Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
J Med Chem ; 67(14): 11712-11731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38996382

ABSTRACT

Ferroptosis is a promising therapeutic target for injury-related diseases, yet diversity in ferroptosis inhibitors remains limited. In this study, initial structure optimization led us to focus on the bond dissociation enthalpy (BDE) of the N-H bond and the residency time of radical scavengers in a phospholipid bilayer, which may play an important role in ferroptosis inhibition potency. This led to the discovery of compound D1, exhibiting potent ferroptosis inhibition, high radical scavenging, and moderate membrane permeability. D1 demonstrated significant neuroprotection in an oxygen glucose deprivation/reoxygenation (OGD/R) model and reduced infarct volume in an in vivo stroke model upon intravenous treatment. Further screening based on this strategy identified NecroX-7 and Eriodictyol-7-O-glucoside as novel ferroptosis inhibitors with highly polar structural characteristics. This approach bridges the gap between free radical scavengers and ferroptosis inhibitors, providing a foundation for research and insights into novel ferroptosis inhibitor development.


Subject(s)
Ferroptosis , Free Radical Scavengers , Ischemic Stroke , Ferroptosis/drug effects , Animals , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Ischemic Stroke/drug therapy , Humans , Mice , Structure-Activity Relationship , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/chemical synthesis , Drug Discovery , Male , Molecular Structure , Mice, Inbred C57BL
2.
Int J Biol Macromol ; 275(Pt 1): 133761, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987001

ABSTRACT

This study aimed to enhance the antioxidant activity of carboxymethyl inulin (CMI) by chemical modification. Therefore, a series of cationic Schiff bases bearing heteroatoms were synthesized and incorporated into CMI via ion exchange reactions, ultimately preparing 10 novel CMI derivatives (CMID). Their structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The radical scavenging activities and reducing power of inulin, CMI, and CMID were studied. The results revealed a significant enhancement in antioxidant activity upon the introduction of cationic Schiff bases into CMI. Compared to commercially available antioxidant Vc, CMID demonstrated a broader range of antioxidant activities across the four antioxidant systems analyzed in this research. In particular, CMID containing quinoline (6QSCMI) exhibited the strongest hydroxyl radical scavenging activity, with a scavenging rate of 93.60 % at 1.6 mg mL-1. The CMID bearing imidazole (2MSCMI) was able to scavenge 100 % of the DPPH radical at 1.60 mg mL-1. Furthermore, cytotoxicity experiments showed that the products had good biocompatibility. These results are helpful for evaluating the feasibility of exploiting these products in the food, biomedical, and cosmetics industries.


Subject(s)
Antioxidants , Free Radical Scavengers , Inulin , Schiff Bases , Schiff Bases/chemistry , Inulin/chemistry , Inulin/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Cations/chemistry , Hydroxyl Radical/chemistry , Humans , Chemistry Techniques, Synthetic , Spectroscopy, Fourier Transform Infrared , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates
3.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892102

ABSTRACT

The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10a-d are reported herein. The nitrones 10a-d were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo compound AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hydroxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5-81% after 20 min; 79-96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since all tested compounds 10a-d showed negligible activity (8-46%), much lower than Trolox (91%). Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor (IC50 = 10 µM).


Subject(s)
Antioxidants , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Lipoxygenase/metabolism , Glycine max/enzymology , Glycine max/chemistry , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Imines/chemistry , Imines/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates/chemistry , Picrates/antagonists & inhibitors , Nitrogen Oxides/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemical synthesis
4.
Molecules ; 29(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38731607

ABSTRACT

The availability of pure individual betalains in sufficient quantities which permit deeper understanding is still a challenge. This study investigates the high-yielding semisynthesis of betaxanthins using betalamic acid from a natural source (Opuntia dillenii), followed by condensation with ʟ-amino acids and further purification. Moreover, the color stability of the four synthesized individual betaxanthins, namely proline (ʟ-ProBX), alanine (ʟ-AlaBX), leucine (ʟ-LeuBX), and phenylalanine (ʟ-PheBX) betaxanthins, was investigated at different pHs. Their relative contribution to free radical scavenging was also scrutinized by TEAC and DPPH. ʟ-AlaBX and ʟ-LeuBx showed a significantly (p < 0.05) higher antioxidant activity, whereas ʟ-ProBX was the most resistant to the hydrolysis of betaxanthin and hence the least susceptible to color change. The color stability was strongly influenced by pH, with the color of ʟ-ProBX, ʟ-LeuBX, and ʟ-AlaBX at pH 6 being more stable, probably due to the easier hydrolysis under acid conditions. The semisynthesis and purification allowed us to have available remarkable quantities of pure individual betaxanthins of Opuntia dillenii for the first time, and to establish their color properties and antioxidant capacity. This study could be a step forward in the development of the best natural food colorant formulation, based on the betalain structure, which is of special interest in food technology.


Subject(s)
Betacyanins , Betaxanthins , Opuntia , Betacyanins/chemistry , Betaxanthins/chemistry , Opuntia/chemistry , Antioxidants/chemistry , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Color
5.
Int J Biol Macromol ; 272(Pt 1): 132734, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815950

ABSTRACT

Kraft lignin (KL) holds significant potential as a renewable resource for the development of innovative materials that are currently not fully utilized. In this study, a novel iminated lignin (IL) was synthesized by grafting primary amine lignin (N-KL) onto salicylaldehyde. The effects of the dosage and reaction temperature on the nitrogen content of N-KL were evaluated. The maximum nitrogen content in N-KL reached to 3.32 %. Characterization by spectroscopy techniques (FT-IR, XPS, and NMR), elemental analysis, and gel permeation chromatography confirmed the imination of lignin. Additionally, the antioxidant activity of the lignin samples was investigated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability. Moreover, the DPPH radical scavenging capacity of IL-6 (IC50 = 38.6 ± 3.9 µg/mL) was close to that of commercial antioxidant butylated hydroxytoluene (BHT) (IC50 = 37.7 ± 4.5 µg/mL). Furthermore, the adsorption equilibrium results indicated that IL-6 had a maximum uptake of 115.6 mg/g Pb2+, which was 3.2-fold higher than that of KL. Kinetic adsorption experiments suggested that IL-6 adsorption follows a pseudo-second-order model. Therefore, the synthesized iminated lignin is a promising candidate for the development of environmentally friendly materials with applications as an antioxidant and lead-ion adsorbent.


Subject(s)
Free Radical Scavengers , Lead , Lignin , Lignin/chemistry , Lead/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Biphenyl Compounds/chemistry , Picrates/chemistry , Kinetics , Adsorption , Antioxidants/chemistry , Antioxidants/chemical synthesis
6.
ACS Appl Mater Interfaces ; 16(22): 28991-29002, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38769310

ABSTRACT

Triphenylphosphine functionalized carbon dots (TPP-CDs) showcase robust mitochondria targeting capacity owing to their positive electrical properties. However, TPP-CDs typically involve complicated synthesis steps and time-consuming postmodification procedures. Especially, the one-step target-oriented synthesis of TPP-CDs and the regulation of TPP linkage modes remain challenges. Herein, we propose a free-radical-initiated random copolymerization in combination with hydrothermal carbonation to regulate the TPP backbone linkage for target-oriented synthesis of triphenylphosphine copolymerization carbon dots (TPPcopoly-CDs). The linkage mechanism of random copolymerization reactions is directional, straightforward, and controllable. The TPP content and IC50 of hydroxyl radicals scavenging ability of TPPcopoly-CDs are 53 wt % and 0.52 mg/mL, respectively. TPP serves as a charge control agent to elevate the negatively charged CDs by 20 mV. TPPcopoly-CDs with negative charge can target mitochondria, and in the corresponding mechanism the TPP moiety plays a crucial role in targeting mitochondria. This discovery provides a new perspective on the controlled synthesis, TPP linkage modes, and mitochondrial targeting design of TPP-CDs.


Subject(s)
Carbon , Mitochondria , Organophosphorus Compounds , Quantum Dots , Organophosphorus Compounds/chemistry , Carbon/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Quantum Dots/chemistry , Humans , Reactive Oxygen Species/metabolism , Free Radical Scavengers/chemistry , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , HeLa Cells
7.
Int J Biol Macromol ; 267(Pt 1): 131228, 2024 May.
Article in English | MEDLINE | ID: mdl-38554923

ABSTRACT

The extremely low antioxidant, photocatalytic, and antibacterial properties of cellulose limit its application in the biomedical and environmental sectors. To improve these properties, nanohybrides were prepared by mixing carboxylated cellulose nanocrystals (CCNCs) and zinc nitrate hexahydrate. Data from FTIR, XRD, DLS, and SEM spectra showed that, ZnO nanoparticles, with a size ranging from 94 to 351 nm and the smallest nanoparticle size of 164.18 nm, were loaded onto CCNCs. CCNCs/ZnO1 nanohybrids demonstrated superior antibacterial, photocatalytic, and antioxidant performance. More considerable antibacterial activity was shown with a zone of inhibition ranging from 26.00 ± 1.00 to 40.33 ± 2.08 mm and from 31.66 ± 3.51 to 41.33 ± 1.15 mm against Gram-positive and Gram-negative bacteria, respectively. Regarding photodegradation properties, the maximum value (∼91.52 %) of photocatalytic methylene blue degradation was observed after 75 min exposure to a UV lamp. At a concentration of 125.00 µm/ml of the CCNC/ZnO1 nanohybrids sample, 53.15 ± 1.03 % DPPH scavenging activity was obtained with an IC50 value of 117.66 µm/ml. A facile, cost-effective, one-step synthesis technique was applied to fabricate CCNCs/ZnO nanohybrids at mild temperature using Oxytenanthera abyssinica carboxylated cellulose nanocrystals as biotemplate. The result showed that CCNCs/ZnO nanohybrids possess potential applications in developing advanced functional materials for dye removal and antibacterial and antioxidant applications.


Subject(s)
Anti-Bacterial Agents , Cellulose , Free Radical Scavengers , Nanoparticles , Nitrates , Zinc Oxide , Cellulose/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Nanoparticles/chemistry , Catalysis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemical synthesis , Zinc Compounds/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Microbial Sensitivity Tests
8.
Can J Physiol Pharmacol ; 102(6): 361-373, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38447123

ABSTRACT

Coumarins represent a diverse class of natural compounds whose importance in pharmaceutical and agri-food sectors has motivated multiple novel synthetic derivatives with broad applicability. The phenolic moiety in 4-hydroxycoumarins underscores their potential to modulate the equilibrium between free radicals and antioxidant species within biological systems. The aim of this work was to assess the antioxidant activity of 18 4-hydroxycoumarin coumarin derivatives, six of which are commercially available and the other 12 were synthesized and chemically characterized and described herein. The 4-hydroxycoumarins were prepared by a two steps synthetic strategy with satisfactory yields. Their antioxidant potential was evaluated through three in vitro methods, two free radical-scavenging assays (DPPH• and ABTS•+) and a metal chelating activity assay. Six synthetic coumarins (4a, 4g, 4h, 4i, 4k, 4l) had a scavenging capacity of DPPH• higher than butylated hydroxytoluene (BHT) (IC50 = 0.58 mmol/L) and compound 4a (4-hydroxy-6-methoxy-2 H-chromen-2-one) with an IC50 = 0.05 mmol/L outperformed both BHT and ascorbic acid (IC50 = 0.06 mmol/L). Nine hydroxycoumarins had a scavenging capacity against ABTS•+ greater (C3, 4a, 4c) or comparable (C1, C2, C4, C6, 4g, 4l) to Trolox (IC50 = 34.34 µmol/L). Meanwhile, the set had a modest ferrous chelation capacity, but most of them (C2, C5, C6, 4a, 4b, 4h, 4i, 4j, 4k, 4l) reached up to more than 20% chelating ability percentage. Collectively, this research work provides valuable structural insights that may determine the scavenging and metal chelating activity of 4-hydroxycoumarins. Notably, substitutions at the C6 position appeared to enhance scavenging potential, while the introduction of electron-withdrawing groups showed promise in augmenting chelation efficiency.


Subject(s)
4-Hydroxycoumarins , Antioxidants , Free Radical Scavengers , 4-Hydroxycoumarins/chemistry , 4-Hydroxycoumarins/pharmacology , 4-Hydroxycoumarins/chemical synthesis , Antioxidants/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemistry , Picrates/chemistry , Chelating Agents/chemistry , Chelating Agents/pharmacology , Chelating Agents/chemical synthesis , Biphenyl Compounds/chemistry , Sulfonic Acids/chemistry , Structure-Activity Relationship , Benzothiazoles
9.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164095

ABSTRACT

This work aimed to synthesize a new antihyperglycemic thiazolidinedione based on the spectral data. The DFT\B3LYP\6-311G** level of theory was used to investigate the frontier molecular orbitals (FMOs), chemical reactivity and map the molecular electrostatic potentials (MEPs) to explain how the synthesized compounds interacted with the receptor. The molecular docking simulations into the active sites of PPAR-γ and α-amylase were performed. The in vitro potency of these compounds via α-amylase and radical scavenging were evaluated. The data revealed that compounds (4-6) have higher potency than the reference drugs. The anti-diabetic and anti-hyperlipidemic activities for thiazolidine-2,4-dione have been investigated in vivo using the alloxan-induced diabetic rat model along with the 30 days of treatment protocol. The investigated compounds didn't show obvious reduction of blood glucose during pre-treatments compared to diabetic control, while after 30 days of treatments, the blood glucose level was lower than that of the diabetic control. Compounds (4-7) were able to regulate hyperlipidemia levels (cholesterol, triglyceride, high-density lipoproteins and low- and very-low-density lipoproteins) to nearly normal value at the 30th day.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Free Radical Scavengers , Molecular Docking Simulation , Thiazolidinediones , Animals , Diabetes Mellitus, Experimental/metabolism , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Molecular Structure , Rats , Structure-Activity Relationship , Thiazolidinediones/chemical synthesis , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry
10.
ACS Appl Mater Interfaces ; 14(4): 5090-5100, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35060376

ABSTRACT

Pulmonary delivery of anti-inflammatory siRNA presents a promising approach for localized therapy of acute lung injury (ALI), while polycationic vectors can be easily trapped by the negatively charged airway mucin glycoproteins and arbitrarily internalized by epithelial cells with nontargetability for immunological clearance. Herein, we report a material, the dopamine (DA)-grafted hyaluronic acid (HA-DA), coating on an anti-TNF-α vector to address these limitations. HA-DA was simply synthesized and facilely coated on poly(ß-amino ester) (BP)-based siRNA vectors via electrostatic attraction. The resulting HA-DA/BP/siRNA displayed significantly enhanced mucus penetration, attributable to the charge screen effect of HA-DA and the bioadhesive nature of the grafting DA. After transmucosal delivery, the nanosystem could target diseased macrophages via CD44-mediated internalization and rapidly escape from endo/lysosomes through the proton sponge effect, resulting in effective TNF-α regulation. Meanwhile, DA modification endowed the coating material with robust antioxidative capability to scavenge a broad spectrum of reactive oxygen/nitrogen species (RONS), which protected the lung tissue from oxidative damage and synergized with anti-TNF-α to inhibit a cytokine storm. As a result, a remarkable amelioration of ALI was achieved in a lipopolysaccharide (LPS)-stimulated mice model. This study provides a multifunctional coating material to facilitate pulmonary drug delivery for the treatment of lung diseases.


Subject(s)
Acute Lung Injury/drug therapy , Dopamine/therapeutic use , Drug Carriers/therapeutic use , Free Radical Scavengers/therapeutic use , Hyaluronic Acid/therapeutic use , RNA, Small Interfering/therapeutic use , Animals , Dopamine/analogs & derivatives , Dopamine/chemical synthesis , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Liberation , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Humans , Hyaluronic Acid/analogs & derivatives , Hyaluronic Acid/chemical synthesis , Macrophage Activation/drug effects , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mucus/metabolism , NIH 3T3 Cells , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Polymers/chemical synthesis , Polymers/chemistry , RAW 264.7 Cells , RNA, Small Interfering/chemistry , Tumor Necrosis Factor-alpha/antagonists & inhibitors
11.
J Med Chem ; 65(3): 1867-1882, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34985276

ABSTRACT

Hybrid compounds containing structural fragments of the Rho kinase inhibitor fasudil and the NRF2 inducers caffeic and ferulic acids were designed with the aid of docking and molecular mechanics studies. Following the synthesis of the compounds using a peptide-coupling methodology, they were characterized for their ROCK2 inhibition, radical scavenging, effects on cell viability (MTT assay), and NRF2 induction (luciferase assay). One of the compounds (1d) was selected in view of its good multitarget profile and good tolerability. It was able to induce the NRF2 signature, promoting the expression of the antioxidant response enzymes HO-1 and NQO1, via a KEAP1-dependent mechanism. Analysis of mRNA and protein levels of the NRF2 pathway showed that 1d induced the NRF2 signature in control and SOD1-ALS lymphoblasts but not in sALS, where it was already increased in the basal state. These results show the therapeutic potential of this compound, especially for ALS patients with a SOD1 mutation.


Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Amyotrophic Lateral Sclerosis/drug therapy , Coumaric Acids/therapeutic use , Free Radical Scavengers/therapeutic use , Protein Kinase Inhibitors/therapeutic use , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/chemical synthesis , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/toxicity , Aged , Cell Line, Tumor , Cell Survival/drug effects , Coumaric Acids/chemical synthesis , Coumaric Acids/toxicity , Female , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/toxicity , HEK293 Cells , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Lymphocytes/drug effects , Male , Middle Aged , NF-E2-Related Factor 2/agonists , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/toxicity , rho-Associated Kinases/antagonists & inhibitors
12.
Int J Mol Sci ; 22(24)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34948070

ABSTRACT

Coumarin derivatives have proven beneficial biological activities, but the mechanism of their radical scavenging potency is not fully understood. In this study, the antiradical capacity of two newly synthesized 4,7-dihydroxycoumarin derivatives: (E)-3-(1-((3-hydroxy-4-methoxyphenyl)amino)-ethylidene)-2,4-dioxochroman-7-yl acetate (A-3OH) and (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (A-4OH) towards HO• were examined by Electron Paramagnetic Resonance (EPR) Spectroscopy and Density Functional Theory (DFT). The compounds were fully characterized by the elemental microanalysis, IR, and NMR spectroscopies. The effect of pH on the acid-base equilibria is separately discussed and the predominant species at the physiological pH were determined. Several common mechanisms (Hydrogen Atom Transfer (HAT), Single-Electron Transfer followed by Proton Transfer (SET-PT), Sequential Proton Loss followed by Electron Transfer (SPLET), Radical Adduct Formation (RAF), and Intramolecular Hydrogen Atom Abstraction (iHAA)) of radical scavenging were investigated based on thermodynamic and kinetic parameters. EPR results indicated that both compounds significantly reduce the amount of present HO•. The results of the kinetic DFT study demonstrated that both compounds predominantly exhibit antiradical capacity through HAT and SPLET mechanisms. The estimated overall rate constants (koverall) proved that A-4OH shows better antioxidant capacity than A-3OH which is well-correlated with the results obtained by EPR measurement.


Subject(s)
Coumarins/chemical synthesis , Free Radical Scavengers/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Density Functional Theory , Electron Spin Resonance Spectroscopy , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Hydrogen-Ion Concentration , Models, Molecular , Molecular Structure , Thermodynamics
13.
ChemMedChem ; 16(24): 3763-3771, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34536069

ABSTRACT

The reactivity of phenothiazine (PS), phenoselenazine (PSE), and phenotellurazine (PTE) with different reactive oxygen species (ROS) has been studied using density functional theory (DFT) in combination with the QM-ORSA (Quantum Mechanics-based Test for Overall Free Radical Scavenging Activity) protocol for an accurate kinetic rate calculation. Four radical scavenging mechanisms have been screened, namely hydrogen atom transfer (HAT), radical adduct formation (RAF), single electron transfer (SET), and the direct oxidation of the chalcogen atom. The chosen ROS are HO. , HOO. , and CH3 OO. . PS, PSE, and PTE exhibit an excellent antioxidant activity in water regardless of the ROS due to their characteristic diffusion-controlled regime processes. For the HO. radical, the primary active reaction mechanism is, for all antioxidants, RAF. But, for HOO. and CH3 OO. , the dominant mechanism strongly depends on the antioxidant: HAT for PS and PSE, and SET for PTE. The scavenging efficiency decreases dramatically in lipid environment and remains only significant (via RAF) for the most reactive radical (HO. ). Therefore, PS, PSE, and PTE are excellent antioxidant molecules, especially in aqueous, physiological environments where they are active against a broad spectrum of harmful radicals. There is no advantage or significant difference in the scavenging efficiency when changing the chalcogen since the reactivity mainly derives from the amino hydrogen and the aromatic sites.


Subject(s)
Density Functional Theory , Free Radical Scavengers/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Phenothiazines/pharmacology , Dose-Response Relationship, Drug , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/chemistry , Molecular Structure , Phenothiazines/chemical synthesis , Phenothiazines/chemistry , Structure-Activity Relationship
14.
Carbohydr Polym ; 273: 118582, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34560984

ABSTRACT

The large molecular weight and poor water solubility of ß-1,3-glucan impede its potential applications. In this study, the ß-1,3-glucan producing fungi and Trichoderma harzianum capable of secreting endo-ß-1,3-glucanase were co-cultivated to produce branched ß-1,3-glucan oligosaccharides (bOßGs) by fermentation with Sclerotium rolfsii and Schizophyllum commune. The highest bOßG yields from S. rolfsii in flasks were 4.53 and 9.94 g/L in a 7 L fermenter. Structural analysis proved that bOßG from S. rolfsii had a narrow degree of polymerization of 5-12, whereas bOßG from S. commune had a degree of polymerization of 5-15. Antioxidant tests showed that both bOßGs had remarkable DPPH radical scavenging activity and hydroxyl radical scavenging activity, and the activity of bOßG from S. commune was better than that of bOßG from S. rolfsii. In addition, bOßGs could promote the secretion of NO by mouse macrophages and increase the production of TNF-α, IL-1ß, and IL-6 in RAW264.7.


Subject(s)
Oligosaccharides/chemical synthesis , beta-Glucans/chemical synthesis , Animals , Basidiomycota/metabolism , Carbohydrate Conformation , Coculture Techniques , Fermentation , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , Hypocreales/metabolism , Immunologic Factors/chemical synthesis , Immunologic Factors/pharmacology , Interleukin-6/metabolism , Mice , Nitric Oxide/metabolism , Oligosaccharides/pharmacology , Polymerization , RAW 264.7 Cells , Schizophyllum/metabolism , Transforming Growth Factor beta/metabolism , beta-Glucans/pharmacology
15.
Carbohydr Polym ; 273: 118619, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34561015

ABSTRACT

Rosmarinic acid is an attractive candidate for skin applications because of its antioxidant, anti-inflammatory, and photoprotective functions, however, its poor bioavailability hampers its therapeutic outcome. In this context, synthesis of polymer conjugates is an alternative to enlarge its applications. This work describes the synthesis of novel water-soluble chitosan - rosmarinic acid conjugates (CSRA) that have great potential for skin applications. Chitosan was functionalized with different contents of rosmarinic acid as confirmed by ATR-FTIR, 1H NMR and UV spectroscopies. CSRA conjugates presented three-fold radical scavenger capacity compared to the free phenolic compound. Films were prepared by solvent-casting procedure and the biological activity of the lixiviates was studied in vitro. Results revealed that lixiviates reduced activation of inflamed macrophages, improved antibacterial capacity against E. coli with respect to native chitosan and free rosmarinic acid, and also attenuated UVB-induced cellular damage and reactive oxygen species production in fibroblasts and keratinocytes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Chitosan/pharmacology , Cinnamates/pharmacology , Depsides/pharmacology , Free Radical Scavengers/pharmacology , Radiation-Protective Agents/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/toxicity , Chitosan/analogs & derivatives , Chitosan/toxicity , Cinnamates/chemical synthesis , Cinnamates/toxicity , Depsides/chemical synthesis , Depsides/toxicity , Escherichia coli/drug effects , Fibroblasts/drug effects , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/toxicity , Humans , Mice , Microbial Sensitivity Tests , Nitric Oxide/metabolism , RAW 264.7 Cells , Radiation-Protective Agents/chemical synthesis , Radiation-Protective Agents/toxicity , Staphylococcus epidermidis/drug effects , Rosmarinic Acid
16.
Bioorg Med Chem Lett ; 49: 128316, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34391893

ABSTRACT

A series of naringenin derivatives were designed and synthesized as multifunctional anti-Alzheimer's disease (AD) agents. The results showed that these derivatives displayed moderate-to-good acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities at the micromolar range (IC50, 12.91 ~ 62.52 µM for AChE and 0.094 ~ 13.72 µM for BuChE). Specifically, compound 1 showed the highest inhibitory activity against BuChE with the IC50 value of (0.094 ± 0.0054) µM. A Lineweaver-Burk plot and molecular docking studies demonstrated that 1 targeted both the catalytically active site (CAS) and the peripheral anion site (PAS) of BuChE. Besides, all derivatives showed excellent hydroxyl free radicals (·OH) scavenging ability than vitamin C and cyclic voltammetry results displayed that 1 could effectively scavenge superoxide anion radical (·O2-). In addition, compound 1 displayed good metal chelating properties and had anti-Aß aggregation activities. Therefore, compound 1 might be the potential anti-AD agent for further developments.


Subject(s)
Carbamates/pharmacology , Chelating Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Flavanones/pharmacology , Free Radical Scavengers/pharmacology , Acetylcholinesterase/chemistry , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Animals , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Carbamates/chemical synthesis , Carbamates/metabolism , Chelating Agents/chemical synthesis , Chelating Agents/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Drug Design , Electrophorus , Flavanones/chemical synthesis , Flavanones/metabolism , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/metabolism , Horses , Kinetics , Molecular Docking Simulation , Molecular Structure , Peptide Fragments/metabolism , Protein Binding , Protein Multimerization/drug effects , Structure-Activity Relationship
17.
Food Chem Toxicol ; 155: 112376, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34197881

ABSTRACT

With the aging problems increasing, the discovery of anti-aging compounds has become a popular research direction. Accumulation of free radicals and the consequent oxidative stress are the chief culprit of aging. Given this, cultured crocodile meat peptides-Maillard reaction product (CMP-MRP) with remarkable antioxidant activity was obtained via Maillard reaction of cultured crocodile meat hydrolysates and xylose. The antioxidant activity in vitro and anti-aging activity in vivo of CMP-MRP were investigated. Results indicated that the lifespan and the athletic ability of Drosophila were significantly improved after the administration of CMP-MRP in natural aging, H2O2- and paraquat-induced models. Furthermore, the antioxidant enzyme activities of Drosophila treated with CMP-MRP were enhanced while the levels of malondialdehyde (MDA) and protein carbonyl (PCO) were reduced in three Drosophila models. With the supplement of 5 mg/mL CMP-MRP in natural aging Drosophila model, the maximum lifespan increased from 61 days to 73 days, athletic ability raised by 95.45%, MDA and PCO reduced by 52.72% and 47.43%, respectively. Taken together, CMP-MRP exhibited outstanding antioxidant and anti-aging capacities in Drosophila models, suggesting that CMP-MRP possesses great potential in the health food and biomedicine fields as a food-derived anti-aging agent.


Subject(s)
Aging/drug effects , Drosophila melanogaster/drug effects , Free Radical Scavengers/pharmacology , Glycation End Products, Advanced/pharmacology , Glycopeptides/pharmacology , Alligators and Crocodiles , Animals , Free Radical Scavengers/chemical synthesis , Glycation End Products, Advanced/chemical synthesis , Glycopeptides/chemical synthesis , Longevity/drug effects , Maillard Reaction , Meat , Oxidative Stress/drug effects , Protein Hydrolysates/chemistry
18.
J Inorg Biochem ; 223: 111549, 2021 10.
Article in English | MEDLINE | ID: mdl-34315119

ABSTRACT

Four new transition metal complexes, [M(PPh3)(L)].CH3OH (M = Ni(II) (1), Pd(II) (2)) [Pt (PPh3)2(HL)]Cl (3) and [Ru(CO)(PPh3)2(L)] (4) (H2L = 2,4-dihydroxybenzaldehyde-S-methyldithiocarbazate, PPh3 = triphenylphosphine) have been synthesized and characterized by elemental analyses (C, H, N), FTIR, NMR (1H, 31P), ESI-MS and UV-visible spectroscopy. The molecular structure of (1) and (2) complexes was confirmed by single-crystal X-ray crystallography. It showed a distorted square planar geometry for both complexes around the metal center, and the H2L adopt a bi-negative tridentate chelating mode. The interaction with biomolecules viz., calf thymus DNA (ct DNA), yeast RNA (tRNA), and BSA (bovine serum albumin) was examined by both UV-visible and fluorescence spectroscopies. The antioxidant activity of all compounds is discussed on basis of DPPH• (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and showed better antioxidant activity for complexes compared to the ligand. The in vitro cytotoxicity of the compounds was tested on human (breast cancer (MCF7), colon cancer (HCT116), liver cancer (HepG2), and normal lung fibroblast (WI38)) cell lines, showing that complex (1) the most potent against MCF7 and complex (4) against HCT116 cell lines based on IC50 and selective indices (SI) values. So, both complexes were chosen for further studies such as DNA fragmentation, cell apoptosis, and cell cycle analyses. Complex (1) induced MCF7 cell death by cellular apoptosis and arrest cells at S phase. Complex (4) induced HCT116 cell death predominantly by cellular necrosis and arrested cell division at G2/M phase due to DNA damage.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Free Radical Scavengers/pharmacology , Hydrazines/pharmacology , Phosphines/pharmacology , Thiocarbamates/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cattle , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , DNA/metabolism , DNA Fragmentation/drug effects , Free Radical Scavengers/chemical synthesis , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Hydrazines/chemical synthesis , Hydrazines/metabolism , Metals, Heavy/chemistry , Phosphines/chemical synthesis , Phosphines/metabolism , Protein Binding , RNA, Transfer/metabolism , S Phase Cell Cycle Checkpoints/drug effects , Serum Albumin, Bovine/metabolism , Thiocarbamates/chemical synthesis , Thiocarbamates/metabolism , Yeasts/chemistry
19.
J Inorg Biochem ; 223: 111534, 2021 10.
Article in English | MEDLINE | ID: mdl-34273715

ABSTRACT

The reaction of the dioxouranium(VI) ion with a series of non-steroidal anti-inflammatory drugs (NSAIDs), namely mefenamic acid, indomethacin, diclofenac, diflunisal and tolfenamic acid, as ligands in the absence or presence of diverse N,N'-donors (1,10-phenanthroline,2,2'-bipyridine or 2,2'-bipyridylamine) as co-ligands led to the formation of ten complexes bearing the formulas [UO2(NSAID-O,O')2(O-donor)2] or [UO2(NSAID-O,O')2(N,N'-donor)], respectively. The complexes were characterized with diverse spectroscopic techniques and the crystal structures of three complexes were determined by single-crystal X-ray crystallography. The biological profile of the resultant complexes was assessed in vitro and in silico. The in vitro studies include their antioxidant properties (ability to scavenge free radicals 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and to reduce H2O2), their interaction with DNA (linear calf-thymus DNA or supercoiled circular pBR322 plasmid DNA) and their affinity for serum albumins (bovine and human serum albumin). In silico molecular docking calculations were performed regarding the behavior of the complexes towards DNA and their binding to both albumins.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Coordination Complexes/chemistry , Free Radical Scavengers/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Cattle , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , DNA/chemistry , DNA/metabolism , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/metabolism , Humans , Ligands , Molecular Docking Simulation , Molecular Structure , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Uranium/chemistry
20.
J Oleo Sci ; 70(7): 1007-1012, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34121031

ABSTRACT

In this study, cation-exchange resin was used to prepare an esterified antioxidant, sinapate ethyl ester (SE), using ethanolic extracts from rapeseed. A concentration of sinapic acid using the cation-exchange resin in 80% ethanol (aq) and subsequent interesterification of the extract in ethanol using the same resin afforded a product with a purity of 64 wt% and 100% of SE yield. Moreover, after purification using preparative thin-layer chromatography, almost 100 wt% purity was obtained. In an auto-oxidation test, purified SE conferred a much higher antioxidative effect on the bulk oil, emphasising the effectiveness of the protocol using cation-exchange resin for the purification.


Subject(s)
Brassica napus/chemistry , Cation Exchange Resins/chemistry , Esters/chemistry , Free Radical Scavengers/chemistry , Plant Extracts/chemistry , Adsorption , Catalysis , Choline/analogs & derivatives , Choline/chemistry , Choline/isolation & purification , Coumaric Acids/chemistry , Coumaric Acids/isolation & purification , Esterification , Esters/chemical synthesis , Free Radical Scavengers/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL