proliferation, each time a cell divides the intensity of cell tracking dye should diminish equally between daughter cells. These dyes can be grouped into two different classes. Protein reactive dyes label cells by reacting covalently but non-selectively with intracellular proteins. Carboxyfluorescein diacetate succinimidyl ester (CFSE) is the prototypic general protein label. Membrane intercalating dyes label cells by partitioning non-selectively and non-covalently within the plasma membrane. The PKH membrane dyes are examples of lipophilic compounds whose chemistry allows for their retention within biological membranes without affecting cellular growth, viability, or proliferation when used properly. Here we provide considerations based for labeling cell lines and peripheral blood mononuclear cells using both classes of dyes. Examples from optimization experiments are presented along with critical aspects of the staining procedures to help mitigate common risks. Of note, we present data where a logarithmically growing cell line is labeled with both a protein dye and a membrane tracking dye to compare dye loss rates over 6days. We found that dual stained cells paralleled dye loss of the corresponding single stained cells. The decrease in fluorescence intensity by protein reactive dyes, however, was more rapid than that with the membrane reactive dyes, indicating the presence of additional division-independent dye loss.


Subject(s)
Cell Proliferation , Fluoresceins , Fluorescent Dyes , Staining and Labeling , Succinimides , Humans , Fluorescent Dyes/chemistry , Fluoresceins/chemistry , Succinimides/chemistry , Staining and Labeling/methods , Cell Tracking/methods , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/chemistry
16.
Angew Chem Int Ed Engl ; 63(32): e202401733, 2024 08 05.
Article in English | MEDLINE | ID: mdl-38716701

ABSTRACT

Cells rely heavily on the uptake of exogenous nutrients for survival, growth, and differentiation. Yet quantifying the uptake of small molecule nutrients at the single cell level is difficult. Here we present a new approach to studying the nutrient uptake in live single cells using Inverse Electron-Demand Diels Alder (IEDDA) chemistry. We have modified carboxyfluorescein-diacetate-succinimidyl esters (CFSE)-a quenched fluorophore that can covalently react with proteins and is only turned on in the cytosol of a cell following esterase activity-with a tetrazine. This tetrazine serves as a second quencher for the pendant fluorophore. Upon reaction with nutrients modified with an electron-rich or strained dienophile in an IEDDA reaction, this quenching group is destroyed, thereby enabling the probe to fluoresce. This has allowed us to monitor the uptake of a variety of dienophile-containing nutrients in live primary immune cell populations using flow cytometry and live-cell microscopy.


Subject(s)
Fluorescent Dyes , Fluorescent Dyes/chemistry , Humans , Fluoresceins/chemistry , Animals , Nutrients/metabolism , Succinimides/chemistry , Flow Cytometry , Cell Survival , Cycloaddition Reaction , Mice , Molecular Structure
17.
Int J Dev Neurosci ; 84(4): 328-341, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631684

ABSTRACT

According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.


Subject(s)
Nerve Degeneration , Rats, Wistar , Status Epilepticus , Animals , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Rats , Male , Nerve Degeneration/pathology , Nerve Degeneration/chemically induced , Ventral Striatum/pathology , Neurons/pathology , Animals, Newborn , Pilocarpine/toxicity , Disease Models, Animal , Lithium Chloride/toxicity , Age Factors , Fluoresceins
18.
PLoS One ; 19(4): e0301432, 2024.
Article in English | MEDLINE | ID: mdl-38626169

ABSTRACT

Diffusion within extracellular matrix is essential to deliver nutrients and larger metabolites to the avascular region of the meniscus. It is well known that both structure and composition of the meniscus vary across its regions; therefore, it is crucial to fully understand how the heterogenous meniscal architecture affects its diffusive properties. The objective of this study was to investigate the effect of meniscal region (core tissue, femoral, and tibial surface layers) and molecular weight on the diffusivity of several molecules in porcine meniscus. Tissue samples were harvested from the central area of porcine lateral menisci. Diffusivity of fluorescein (MW 332 Da) and three fluorescence-labeled dextrans (MW 3k, 40k, and 150k Da) was measured via fluorescence recovery after photobleaching. Diffusivity was affected by molecular size, decreasing as the Stokes' radius of the solute increased. There was no significant effect of meniscal region on diffusivity for fluorescein, 3k and 40k dextrans (p>0.05). However, region did significantly affect the diffusivity of 150k Dextran, with that in the tibial surface layer being larger than in the core region (p = 0.001). Our findings contribute novel knowledge concerning the transport properties of the meniscus fibrocartilage. This data can be used to advance the understanding of tissue pathophysiology and explore effective approaches for tissue restoration.


Subject(s)
Dextrans , Meniscus , Animals , Swine , Dextrans/metabolism , Meniscus/metabolism , Menisci, Tibial/physiology , Fibrocartilage/metabolism , Fluoresceins/metabolism
19.
Carbohydr Polym ; 336: 122134, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38670761

ABSTRACT

In our research we used the anionic nanofibrillar cellulose (ANFC) as a platform for far-red light-induced release of cargo from liposomes. In contrast to previous works, where photosensitizers are usually in the liposomal bilayers, we used a cellulose-binding dye. Our phthalocyanine derivative has been shown to bind very strongly to cellulose and cellulose nanofiber hydrogels, allowing us to place it outside of the liposomes. Both the sensitizer and cationic liposomes bind strongly to the ANFC after mixing, making the system easy to fabricate. Upon light activation, the photosensitizer generates reactive oxygen species (ROS) within the ANFC hydrogel, where the reactive oxygen species oxidize unsaturated lipids in the liposomal membrane, which makes the liposomes more permeable, resulting in on-demand cargo release. We were able to achieve ca. 70 % release of model hydrophilic cargo molecule calcein from the hydrogels with a relatively low dose of light (262 J/cm2) while employing the straightforward fabrication techniques. Our system was remarkably responsive to the far-red light (730 nm), enabling deep tissue penetration. Therefore, this very promising novel cellulose-immobilized photosensitizer liposomal platform could be used as a controlled drug delivery system, which can have applications in externally activated coatings or implants.


Subject(s)
Cellulose , Hydrogels , Light , Liposomes , Nanofibers , Photosensitizing Agents , Liposomes/chemistry , Cellulose/chemistry , Photosensitizing Agents/chemistry , Hydrogels/chemistry , Nanofibers/chemistry , Reactive Oxygen Species/metabolism , Isoindoles , Drug Liberation , Fluoresceins/chemistry , Indoles/chemistry , Red Light
20.
Langmuir ; 40(18): 9761-9774, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38663878

ABSTRACT

Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the cis-isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.


Subject(s)
Azo Compounds , Liposomes , Molecular Dynamics Simulation , Azo Compounds/chemistry , Azo Compounds/radiation effects , Liposomes/chemistry , Nanoparticles/chemistry , Ultraviolet Rays , Fluoresceins/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL